1
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
2
|
Babcock MC, DuBose LE, Hildreth KL, Stauffer BL, Kohrt WM, Wenner MM, Moreau KL. Endothelial dysfunction in middle-aged and older men with low testosterone is associated with elevated circulating endothelin-1. Am J Physiol Regul Integr Comp Physiol 2025; 328:R253-R261. [PMID: 39887085 DOI: 10.1152/ajpregu.00218.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Low testosterone in middle-aged/older men contributes to accelerated vascular aging, including endothelial dysfunction. However, the mechanisms by which low testosterone affects endothelial dysfunction are not well understood. We sought to determine whether higher endothelin-1 (ET-1) levels are associated with reduced brachial artery flow-mediated dilation (FMD) in middle-aged/older men with low testosterone. Plasma ET-1 was quantified in 60 men categorized as young (n = 20, age = 30 ± 4 yr, testosterone = 510 ± 63 ng/dL), middle-aged/older with normal testosterone (n = 20, age = 59 ± 6 yr, testosterone = 512 ± 115 ng/dL), or middle-aged/older with low testosterone (n = 20, age = 60 ± 8 yr, testosterone = 265 ± 47 ng/dL). Endothelial function was determined via brachial artery FMD. Venous and arterial endothelial cells were harvested via endovascular biopsy in a subset of participants and stained for ET-1 expression. Middle-aged/older men with normal testosterone exhibited lower brachial artery FMD (5.7 ± 2.2%) compared with young men (7.3 ± 1.3%, P = 0.020), which was exaggerated in middle-aged/older men with low testosterone (4.0 ± 1.8%, P = 0.010 vs. middle-aged/older men with normal testosterone). Plasma ET-1 was not different between young (5.6 ± 0.9 ng/dL) and middle-aged/older men with normal testosterone (6.0 ± 1.4 ng/dL, P = 0.681) but was higher in middle-aged/older men with low testosterone (7.7 ± 2.8 ng/dL) compared with both groups (P < 0.001 vs. young men; P = 0.013 vs. middle-aged/older men with normal testosterone). There was no difference in venous (P = 0.616) or arterial (P = 0.222) endothelial cell ET-1 expression between groups. There was a significant inverse association between plasma ET-1 and FMD (r =-0.371, P = 0.004). These data suggest that the accelerated age-associated reduction in endothelial dysfunction in middle-aged/older men with low testosterone is related to higher circulating ET-1.NEW & NOTEWORTHY Middle-aged/older men with low testosterone have reduced vascular endothelial function compared with young and age-matched men with normal testosterone. In this manuscript, we demonstrate that men with low testosterone have higher plasma endothelin-1, which is associated with worse brachial artery flow-mediated dilation. The source of higher plasma endothelin-1 remains unknown; however, higher circulating endothelin-1 appears to be a mechanism contributing to reduced vascular endothelial function in men with low testosterone.
Collapse
Affiliation(s)
- Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Brian L Stauffer
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Cardiology, Denver Health Medical Center, Denver, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Eastern Colorado, Denver, Colorado, United States
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Eastern Colorado, Denver, Colorado, United States
| |
Collapse
|
3
|
Usselman CW, Lindsey ML, Robinson AT, Habecker BA, Taylor CE, Merryman WD, Kimmerly D, Bender JR, Regensteiner JG, Moreau KL, Pilote L, Wenner MM, O'Brien M, Yarovinsky TO, Stachenfeld NS, Charkoudian N, Denfeld QE, Moreira-Bouchard JD, Pyle WG, DeLeon-Pennell KY. Guidelines on the use of sex and gender in cardiovascular research. Am J Physiol Heart Circ Physiol 2024; 326:H238-H255. [PMID: 37999647 PMCID: PMC11219057 DOI: 10.1152/ajpheart.00535.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
In cardiovascular research, sex and gender have not typically been considered in research design and reporting until recently. This has resulted in clinical research findings from which not only all women, but also gender-diverse individuals have been excluded. The resulting dearth of data has led to a lack of sex- and gender-specific clinical guidelines and raises serious questions about evidence-based care. Basic research has also excluded considerations of sex. Including sex and/or gender as research variables not only has the potential to improve the health of society overall now, but it also provides a foundation of knowledge on which to build future advances. The goal of this guidelines article is to provide advice on best practices to include sex and gender considerations in study design, as well as data collection, analysis, and interpretation to optimally establish rigor and reproducibility needed to inform clinical decision-making and improve outcomes. In cardiovascular physiology, incorporating sex and gender is a necessary component when optimally designing and executing research plans. The guidelines serve as the first guidance on how to include sex and gender in cardiovascular research. We provide here a beginning path toward achieving this goal and improve the ability of the research community to interpret results through a sex and gender lens to enable comparison across studies and laboratories, resulting in better health for all.
Collapse
Affiliation(s)
- Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Derek Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey R Bender
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Judith G Regensteiner
- Divisions of General Internal Medicine and Cardiology, Department of Medicine, Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Myles O'Brien
- School of Physiotherapy and Department of Medicine, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timur O Yarovinsky
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Quin E Denfeld
- School of Nursing and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Jesse D Moreira-Bouchard
- Q.U.E.E.R. Lab, Programs in Human Physiology, Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, Massachusetts, United States
| | - W Glen Pyle
- IMPART Team Canada Network, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kristine Y DeLeon-Pennell
- School of Medicine, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
4
|
Berbrier DE, Leone CA, Adler TE, Bender JR, Taylor HS, Stachenfeld NS, Usselman CW. Effects of androgen excess and body mass index on endothelial function in women with polycystic ovary syndrome. J Appl Physiol (1985) 2023; 134:868-878. [PMID: 36861670 DOI: 10.1152/japplphysiol.00583.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with endothelial dysfunction; whether this is attributable to comorbid hyperandrogenism and/or obesity remains to be established. Therefore, we 1) compared endothelial function between lean and overweight/obese (OW/OB) women with and without androgen excess (AE)-PCOS and 2) examined androgens as potential modulators of endothelial function in these women. The flow-mediated dilation (FMD) test was applied in 14 women with AE-PCOS (lean: n = 7; OW/OB: n = 7) and 14 controls (CTRL; lean: n = 7, OW/OB: n = 7) at baseline (BSL) and following 7 days of ethinyl estradiol supplementation (EE; 30 µg/day) to assess the effect of a vasodilatory therapeutic on endothelial function; at each time point we assessed peak increases in diameter during reactive hyperemia (%FMD), shear rate, and low flow-mediated constriction (%LFMC). BSL %FMD was attenuated in lean AE-PCOS versus both lean CTRL (5.2 ± 1.5 vs. 10.3 ± 2.6%, P < 0.01) and OW/OB AE-PCOS (5.2 ± 1.5 vs. 6.6 ± 0.9%, P = 0.048). A negative correlation between BSL %FMD and free testosterone was observed in lean AE-PCOS only (R2 = 0.68, P = 0.02). EE increased %FMD in both OW/OB groups (CTRL: 7.6 ± 0.6 vs. 10.4 ± 2.5%, AE-PCOS: 6.6 ± 0.9 vs. 9.6 ± 1.7%, P < 0.01), had no impact on %FMD in lean AE-PCOS (5.17 ± 1.5 vs. 5.17 ± 1.1%, P = 0.99), and reduced %FMD in lean CTRL (10.3 ± 2.6 vs. 7.6 ± 1.2%, P = 0.03). Collectively, these data indicate that lean women with AE-PCOS exhibit more severe endothelial dysfunction than their OW/OB counterparts. Furthermore, endothelial dysfunction appears to be mediated by circulating androgens in lean but not in OW/OB AE-PCOS, suggesting a difference in the endothelial pathophysiology of AE-PCOS between these phenotypes.NEW & NOTEWORTHY We present evidence for marked endothelial dysfunction in lean women with androgen excess polycystic ovary syndrome (AE-PCOS) that is 1) associated with free testosterone levels, 2) impaired relative to overweight/obese women with AE-PCOS, and 3) unchanged following short-term ethinyl estradiol supplementation. These data indicate an important direct effect of androgens on the vascular system in women with AE-PCOS. Our data also suggest that the relationship between androgens and vascular health differs between phenotypes of AE-PCOS.
Collapse
Affiliation(s)
- Danielle E Berbrier
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Cheryl A Leone
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| | - Tessa E Adler
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
| | - Jeffrey R Bender
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
- McGill Research Centre for Physical Activity and Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Turner CG, Stanhewicz AE, Nielsen KE, Otis JS, Feresin RG, Wong BJ. Effects of biological sex and oral contraceptive pill use on cutaneous microvascular endothelial function and nitric oxide-dependent vasodilation in humans. J Appl Physiol (1985) 2023; 134:858-867. [PMID: 36861674 PMCID: PMC10042598 DOI: 10.1152/japplphysiol.00586.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The purpose of this study was to evaluate in vivo endothelial function and nitric oxide (NO)-dependent vasodilation between women in either menstrual or placebo pill phases of their respective hormonal exposure [either naturally cycling (NC) or using oral contraceptive pills (OCPs)] and men. A planned subgroup analysis was then completed to assess endothelial function and NO-dependent vasodilation between NC women, women using OCP, and men. Endothelium-dependent and NO-dependent vasodilation were assessed in the cutaneous microvasculature using laser-Doppler flowmetry, a rapid local heating protocol (39°C, 0.1 °C/s), and pharmacological perfusion through intradermal microdialysis fibers. Data are represented as means ± standard deviation. Men displayed greater endothelium-dependent vasodilation (plateau, men: 71 ± 16 vs. women: 52 ± 20%CVCmax, P < 0.01), but lower NO-dependent vasodilation (men: 52 ± 11 vs. women: 63 ± 17%NO, P = 0.05) compared with all women. Subgroup analysis revealed NC women had lower endothelium-dependent vasodilation (plateau, NC women: 48 ± 21%CVCmax, P = 0.01) but similar NO-dependent vasodilation (NC women: 52 ± 14%NO, P > 0.99), compared with men. Endothelium-dependent vasodilation did not differ between women using OCP and men (P = 0.12) or NC women (P = 0.64), but NO-dependent vasodilation was significantly greater in women using OCP (74 ± 11%NO) than both NC women and men (P < 0.01 for both). This study highlights the importance of directly quantifying NO-dependent vasodilation in cutaneous microvascular studies. This study also provides important implications for experimental design and data interpretation.NEW & NOTEWORTHY This study supports differences in microvascular endothelial function and nitric oxide (NO)-dependent vasodilation between women in low hormone phases of two hormonal exposures and men. However, when separated into subgroups of hormonal exposure, women during placebo pills of oral contraceptive pill (OCP) use have greater NO-dependent vasodilation than naturally cycling women in their menstrual phase and men. These data improve knowledge of sex differences and the effect of OCP use on microvascular endothelial function.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Karen E Nielsen
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Endothelial dysfunction in subfertile women with polycystic ovary syndrome. Reprod Biomed Online 2023; 46:391-398. [PMID: 36566144 DOI: 10.1016/j.rbmo.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
RESEARCH QUESTION Is there an association between post-occlusive reactive hyperaemia (PORH) and ovarian stimulation in women with normoandrogenaemic polycystic ovary syndrome (PCOS)? DESIGN Women eligible for IVF at an academic fertility centre were invited to join this prospective study. Microvascular endothelial function was measured as PORH by laser Doppler flowmetry (LDF) before and after ovarian stimulation. Metabolic characteristics, hormone profiles and biochemical markers were analysed. RESULTS Thirty-four normoandrogenaemic women with PCOS and 36 normoandrogenaemic women without PCOS were included. The PCOS group displayed higher C-reactive protein levels and insulin resistance (P = 0.048 and P = 0.025, respectively). No significant difference was found in microcirculatory function between the groups at baseline. After ovarian stimulation, PORH was enhanced in the control group (slope 7.1 ± 3.3 versus 9.7 ± 4.5; P = 0.007; peak flow 30.7 ± 16.3 versus 43.5 ± 17.3, P = 0.008; however, the PCOS group experienced a blunting response to supraphysiological hormone status (slope 8.2 ± 5.1 versus 7.2 ± 4.3, P = 0.212; peak flow, 38.8 ± 19.4 versus 37.0 ± 21.8, P = 0.895). CONCLUSIONS Impaired microcirculatory function could be found using a non-invasive LDF technique in normoandrogenaemic women with PCOS undergoing IVF, indicating early changes in vascular endothelial dysfunction. Future observational studies should clarify whether PORH measurement might help predict IVF prognosis or obstetric complications.
Collapse
|
7
|
Yaşar H, Colak A, Demirpence M, Girgin E, Aslan F, Taylan A, Ceylan C. DO ANDROGENS PREDICT CARDIOVASCULAR RISK INCLUDING CARDIOTROPHIN-1 LEVELS in PATIENTS WITH OBESE and LEAN POLYCYSTIC OVARY SYNDROME. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:466-473. [PMID: 37152878 PMCID: PMC10162820 DOI: 10.4183/aeb.2022.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Introduction We aimed to investigate Cardiotrophin-1 (CT-1) levels along with other markers of cardiovascular disease and the association of androgen levels with these parameters in both lean and overweight or obese PCOS patients. Material and Methods The study included 90 overweight or obese PCOS patients with metabolic syndrome (MS) and 80 lean PCOS patients without MS. The control group consisted of 140 healthy females. Anthropometric measurements, plasma glucose, insulin, lipid and hormone profile, homocysteine, hs-CRP, CT-1 levels and carotid-IMT were evaluated in all study subjects. Results Fasting insulin, HOMA values were significantly higher in obese PCOS patients. Total testosteron levels were higher in both PCOS groups with respect to both controls. Serum homocysteine, hs-CRP, CT-1 and carotid-IMT values were significantly higher in both PCOS groups compared to controls (p=0.001, pCIMT: 0.005). CT-1 was positively correlated with insulin, HOMA, total testosterone, homocysteine, hs-CRP and carotid IMT. After multiple regression analysis, CT-1 was significantly positively correlated with total testosterone, hs-CRP and carotid IMT. Conclusions CT-1 was associated with other cardiovascular risk markers and its use as a cardiovascular risk marker might be suggested. Cardiovascular risk was increased even in lean PCOS patients without MS and it might be associated with elevated androgen levels.
Collapse
Affiliation(s)
- H.Y. Yaşar
- Endocrinology, Tepecik Research and Training Hospital, Turkey
| | - A. Colak
- Biochemistry, Tepecik Research and Training Hospital, Turkey
| | - M. Demirpence
- Endocrinology, Tepecik Research and Training Hospital, Turkey
| | - E. Girgin
- Biochemistry, Tepecik Research and Training Hospital, Turkey
| | - F.D. Aslan
- Biochemistry, Tepecik Research and Training Hospital, Turkey
| | - A. Taylan
- Rheumatology, Tepecik Research and Training Hospital, Turkey
| | - C. Ceylan
- Hematology,Tepecik Research and Training Hospital, Turkey
| |
Collapse
|
8
|
Greaney JL, Saunders EFH, Alexander LM. Short-term salicylate treatment improves microvascular endothelium-dependent dilation in young adults with major depressive disorder. Am J Physiol Heart Circ Physiol 2022; 322:H880-H889. [PMID: 35363580 PMCID: PMC9018008 DOI: 10.1152/ajpheart.00643.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS)-mediated reductions in nitric oxide (NO)-dependent dilation are evident in adults with major depressive disorder (MDD); however, the upstream mechanisms remain unclear. Here, we hypothesized that nuclear factor-κB (NF-κB) activation-induced ROS production contributes to microvascular endothelial dysfunction in MDD. Thirteen treatment-naive adults with MDD (6 women; 19-23 yr) and 10 healthy nondepressed adults (HAs; 5 women; 20-25 yr) were tested before and after (open-label design) systemic NF-κB knockdown (nonacetylated salicylate; 3,000-4,500 mg/day × 4 days). Red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (ACh), alone and in combination with NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)] or ROS scavenging (apocynin). Serum salicylate concentrations following treatment were not different between groups (22.8 ± 7.4 HAs vs. 20.8 ± 4.3 mg/dL MDD; P = 0.46). When compared with HAs, the NO-dependent component of ACh-induced dilation was blunted in adults with MDD before (P = 0.023), but not after (P = 0.27), salsalate treatment. In adults with MDD, the magnitude of improvement in endothelium-dependent dilation following salsalate treatment was inversely related to the degree of functional impairment at baseline (R2 = 0.43; P = 0.025). Localized ROS scavenging improved NO-dependent dilation before (P < 0.01), but not after (P > 0.05), salsalate treatment. Salsalate did not alter systemic concentrations of pro- or anti-inflammatory cytokines (all P > 0.05). These data suggest that NF-κB activation, via increased vascular ROS production, contributes to blunted NO-dependent dilation in young adults with MDD but otherwise free of clinical disease. These data provide the first direct evidence for a mechanistic role of vascular inflammation-associated endothelial dysfunction in human depression.NEW & NOTEWORTHY Our data indicate that short-term treatment with therapeutic doses of the nuclear factor-κB (NF-κB) inhibitor salsalate improved nitric oxide (NO)-mediated endothelium-dependent dilation in adults with major depressive disorder (MDD). In adults with MDD, acute localized scavenging of reactive oxygen species (ROS) with apocynin improved NO-dependent dilation before, but not after, salsalate administration. These data suggest that activation of NF-κB, in part via stimulation of vascular ROS production, contributes to blunted NO-mediated endothelium-dependent dilation in young adults with MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Erika F H Saunders
- Department of Psychiatry and Behavior Health, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
9
|
Babcock MC, DuBose LE, Witten TL, Stauffer BL, Hildreth KL, Schwartz RS, Kohrt WM, Moreau KL. Oxidative Stress and Inflammation Are Associated With Age-Related Endothelial Dysfunction in Men With Low Testosterone. J Clin Endocrinol Metab 2022; 107:e500-e514. [PMID: 34597384 PMCID: PMC8764347 DOI: 10.1210/clinem/dgab715] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Vascular aging, including endothelial dysfunction secondary to oxidative stress and inflammation, increases the risk for age-associated cardiovascular disease (CVD). Low testosterone in middle-aged/older men is associated with increased CVD risk. OBJECTIVE We hypothesized that low testosterone contributes to age-associated endothelial dysfunction, related in part to greater oxidative stress and inflammation. METHODS This cross-sectional study included 58 healthy, nonsmoking men categorized as young (N = 20; age 29 ± 4 years; testosterone 500 ± 58 ng/dL), middle-aged/older with higher testosterone (N = 20; age 60 ± 6 years; testosterone 512 ± 115 ng/dL), and middle-aged/older lower testosterone (N = 18; age 59 ± 8 years; testosterone 269 ± 48 ng/dL). Brachial artery flow-mediated dilation (FMDBA) was measured during acute infusion of saline (control) and vitamin C (antioxidant). Markers of oxidative stress (total antioxidant status and oxidized low-density lipoprotein cholesterol), inflammation (interleukin [IL]-6 and C-reactive protein [CRP]), and androgen deficiency symptoms were also examined. RESULTS During saline, FMDBA was reduced in middle-aged/older compared with young, regardless of testosterone status (P < 0.001). FMDBA was reduced in middle-aged/older lower testosterone (3.7% ± 2.0%) compared with middle-aged/older higher testosterone (5.7% ± 2.2%; P = 0.021), independent of symptoms. Vitamin C increased FMDBA (to 5.3% ± 1.6%; P = 0.022) in middle-aged/older lower testosterone but had no effect in young (P = 0.992) or middle-aged/older higher testosterone (P = 0.250). FMDBA correlated with serum testosterone (r = 0.45; P < 0.001), IL-6 (r = -0.41; P = 0.002), and CRP (r = -0.28; P = 0.041). CONCLUSION Healthy middle-aged/older men with low testosterone appear to have greater age-associated endothelial dysfunction, related in part to greater oxidative stress and inflammation. These data suggest that low testosterone concentrations may contribute to accelerated vascular aging in men.
Collapse
Affiliation(s)
- Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Teresa L Witten
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brian L Stauffer
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Cardiology, Denver Health Medical Center, Denver, CO 80045, USA
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert S Schwartz
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO 80045, USA
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO 80045, USA
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO 80045, USA
- Correspondence: Kerrie L. Moreau, Ph.D., University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, 12631 East 17th Ave., Mail Stop B179, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Singh P, Covassin N, Marlatt K, Gadde KM, Heymsfield SB. Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. Compr Physiol 2021; 12:2949-2993. [PMID: 34964120 PMCID: PMC10068688 DOI: 10.1002/cphy.c210014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in adults, highlighting the need to develop novel strategies to mitigate cardiovascular risk. The advancing obesity epidemic is now threatening the gains in CVD risk reduction brought about by contemporary pharmaceutical and surgical interventions. There are sex differences in the development and outcomes of CVD; premenopausal women have significantly lower CVD risk than men of the same age, but women lose this advantage as they transition to menopause, an observation suggesting potential role of sex hormones in determining CVD risk. Clear differences in obesity and regional fat distribution among men and women also exist. While men have relatively high fat in the abdominal area, women tend to distribute a larger proportion of their fat in the lower body. Considering that regional body fat distribution is an important CVD risk factor, differences in how men and women store their body fat may partly contribute to sex-based alterations in CVD risk as well. This article presents findings related to the role of obesity and sex hormones in determining CVD risk. Evidence for the role of sex hormones in determining body composition in men and women is also presented. Lastly, the clinical potential for using sex hormones to alter body composition and reduce CVD risk is outlined. © 2022 American Physiological Society. Compr Physiol 12:1-45, 2022.
Collapse
Affiliation(s)
- Prachi Singh
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | - Kara Marlatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Kishore M Gadde
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Shoemaker LN, Haigh KM, Kuczmarski AV, McGinty SJ, Welti LM, Hobson JC, Edwards DG, Feinberg RF, Wenner MM. ET B receptor-mediated vasodilation is regulated by estradiol in young women. Am J Physiol Heart Circ Physiol 2021; 321:H592-H598. [PMID: 34415188 DOI: 10.1152/ajpheart.00087.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endothelin-B (ETB) receptor is a key regulator of vascular endothelial function in women. We have previously shown that the ETB receptor mediates vasodilation in young women, an effect that is lost after menopause. However, the direct impact of changes in estradiol (E2) on ETB receptor function in women remains unclear. Therefore, the purpose of this study was to test the hypothesis that E2 exposure modulates ETB receptor-mediated dilation in young women. Fifteen young women (24 ± 4 yr, 24 ± 3 kg/m2) completed the study. Endogenous sex hormone production was suppressed with daily administration of a gonadotropin-releasing hormone antagonist (GnRHant; Ganirelix) for 10 days; E2 (0.1 mg/day, Vivelle-Dot patch) was added back on days 4-10. We measured vasodilation in the cutaneous microcirculation (microvascular endothelial function) via local heating (42°C) on day 4 (GnRHant) and day 10 (GnRHant + E2) using laser Doppler flowmetry coupled with intradermal microdialysis during perfusions of lactated Ringer's (control) and ETB receptor antagonist (BQ-788, 300 nM). During GnRHant, vasodilatory responses to local heating were enhanced with ETB receptor blockade (control: 83 ± 9 vs. BQ-788: 90 ± 5%CVCmax, P = 0.004). E2 administration improved vasodilation in the control site (GnRHant: 83 ± 9 vs. GnRHant + E2: 89 ± 8%CVCmax, P = 0.036). Furthermore, cutaneous vasodilatory responses during ETB receptor blockade were blunted after E2 administration (control: 89 ± 8 vs. BQ-788: 84 ± 8%CVCmax, P = 0.047). These data demonstrate that ovarian hormones, specifically E2, modulate ETB receptor function and contribute to the regulation of microvascular endothelial function in young women.NEW & NOTEWORTHY The endothelin-B (ETB) receptor mediates vasodilation in young women, an effect lost following menopause. It is unclear whether these alterations are due to aging or changes in estradiol (E2). During endogenous hormone suppression (GnRH antagonist), blockade of ETB receptors enhanced cutaneous microvascular vasodilation. However, during E2 administration, blockade of ETB receptors attenuated vasodilation, indicating that the ETB receptor mediates dilation in the presence of E2. In young women, ETB receptors mediate vasodilation in the presence of E2, an effect that is lost when E2 is suppressed.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Katherine M Haigh
- School of Nursing, University of Delaware, Newark, Delaware.,Reproductive Associates of Delaware, Newark, Delaware
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Shane J McGinty
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Laura M Welti
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | | | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
12
|
Association Between Dry Eye and Polycystic Ovary Syndrome: Subclinical Inflammation May Be Part of the Process. Eye Contact Lens 2021; 47:27-31. [PMID: 32496281 DOI: 10.1097/icl.0000000000000716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the changes in tear function in patients with polycystic ovary syndrome (PCOS) and establish whether there is a correlation between hormonal levels, novel hematologic biomarkers, and dry eye parameters. MATERIAL AND METHOD Forty-seven patients with PCOS and 43 age-matched patients with unexplained infertility were included in the control group. Follicle-stimulating hormone, luteinizing hormone, estradiol, thyroid-stimulating hormone, prolactin, dehydroepiandrosterone sulfate (DHEA-S), 17-OH progesterone, fasting and postprandial glucose, fasting insulin, and cholesterol metabolites were evaluated in both groups. In addition, the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio were obtained from a complete blood count. The Ocular Surface Disease Index (OSDI) questionnaire was administered, and all patients underwent tear break-up time (BUT) and Schirmer I tests. Bivariate correlations were investigated using Spearman correlation coefficient analysis. RESULTS The mean age of the PCOS group and the control group was 27.66±3.96 years and 29.28±6.83 years, respectively. Schirmer I test scores and BUT values were significantly lower and OSDI results were significantly higher in the PCOS group (P=0.003, P<0.001, and P=0.004). An inverse correlation was found between DHEA-S and BUT values in the PCOS group (r=-0.296, P=0.043). Similarly, a negative correlation was also present between NLR and BUT values in the PCOS group (r=-0.322, P=0.027). CONCLUSIONS Dry eye can be well established by sensitive tests in patients with PCOS. The severity of dry eye may be correlated with the level of inflammation and hyperandrogenism.
Collapse
|
13
|
Assessment of the retinal and choroidal microvascularization in polycystic ovary syndrome: an optical coherence tomography angiography study. Int Ophthalmol 2021; 41:2339-2346. [PMID: 33728491 DOI: 10.1007/s10792-021-01787-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To examine the retinal, peripapillary, choroidal microvascularization and the choroid thickness (CT) of the patients with polycystic ovary syndrome (PCOS) using optical coherence tomography angiography (OCT-A) and compare the results to measurements obtained from healthy controls. METHODS In total, 47 eyes of 47 patients recently diagnosed with PCOS and 47 eyes of 47 age-matched healthy women were included in this study. An RT XR Avanti instrument with AngioVue software was used for the OCT-A imaging using 6 × 6 mm macular and 4.5 × 4.5 mm optic nerve head scans. Quantitative vessel density results of superficial capillary plexus (SCP), deep capillary plexus (DCP) and radial peripapillary capillaries (RPC); flow area and flow density of choriocapillaris; and foveal avascular zone (FAZ) area were analyzed. CT was evaluated by using the measurements obtained from the subfoveolar area. RESULTS No significant differences were detected between the groups for any of vessel density results for the SCP, DCP, and RPC as well as the FAZ area. The difference in the choriocapillaris flow area and flow density between the groups was not statistically significant. The choroid was significantly thicker in women with PCOS than in the healthy group (p = 0.002). CONCLUSION Retinal and choroidal microvascularization was comparable between the women who were evaluated early after diagnosed with PCOS and age-matched healthy controls. Choroid was found thicker in patients with PCOS than in healthy women. OCT-A, as a new and noninvasive imaging method, may help in understanding the effect of PCOS on the posterior segment of the eye.
Collapse
|
14
|
Aribas E, Ahmadizar F, Mutlu U, Ikram MK, Bos D, Laven JSE, Klaver CCW, Ikram MA, Roeters van Lennep JL, Kavousi M. Sex steroids and markers of micro- and macrovascular damage among women and men from the general population. Eur J Prev Cardiol 2021; 29:1322-1330. [PMID: 33580786 DOI: 10.1093/eurjpc/zwaa031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
AIMS The contribution of sex hormones to micro- and macrovascular damage might differ among women and men. In particular, little is known about the association between sex hormones and small vessel disease. Therefore, we examined the association of total oestradiol, total testosterone, free-androgen index (FAI), dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), and androstenedione levels with micro- and macrovascular diseases. METHODS AND RESULTS This cross-sectional study included 2950 women and 2495 men from the population-based Rotterdam Study. As proxy of microvascular damage, we measured diameters of retinal arterioles and venules. Markers of macrovascular damage included carotid intima-media thickness and carotid plaque, coronary artery calcification (CAC), and peripheral artery disease. Linear and logistic regression models were used and adjusted for age, cardiovascular risk factors, and years since menopause. Associations with microvasculature: In women, total testosterone [mean difference per 1-unit increase in natural-log transformed total testosterone (95% confidence interval, CI): 2.59 (0.08-5.09)] and androstenedione [4.88 (1.82-7.95)] and in men DHEAS [2.80 (0.23-5.37)] and androstenedione [5.83 (2.19-9.46)] were associated with larger venular caliber. Associations with markers of large vessel disease: In women, higher total testosterone [-0.29 (-0.56 to -0.03)], FAI [-0.33 (-0.56 to -0.10)], and androstenedione levels [-0.33 (-0.64 to -0.02)] were associated with lower CAC burden and FAI [odds ratio (95% CI): 0.82 (0.71-0.94)] was associated with lower prevalence of plaque. CONCLUSION A more androgenic profile was associated with more microvascular damage in both women and men. Among women, however, higher androgen levels were also associated with less macrovascular damage. Our findings suggest that androgens might have distinct effects on the vasculature, depending on the vascular bed and stages of the atherosclerosis process.
Collapse
Affiliation(s)
- E Aribas
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - F Ahmadizar
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - U Mutlu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M K Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - D Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J S E Laven
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - C C W Klaver
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - M A Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J L Roeters van Lennep
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Moreau KL, Hildreth KL, Klawitter J, Blatchford P, Kohrt WM. Decline in endothelial function across the menopause transition in healthy women is related to decreased estradiol and increased oxidative stress. GeroScience 2020; 42:1699-1714. [PMID: 32770384 PMCID: PMC7732894 DOI: 10.1007/s11357-020-00236-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023] Open
Abstract
Endothelial function declines progressively across stages of the menopause transition; however, the mechanisms contributing to this decline are unknown. We hypothesized that differences in endothelial function among pre-, peri, and postmenopausal women are related to differences in estradiol and oxidative stress. Brachial artery flow-mediated dilation (FMD) was measured in 87 healthy women categorized by menopause stage (24 premenopausal, 17 early and 21 late perimenopausal, and 25 postmenopausal) before and after 3 days of ovarian hormone suppression (gonadotropin releasing hormone antagonist [GnRHant]) alone, and an additional 3 days of GnRHant with concurrent transdermal estradiol or placebo add-back treatment. In 82 women, FMD during acute vitamin C (antioxidant) infusion was measured before and after GnRHant + add-back. Before GnRHant, FMD was different among groups (p < 0.005; reduced across stages of menopause). Vitamin C increased FMD in late peri- and post- (p < 0.005) but not pre- or early perimenopausal women (p > 0.54). After GnRHant alone, FMD decreased in pre- and peri- (p < 0.01), but not postmenopausal women, and was restored to premenopausal levels by estradiol add-back in the pre- and perimenopausal groups. Vitamin C improved FMD in pre-, peri-, and postmenopausal women on GnRHant + placebo. There was no effect of vitamin C on FMD in women on GnRHant + estradiol. These observations support the concept that the decline in endothelial function across the menopause transition is related to the loss of ovarian estradiol. The decline in estradiol may alter redox balance, thereby increasing oxidative stress and impairing endothelial function.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Bldg. L15 Rm 8111, 12631 East 17th Ave., Mail Stop B179, Aurora, CO, 80045, USA.
- Veterans Affairs Eastern Colorado Geriatric Research, Education and Clinical Center, Denver, CO, USA.
| | - Kerry L Hildreth
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Bldg. L15 Rm 8111, 12631 East 17th Ave., Mail Stop B179, Aurora, CO, 80045, USA
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Blatchford
- Veterans Affairs Eastern Colorado Geriatric Research, Education and Clinical Center, Denver, CO, USA
- Colorado Biostatistical Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wendy M Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Bldg. L15 Rm 8111, 12631 East 17th Ave., Mail Stop B179, Aurora, CO, 80045, USA
- Veterans Affairs Eastern Colorado Geriatric Research, Education and Clinical Center, Denver, CO, USA
| |
Collapse
|
16
|
Noroozzadeh M, Raoufy MR, Bidhendi Yarandi R, Faraji Shahrivar F, Moghimi N, Ramezani Tehrani F. Cardiac function and tolerance to ischemia/reperfusion injury in a rat model of polycystic ovary syndrome during the postmenopausal period. Life Sci 2020; 262:118394. [PMID: 32910953 DOI: 10.1016/j.lfs.2020.118394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
AIMS There is much controversy regarding whether cardiovascular events increase in women with polycystic ovary syndrome (PCOS) with aging. Considering the lack of possibility of certain investigations in humans, animal models of PCOS may be suitable resources to obtain the useful data needed. In this study; we aimed to investigate whether cardiac function and tolerance to ischemia/reperfusion (I/R) injury worsen in postmenopausal rats, who had PCOS at younger ages, compared to controls. MAIN METHODS The hearts of aged rats with a history of PCOS and their controls were isolated and perfused in a Langendorff apparatus. Values of hemodynamic parameters, including left ventricular systolic pressure (LVSP), left ventricular developed pressure (LVDP), rate pressure product (RPP) and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) were recorded using a power lab system. Blood serum levels of total testosterone (TT) and estradiol (E2) were determined by ELISA kits. Generalized Estimating Equation Model and t-student unpaired test results were used to compare the findings documented between two groups. KEY FINDINGS No statistically significant differences were observed in hemodynamic parameters of the heart including, LVSP, LVDP, RPP and ±dp/dt, between the rats of two groups of study, at baseline or before ischemia and after I/R. Nor were any significant differences observed in the levels of two hormones between the two groups (p > 0.05). SIGNIFICANCE History of PCOS during reproductive ages should not be considered an important risk factor for reduction in cardiac contractile function or less tolerance to I/R injury during the postmenopausal period.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Bidhendi Yarandi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Faraji Shahrivar
- Department of Medical laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Naghmeh Moghimi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Stone T, Stachenfeld NS. Pathophysiological effects of androgens on the female vascular system. Biol Sex Differ 2020; 11:45. [PMID: 32727622 PMCID: PMC7391603 DOI: 10.1186/s13293-020-00323-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Sex hormones and their respective receptors affect vascular function differently in men and women, so it is reasonable to assume they play a role in the sex differences in cardiovascular disease states. This review focuses on how the effects of testosterone on arterial vessels impact the female vasculature. In women with androgen-excess polycystic ovary syndrome, and in transgender men, testosterone exposure is associated with high blood pressure, endothelial dysfunction, and dyslipidemia. These relationships suggest that androgens may exert pathophysiological effects on the female vasculature, and these effects on the female vasculature appear to be independent from other co-morbidities of cardiovascular disease. There is evidence that the engagement of androgens with androgen receptor induces detrimental outcomes in the female cardiovascular system, thereby representing a potential causative link with sex differences and cardiovascular regulation. Gender affirming hormone therapy is the primary medical intervention sought by transgender people to reduce the characteristics of their natal sex and induce those of their desired sex. Transgender men, and women with androgen-excess polycystic ovary syndrome both represent patient groups that experience chronic hyperandrogenism and thus lifelong exposure to significant medical risk. The study of testosterone effects on the female vasculature is relatively new, and a complex picture has begun to emerge. Long-term research in this area is needed for the development of more consistent models and controlled experimental designs that will provide insights into the impact of endogenous androgen concentrations, testosterone doses for hormone therapy, and specific hormone types on function of the female cardiovascular system.
Collapse
Affiliation(s)
- Tori Stone
- John B. Pierce Laboratory, 290 Congress Ave, New Haven, CT, 06510, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, 290 Congress Ave, New Haven, CT, 06510, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Manrique-Acevedo C, Chinnakotla B, Padilla J, Martinez-Lemus LA, Gozal D. Obesity and cardiovascular disease in women. Int J Obes (Lond) 2020; 44:1210-1226. [PMID: 32066824 PMCID: PMC7478041 DOI: 10.1038/s41366-020-0548-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bhavana Chinnakotla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Polycystic ovary syndrome and endothelial dysfunction: A potential role for soluble lectin-like oxidized low density lipoprotein receptor-1. Reprod Biol 2020; 20:396-401. [PMID: 32409108 DOI: 10.1016/j.repbio.2020.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 01/16/2023]
Abstract
The aims of this study were to investigate whether serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), oxidized LDL (oxLDL), paraoxonase-1(PON-1) and hydroperoxide (LOOH) levels are altered in women with polycystic ovary syndrome (PCOS) and also to determine if hyperandrogenism, insulin resistance (IR) and Anti-Müllerian Hormone (AMH) are associated with endothelial dysfunction in PCOS. A total of 46 women with PCOS and 46 non-PCOS healthy controls were recruited. Women with PCOS had significantly higher sLOX-1, oxLDL and LOOH concentrations than non-PCOS women [6.16 (3.92-13.95) vs 1.37 (0.63-4.43) ng/mL, p < 0.001; 6.48 ± 1.03 vs 3.16 ± 1.02 μU/L, p < 0.001; 2.45 (1.45-3.45) vs 1.06 (0.64-1.56) μmol/L, p < 0.001]. The mean PON-1 level of PCOS group was lower than non-PCOS group (69.47 ± 10.75 vs 104.08 ± 21.43 U/mL, p < 0.001). There was no significant difference in terms of the sLOX-1, oxLDL, LOOH and PON-1 levels between normal weight and overweight PCOS women. On univariate logistic regression analysis, Ferriman-Gallwey scale (FGS), HOMA-IR and AMH were an independent predictors of high risk group of endothelial dysfunction markers (HR-EDm). Age and BMI were not associated with HR-EDm. When incorporated into the multivariate model, endotelial dysfunction markers independently correlated with clinical hyperandrogenism (FGS) but not with AMH. In conclusion, our results indicated that an increased concentration of sLOX-1 might be an early predictor of endothelial damage in patients with PCOS. Women with PCOS have elevated sLOX-1, oxLDL, LOOH and decreased PON-1 levels, independent of BMI. Endothelial dysfunction in women with PCOS is associated with hyperandrogenism. Further studies are required to confirm our findings.
Collapse
|
20
|
Brothers RM, Fadel PJ, Keller DM. Racial disparities in cardiovascular disease risk: mechanisms of vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 317:H777-H789. [PMID: 31397168 DOI: 10.1152/ajpheart.00126.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) accounts for a third of all deaths in the United States making it the leading cause of morbidity and mortality. Although CVD affects individuals of all races/ethnicities, the prevalence of CVD is highest in non-Hispanic black (BL) individuals relative to other populations. The mechanism(s) responsible for elevated CVD risk in the BL population remains incompletely understood. However, impaired vascular vasodilator capacity and exaggerated vascular vasoconstrictor responsiveness are likely contributing factors, both of which are present even in young, otherwise healthy BL individuals. Within this review, we highlight some historical and recent data, collected from our laboratories, of impaired vascular function, in terms of reduced vasodilator capacity and heightened vasoconstrictor responsiveness, in the peripheral and cerebral circulations in BL individuals. We provide data that such impairments may be related to elevated oxidative stress and subsequent reduction in nitric oxide bioavailability. In addition, divergent mechanisms of impaired vasodilatory capacity between BL men and women are discussed. Finally, we propose several directions where future research is needed to fill in knowledge gaps, which will allow for better understanding of the mechanisms contributing to impaired vascular function in this population. Ultimately, this information will allow for better lifestyle and therapeutic approaches to be implemented in an effort to minimize the increased CVD burden in the BL population.
Collapse
Affiliation(s)
- R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
21
|
Blood pressure in postmenopausal women with a history of polycystic ovary syndrome. MENOPAUSE REVIEW 2019; 18:94-98. [PMID: 31485206 PMCID: PMC6719632 DOI: 10.5114/pm.2019.84039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder at reproductive age, affecting 6-10% of females in this group. The aetiology of this syndrome is not fully understood. Genetics, endocrinology factors, and the influence of the environment are possible causes of this syndrome. PCOS is characterised by menstrual disorders, hyperandrogenism, and abnormalities in ovarian morphology as well as metabolic disorders. PCOS increases the risk of overweight and obesity, diabetes, endometrial cancer, and cardiovascular diseases such as hypertension along with all its long-term consequences. There are limited studies about cardiovascular disorders, especially hypertension, in postmenopausal women with a history of PCOS. The presented paper is an attempt to briefly summarise literature data concerning the influence of this disease on the incidence of hypertension and blood pressure control in postmenopausal women. Women with PCOS more often present features of metabolic syndrome and have increased cardiovascular risk factors including hypertension. The prevalence of hypertension is 2.5 times higher than in corresponding healthy peers. Furthermore, hyperandrogenaemia is associated with elevated blood pressure independent of the patient's age, insulin resistance, obesity, and dyslipidaemia. In view of this, these patients should be thoroughly screened for hypertensive disorders and educated about the lifestyle modifications that could prevent hypertension later in life.
Collapse
|
22
|
Moreau KL, DuBose LE. The role of androgens in microvascular endothelial dysfunction in polycystic ovary syndrome: does size matter? J Physiol 2019; 597:2829-2830. [DOI: 10.1113/jp277961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kerrie L. Moreau
- Division of Geriatric MedicineDepartment of MedicineUniversity of Colorado Anschutz Medical Campus Aurora CO USA
- Eastern Colorado Veterans Affairs (VA) Geriatric Research Education and Clinical Center (GRECC) Aurora CO USA
| | - Lyndsey E. DuBose
- Department of Health and Human PhysiologyUniversity of Iowa Iowa City IA USA
| |
Collapse
|
23
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Usselman CW, Yarovinsky TO, Steele FE, Leone CA, Taylor HS, Bender JR, Stachenfeld NS. Androgens drive microvascular endothelial dysfunction in women with polycystic ovary syndrome: role of the endothelin B receptor. J Physiol 2019; 597:2853-2865. [PMID: 30847930 DOI: 10.1113/jp277756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Polycystic ovary syndrome (PCOS) is a complex syndrome with cardiovascular risk factors, including obesity and insulin resistance. PCOS is also associated with high androgens, increases the risk of cardiovascular dysfunction in women. Due to the complexity of PCOS, had it has been challenging to isolate specific causes of the cardiovascular dysfunction. Our measure of cardiovascular dysfunction (endothelial dysfunction) was most profound in lean women with PCOS. The endothelin-1-induced vasodilation in these PCOS subject, was dependent on the ETB R but was not NO-dependent. We also demonstrated oestrogen administration improved endothelial function in lean and obese women with PCOS likely because oestrogen increased NO availability. Our studies indicate a primary role for androgens in cardiovascular dysfunction in PCOS. ABSTRACT Endothelin-1 (ET-1) is an indicator of endothelial injury and dysfunction and is elevated in women with androgen excess polycystic ovary syndrome (AE-PCOS). The endothelin B receptor (ETB R) subtype mediates vasodilatation, but is blunted in women with PCOS. We hypothesized that androgen drives endothelial dysfunction in AE-PCOS women and oestradiol (EE) administration reverses these effects. We assessed microvascular endothelial function in women with (7 lean and 7 obese) and without AE-PCOS (controls, 6 lean, 7 obese). Only obese AE-PCOS women were insulin resistant (IR). We evaluated cutaneous vascular conductance (%CVCmax ) with laser Doppler flowmetry during low dose intradermal microdialysis ET-1 perfusions (1, 3, 4, 5 and 7 pmol) with either lactated Ringer solution alone, or with ETB R (BQ-788), or nitric oxide (NO) inhibition (l-NAME). Log[ET-1]-%maxCVC dose-response curves demonstrated reduced vasodilatory responses to ET-1 in lean AE-PCOS (logED50 , 0.59 ± 0.08) versus lean controls (logED50 , 0.49 ± 0.09, P < 0.05), but not compared to obese AE-PCOS (logED50 , 0.65 ± 0.09). ETB R inhibition decreased ET-1-induced vasodilatation in AE-PCOS women (logED50 , 0.64 ± 0. 22, P < 0.05). This was mechanistically observed at the cellular level, with ET-1-induced, DAF-FM-measurable endothelial cell NO production, which was abrogated by dihydrotestosterone in an androgen receptor-dependent manner. EE augmented the cutaneous vasodilating response to ET-1(logED50 0.29 ± 0.21, 0.47 ± 0.09, P < 0.05 for lean and obese, respectively). Androgens drive endothelial dysfunction in lean and obese AE-PCOS. We propose that the attenuated ET-1-induced vasodilatation in AE-PCOS is a consequence of androgen receptor-mediated, suppressed ETB R-stimulated NO production, and is reversed with EE.
Collapse
Affiliation(s)
- Charlotte W Usselman
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Timur O Yarovinsky
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Frances E Steele
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cheryl A Leone
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey R Bender
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Afferent arteriole responsiveness to endothelin receptor activation: does sex matter? Biol Sex Differ 2019; 10:1. [PMID: 30606254 PMCID: PMC6318859 DOI: 10.1186/s13293-018-0218-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The pathogenesis of hypertension is distinct between men and women. Endothelin-1 (ET-1) is a potential contributor to sex differences in the pathophysiology of hypertension. ET-1 participates in blood pressure regulation through activation of endothelin A (ETA) and endothelin B (ETB) receptors including those in the vasculature. Previous studies demonstrated that sex and sex hormones evoke discrepancies in ET-1-mediated control of vascular tone in different vascular beds. However, little is known about sex- and sex hormone-related differences in ET-1-dependent renal microvascular reactivity. Accordingly, we hypothesized that loss of sex hormones impairs afferent arteriole reactivity to ET-1. METHODS Male and female Sprague Dawley rats were subjected to gonadectomy or sham surgery (n = 6/group). After 3 weeks, kidneys from those rats were prepared for assessment of renal microvascular responses to ET-1 (ETA and ETB agonist, 10-12 to 10-8 M) and sarafotoxin 6c (S6c, ETB agonist, 10-12 to 10-8 M) using the blood-perfused juxtamedullary nephron preparation. RESULTS Control afferent arteriole diameters at 100 mmHg were similar between sham male and female rats averaging 14.6 ± 0.3 and 15.3 ± 0.3 μm, respectively. Gonadectomy had no significant effect on control arteriole diameter. In sham males, ET-1 produced significant concentration-dependent decreases in afferent arteriole diameter, with 10-8 M ET-1 decreasing diameter by 84 ± 1%. ET-1 induced similar concentration-dependent vasoconstrictor responses in sham female rats, with 10-8 M ET-1 decreasing the diameter by 82 ± 1%. The afferent arteriolar vasoconstrictor responses to ET-1 were unchanged by ovariectomy or orchiectomy. Selective ETB receptor activation by S6c induced a concentration-dependent decline in afferent arteriole diameter, with 10-8 M S6c decreasing diameter by 77 ± 3 and 76 ± 3% in sham male and female rats, respectively. Notably, ovariectomy augmented the vasoconstrictor response to S6c (10-12 to 10-9 M), whereas orchiectomy had no significant impact on the responsiveness to ETB receptor activation. CONCLUSION These data demonstrate that sex does not significantly influence afferent arteriole reactivity to ET receptor activation. Gonadectomy potentiated the responsiveness of the afferent arteriole to ETB-induced vasoconstriction in females, but not males, suggesting that female sex hormones influence ETB-mediated vasoconstriction in the renal microcirculation.
Collapse
|
26
|
Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 2018; 315:H1569-H1588. [PMID: 30216121 PMCID: PMC6734083 DOI: 10.1152/ajpheart.00396.2018] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Diseases of the cardiovascular system are the leading cause of morbidity and mortality in men and women in developed countries, and cardiovascular disease (CVD) is becoming more prevalent in developing countries. The prevalence of atherosclerotic CVD in men is greater than in women until menopause, when the prevalence of CVD increases in women until it exceeds that of men. Endothelial function is a barometer of vascular health and a predictor of atherosclerosis that may provide insights into sex differences in CVD as well as how and why the CVD risk drastically changes with menopause. Studies of sex differences in endothelial function are conflicting, with some studies showing earlier decrements in endothelial function in men compared with women, whereas others show similar age-related declines between the sexes. Because the increase in CVD risk coincides with menopause, it is generally thought that female hormones, estrogens in particular, are cardioprotective. Moreover, it is often proposed that androgens are detrimental. In truth, the relationships are more complex. This review first addresses female and male sex hormones and their receptors and how these interact with the cardiovascular system, particularly the endothelium, in healthy young women and men. Second, we address sex differences in sex steroid receptor-independent mechanisms controlling endothelial function, focusing on vascular endothelin and the renin-angiotensin systems, in healthy young women and men. Finally, we discuss sex differences in age-associated endothelial dysfunction, focusing on the role of attenuated circulating sex hormones in these effects.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Pennsylvania State University , University Park, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Obstetrics, Gynecology and Reproductive Sciences and Yale School of Public Health, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Sebzda KN, Kuczmarski AV, Pohlig RT, Lennon SL, Edwards DG, Wenner MM. Ovarian hormones modulate endothelin-1 receptor responses in young women. Microcirculation 2018; 25:e12490. [PMID: 29999581 DOI: 10.1111/micc.12490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We recently demonstrated ETBR mediate vasodilation in young but not postmenopausal women; it is unclear if this is related to age or a decline in ovarian hormones. The purpose of this study was to test the hypothesis that ETBR responses are modulated by ovarian hormones. METHODS We measured cutaneous vasodilatory responses in 12 young women (22 ± 1 years, 23 ± 1 kg/m2 ) during the ML (days 20-25) and EF (days 2-5) phases of the menstrual cycle. Cutaneous microdialysis perfusions of lactated Ringer (control), ETBR antagonist (BQ-788, 300 nmol/L), and ETAR antagonist (BQ-123, 500 nmol/L) were performed, followed by local heating to 42°C. RESULTS Serum estradiol (ML: 118 ± 16 vs EF: 44 ± 9 pg/mL, P < 0.05) and progesterone (ML: 8.3 ± 1.0 vs EF: 0.7 ± 0.2 ng/mL, P < 0.05) were higher during ML vs EF phase. ETBR blockade decreased vasodilation during ML (control: 91 ± 2 vs BQ-788: 83 ± 2%CVCmax, P < 0.05) but not EF (control: 89 ± 2 vs BQ-788: 89 ± 1%CVCmax). ETAR blockade also decreased vasodilation during ML (control: 91 ± 2 vs BQ-123: 87 ± 2%CVCmax, P < 0.05) but not EF (control: 89 ± 2 vs BQ-123: 92 ± 2%CVCmax). CONCLUSIONS These data suggest that fluctuations in ovarian hormones modulate ETBR and ETAR responses in young women.
Collapse
Affiliation(s)
- Kelly N Sebzda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Ryan T Pohlig
- Biostatistic Core Facility, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
28
|
Yanes Cardozo LL, Romero DG, Reckelhoff JF. Cardiometabolic Features of Polycystic Ovary Syndrome: Role of Androgens. Physiology (Bethesda) 2018; 32:357-366. [PMID: 28814496 DOI: 10.1152/physiol.00030.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects reproductive-age women. Hyperandrogenemia is present in a significant fraction (~80%) of women with PCOS. Increased prevalence of cardiometabolic risk factors is frequently observed in PCOS women. The present review aims to highlight the key role of androgens in mediating the negative cardiometabolic profile observed in PCOS women.
Collapse
Affiliation(s)
- Licy L Yanes Cardozo
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane F Reckelhoff
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Fujii N, McNeely BD, Zhang SY, Abdellaoui YC, Danquah MO, Kenny GP. Activation of protease-activated receptor 2 mediates cutaneous vasodilatation but not sweating: roles of nitric oxide synthase and cyclo-oxygenase. Exp Physiol 2018; 102:265-272. [PMID: 27981668 DOI: 10.1113/ep086092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Protease-activated receptor 2 (PAR2) is located in the endothelial cells of skin vessels and eccrine sweat glands. However, a functional role of PAR2 in the control of cutaneous blood flow and sweating remains to be assessed in humans in vivo. What is the main finding and its importance? Our results demonstrate that in normothermic resting humans in vivo, activation of PAR2 elicits cutaneous vasodilatation partly through nitric oxide synthase-dependent mechanisms, but does not mediate sweating. These results provide important new insights into the physiological significance of PAR2 in human skin. Protease-activated receptor 2 (PAR2) is present in human skin, including keratinocytes, endothelial cells of skin microvessels and eccrine sweat glands. However, whether PAR2 contributes functionally to the regulation of cutaneous blood flow and sweating remains entirely unclear in humans in vivo. We hypothesized that activation of PAR2 directly stimulates cutaneous vasodilatation and sweating via actions of nitric oxide synthase (NOS) and cyclo-oxygenase (COX). In 12 physically active young men (29 ± 5 years old), cutaneous vascular conductance (CVC) and sweat rate were measured at four intradermal microdialysis forearm skin sites that were treated with the following: (i) lactated Ringer's solution (control); (ii) 10 mm NG -nitro-l-arginine (NOS inhibitor); (iii) 10 mm ketorolac (COX inhibitor); or (iv) a combination of both inhibitors. At all sites, a PAR2 agonist (SLIGKV-NH2 ) was co-administered in a dose-dependent fashion (0.06, 0.18, 0.55, 1.66 and 5 mm, each for 25 min). The highest dose of SLIGKV-NH2 (5 mm) increased CVC from baseline at the control site (P ≤ 0.05). This increase in CVC associated with PAR2 activation was attenuated by NOS inhibition regardless of the presence or absence of simultaneous COX inhibition (both P ≤ 0.05). However, COX inhibition alone did not affect the PAR2-mediated increase in CVC (P > 0.05). No increase in sweat rate was measured at any administered dose of SLIGKV-NH2 (all P > 0.05). We show that in normothermic resting humans in vivo, PAR2 activation does not increase sweat rate, whereas it does modulate cutaneous vasodilatation through NOS-dependent mechanisms.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Yasmine C Abdellaoui
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Mercy O Danquah
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Stanhewicz AE, Jandu S, Santhanam L, Alexander LM. Alterations in endothelin type B receptor contribute to microvascular dysfunction in women who have had preeclampsia. Clin Sci (Lond) 2017; 131:2777-2789. [PMID: 29042489 PMCID: PMC5922254 DOI: 10.1042/cs20171292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Microvascular dysfunction originating during a preeclamptic pregnancy persists postpartum and probably contributes to increased CVD risk in these women. One putative mechanism contributing to this dysfunction is increased vasoconstrictor sensitivity to endothelin-1 (ET-1), mediated by alterations in ET-1 receptor type-B (ETBR). We evaluated ET-1 sensitivity, ETAR, and ETBR contributions to ET-1-mediated constriction, and the mechanistic role of ETBR in endothelium-dependent dilation in vivo in the microvasculature of postpartum women who had preeclampsia (PrEC, n=12) and control women who had a healthy pregnancy (HC, n=12). We hypothesized that (1) PrEC would have a greater vasoconstrictor response to ET-1, and (2) reduced ETBR-mediated dilation. We further hypothesized that ETBR-blockade would attenuate endothelium-dependent vasodilation in HC, but not PrEC. Microvascular reactivity was assessed by measurement of cutaneous vascular conductance responses to graded infusion of ET-1 (10-20-10-8 mol/l), ET-1 + 500 nmol/l BQ-123 (ETAR-blockade), and ET-1 + 300 nmol/l BQ-788 (ETBR-blockade), and during graded infusion of acetylcholine (ACh, 10-7-102 mmol/l) and a standardized local heating protocol with and without ETBR-inhibition. PrEC had an increased vasoconstriction response to ET-1 (P=0.02). PrEC demonstrated reduced dilation responses to selective ETBR stimulation with ET-1 (P=0.01). ETBR-inhibition augmented ET-1-mediated constriction in HC (P=0.01) but attenuated ET-1-mediated constriction in PrEC (P=0.003). ETBR-inhibition attenuated endothelium-dependent vasodilation responses to 100mmol/l ACh (P=0.04) and local heat (P=0.003) in HC but increased vasodilation (ACh: P=0.01; local heat: P=0.03) in PrEC. Women who have had preeclampsia demonstrate augmented vasoconstrictor sensitivity to ET-1, mediated by altered ETBR signaling. Furthermore, altered ETBR function contributes to diminished endothelium-dependent dilation in previously preeclamptic women.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
31
|
Kenney WL. Edward F. Adolph Distinguished Lecture: Skin-deep insights into vascular aging. J Appl Physiol (1985) 2017; 123:1024-1038. [PMID: 28729391 PMCID: PMC5792098 DOI: 10.1152/japplphysiol.00589.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022] Open
Abstract
The skin is an accessible model circulation for studying vascular function and dysfunction across the lifespan. Age-related changes, as well as those associated with disease progression, often appear first in the cutaneous circulation. Furthermore, impaired vascular signaling and attendant endothelial dysfunction, the earliest indicators of cardiovascular pathogenesis, occur in a similar fashion across multiple tissue beds throughout the body, including the skin. Because microvascular dysfunction is a better predictor of long-term outcomes and adverse cardiovascular events than is large vessel disease, an understanding of age-associated changes in the control of the human cutaneous microcirculation is important. This review focuses on 1) the merits of using skin-specific methods and techniques to study vascular function, 2) microvascular changes in aged skin (in particular, the role of the endothelial-derived dilator nitric oxide), and 3) the impact of aging on heat-induced changes in skin vasodilation. While skin blood flow is controlled by multiple, often redundant, mechanisms, our laboratory has used a variety of distinct thermal provocations of this model circulation to isolate specific age-associated changes in vascular function. Skin-specific approaches and techniques, such as intradermal microdialysis coupled with laser-Doppler flowmetry (in vivo) and biochemical analyses of skin biopsy samples (in vitro), have allowed for the targeted pharmacodissection of the mechanistic pathways controlling skin vasoreactivity and study of the impact of aging and disease states. Aged skin has an attenuated ability to vasodilate in response to warm stimuli and to vasoconstrict in response to cold stimuli.
Collapse
Affiliation(s)
- W Larry Kenney
- Department of Kinesiology and Intercollege Graduate Program in Physiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
32
|
Wenner MM, Sebzda KN, Kuczmarski AV, Pohlig RT, Edwards DG. ET B receptor contribution to vascular dysfunction in postmenopausal women. Am J Physiol Regul Integr Comp Physiol 2017; 313:R51-R57. [PMID: 28438762 DOI: 10.1152/ajpregu.00410.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/27/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
Abstract
Endothelin-1 (ET-1) contributes to age-related endothelial dysfunction in men via the ETA receptor. However, there are sex differences in the ET-1 system, and ETB receptors are modulated by sex hormones. The purpose of this study was to test the hypothesis that ETB receptors contribute to impaired vasodilatory function in postmenopausal women (PMW). We measured flow-mediated dilation (FMD) using ultrasound, and cutaneous nitric oxide-mediated vasodilation during local heating (42°C) via laser Doppler flowmetry in 18 young women (YW; 22 ± 1 yr) and 16 PMW (56 ± 1 yr). Cutaneous microdialysis perfusions of lactated Ringer (control), an ETB receptor antagonist (BQ-788, 300 nM), and an ETA receptor antagonist (BQ-123, 500 nM), were done through separate fibers, followed by perfusions of sodium nitroprusside (28 mM) and local heating to 43°C (max). Cutaneous vascular conductance (CVC) was calculated as cutaneous blood flow/mean arterial pressure and expressed as a percent of maximal dilation. FMD (YW: 7.5 ± 0.5 vs. PMW: 5.6 ± 0.6%) and cutaneous vasodilation (YW: 93 ± 2 vs. PMW: 83 ± 4%CVCmax) were lower in PMW (both P < 0.05). Blockade of ETB receptors decreased cutaneous vasodilation in YW (87 ± 2%CVCmax; P < 0.05 vs. control) but increased vasodilation in PMW (93 ± 1%CVCmax; P < 0.05 vs. control). ETA receptor blockade had minimal effect in YW (92 ± 1%CVCmax) but increased cutaneous vasodilation in PMW (91 ± 2%CVCmax; P < 0.05 vs. control). In conclusion, ETB receptors mediate vasodilation in YW, but this effect is lost after menopause. Impaired vasodilatory function in PMW is due in part to a loss of ETB-mediated dilation.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Kelly N Sebzda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| |
Collapse
|
33
|
Fujii N, Singh MS, Halili L, Louie JC, Kenny GP. The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat. J Appl Physiol (1985) 2016; 121:1263-1271. [PMID: 27763878 DOI: 10.1152/japplphysiol.00679.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 11/22/2022] Open
Abstract
During exercise, cutaneous vasodilation and sweating responses occur, whereas these responses rapidly decrease during postexercise recovery. We hypothesized that the activation of endothelin A (ETA) receptors, but not endothelin B (ETB) receptors, attenuate cutaneous vasodilation during high-intensity exercise and contribute to the subsequent postexercise suppression of cutaneous vasodilation. We also hypothesized that both receptors increase sweating during and following high-intensity exercise. Eleven men (24 ± 4 yr) performed an intermittent cycling protocol consisting of two 30-min bouts of moderate- (40% V̇o2peak) and high-intensity (75% V̇o2peak) exercise in the heat (35°C), each separated by a 20- and 40-min recovery period, respectively. Cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal microdialysis skin sites: 1) lactated Ringer (control), 2) 500 nM BQ123 (a selective ETA receptor blocker), 3) 300 nM BQ788 (a selective ETB receptor blocker), or 4) a combination of BQ123 + BQ788. There were no between-site differences in CVC during each exercise bout (all P > 0.05); however, CVC following high-intensity exercise was greater at BQ123 (56 ± 9%max) and BQ123 + BQ788 (55 ± 14%max) sites relative to the control site (43 ± 12%max) (all P ≤ 0.05). Sweat rate did not differ between sites throughout the protocol (all P > 0.05). We show that neither ETA nor ETB receptors modulate cutaneous vasodilation and sweating responses during and following moderate- and high-intensity exercise in the heat, with the exception that ETA receptors may partly contribute to the suppression of cutaneous vasodilation following high-intensity exercise.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Maya S Singh
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
34
|
Fujii N, Amano T, Halili L, Louie JC, Zhang SY, McNeely BD, Kenny GP. Intradermal administration of endothelin-1 attenuates endothelium-dependent and -independent cutaneous vasodilation via Rho kinase in young adults. Am J Physiol Regul Integr Comp Physiol 2016; 312:R23-R30. [PMID: 27881399 DOI: 10.1152/ajpregu.00368.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
We recently showed that intradermal administration of endothelin-1 diminished endothelium-dependent and -independent cutaneous vasodilation. We evaluated the hypothesis that Rho kinase may be a mediator of this response. We also sought to evaluate if endothelin-1 increases sweating. In 12 adults (25 ± 6 yr), we measured cutaneous vascular conductance (CVC) and sweating during 1) endothelium-dependent vasodilation induced via administration of incremental doses of methacholine (0.25, 5, 100, and 2,000 mM each for 25 min) and 2) endothelium-independent vasodilation induced via administration of 50 mM sodium nitroprusside (20-25 min). Responses were evaluated at four skin sites treated with either 1) lactated Ringer solution (Control), 2) 400 nM endothelin-1, 3) 3 mM HA-1077 (Rho kinase inhibitor), or 4) endothelin-1+HA-1077. Pharmacological agents were intradermally administered via microdialysis. Relative to the Control site, endothelin-1 attenuated endothelium-dependent vasodilation (CVC at 2,000 mM methacholine, 80 ± 10 vs. 56 ± 15%max, P < 0.01); however, this response was not detected when the Rho kinase inhibitor was simultaneously administered (CVC at 2,000 mM methacholine for Rho kinase inhibitor vs. endothelin-1 + Rho kinase inhibitor sites: 73 ± 9 vs. 72 ± 11%max, P > 0.05). Endothelium-independent vasodilation was attenuated by endothelin-1 compared with the Control site (CVC, 92 ± 13 vs. 70 ± 14%max, P < 0.01). However, in the presence of Rho kinase inhibition, endothelin-1 did not affect endothelium-independent vasodilation (CVC at Rho kinase inhibitor vs. endothelin-1+Rho kinase inhibitor sites: 81 ± 9 vs. 86 ± 10%max, P > 0.05). There was no between-site difference in sweating throughout (P > 0.05). We show that in young adults, Rho kinase is an important mediator of the endothelin-1-mediated attenuation of endothelium-dependent and -independent cutaneous vasodilation, and that endothelin-1 does not increase sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| |
Collapse
|
35
|
Green DJ, Hopkins ND, Jones H, Thijssen DHJ, Eijsvogels TMH, Yeap BB. Sex differences in vascular endothelial function and health in humans: impacts of exercise. Exp Physiol 2016; 101:230-42. [PMID: 26663420 DOI: 10.1113/ep085367] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the topic of this review? This brief review discusses potential sex differences in arterial function across the age span, with special emphasis on the effects of oestrogen and testosterone on the vascular endothelium. What advances does it highlight? We discuss the relationship between the impacts of sex hormones on arterial function and health in the context of epidemiological evidence pertaining to the menopause and ageing. Studies performed in humans are emphasized, alongside insights from animal studies. Findings suggest that the combination of exercise and hormone administration should be potentially synergistic or additive in humans. This brief review presents historical evidence for the purported impacts of male and female sex hormones on the vasculature in humans, including effects on macro- and microvascular function and health. Impacts of ageing on hormonal changes and arterial function are considered in the context of the menopause. Physiological data are presented alongside clinical outcomes from large trials, in an attempt to rationalize disparate findings along the bench-to-bedside continuum. Finally, the theoretical likelihood that exercise and hormone treatment may induce synergistic and/or additive vascular adaptations is developed in the context of recent laboratory studies that have compared male and female responses to training. Differences between men and women in terms of the impact of age and cardiorespiratory fitness on endothelial function are addressed. Ultimately, this review highlights the paucity of high-quality and compelling evidence regarding the fundamental impact, in humans, of sex differences on arterial function and the moderating impacts of exercise on arterial function, adaptation and health at different ages in either sex.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Nedlands, Western Australia, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nicola D Hopkins
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bu B Yeap
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia.,Department of Endocrinology and Diabetes, Fiona Stanley and Fremantle Hospitals, Perth, Australia
| |
Collapse
|
36
|
Wenner MM, Taylor HS, Stachenfeld NS. Peripheral Microvascular Vasodilatory Response to Estradiol and Genistein in Women with Insulin Resistance. Microcirculation 2016; 22:391-9. [PMID: 25996650 DOI: 10.1111/micc.12208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE E2 enhances vasodilation in healthy women, but vascular effects of the phytoestrogen GEN are still under investigation. IR compromises microvascular function. We therefore examined the interaction of E2 , GEN, and IR on microvascular vasodilatory responsiveness. METHODS We hypothesized that E2 and GEN increase microvascular vasodilation in healthy women (control, n = 8, 23 ± 2 year, BMI: 25.9 ± 2.9 kg/m2) but not in women with IR (n = 7, 20 ± 1 year, BMI: 27.3 ± 3.0 kg/m2). We used the cutaneous circulation as a model of microvascular vasodilatory function. We determined CVC with laser Doppler flowmetry and beat-to-beat blood pressure during local cutaneous heating (42 °C) with E2 or GEN microdialysis perfusions. Because heat-induced vasodilation is primarily an NO-mediated response, we examined microvascular vasodilation with and without L-NMMA. RESULTS In C, E2 enhanced CVC (94.4 ± 2.6% vs. saline 81.6 ± 4.2% CVCmax , p < 0.05), which was reversed with L-NMMA (80.9 ± 7.8% CVCmax , p < 0.05), but GEN did not affect vasodilation. Neither E2 nor GEN altered CVC in IR, although L-NMMA attenuated CVC during GEN. CONCLUSIONS Our study does not support improved microvascular responsiveness during GEN exposure in healthy young women, and demonstrates that neither E2 nor GEN improves microvascular vasodilatory responsiveness in women with IR.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nina S Stachenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,The John B. Pierce Laboratory, New Haven, Connecticut.,Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Halili L, Singh MS, Fujii N, Alexander LM, Kenny GP. Endothelin-1 modulates methacholine-induced cutaneous vasodilatation but not sweating in young human skin. J Physiol 2016; 594:3439-52. [PMID: 26846374 DOI: 10.1113/jp271735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Endothelin-1 (ET-1) is a potent endothelial-derived vasoconstrictor that may modulate cholinergic cutaneous vascular regulation. Endothelin receptors are also expressed on the human eccrine sweat gland, although it remains unclear whether ET-1 modulates cholinergic sweating. We investigated whether ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Our findings show that ET-1 attenuates methacholine-induced cutaneous vasodilatation through a NOS-independent mechanism. We also demonstrate that ET-1 attenuates cutaneous vasodilatation in response to sodium nitroprusside, suggesting that ET-1 diminishes the dilatation capacity of vascular smooth muscle cells. We show that ET-1 does not modulate methacholine-induced sweating at any of the administered concentrations. Our findings advance our knowledge pertaining to the peripheral control underpinning the regulation of cutaneous blood flow and sweating and infer that ET-1 may attenuate the heat loss responses of cutaneous blood flow, but not sweating. ABSTRACT The present study investigated the effect of endothelin-1 (ET-1) on cholinergic mechanisms of end-organs (i.e. skin blood vessels and sweat glands) for heat dissipation. We evaluated the hypothesis that ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Cutaneous vascular conductance (CVC) and sweat rate were assessed in three protocols: in Protocol 1 (n = 8), microdialysis sites were perfused with lactated Ringer solution (Control), 40 pm, 4 nm or 400 nm ET-1; in Protocol 2 (n = 11) sites were perfused with lactated Ringer solution (Control), 400 nm ET-1, 10 mm N(G) -nitro-l-arginine (l-NNA; a NOS inhibitor) or a combination of 400 nm ET-1 and 10 mm l-NNA; in Protocol 3 (n = 8), only two sites (Control and 400 nm ET-1) were utilized to assess the influence of ET-1 on the dilatation capacity of vascular smooth muscle cells (sodium nitroprusside; SNP). Methacholine (MCh) was co-administered in a dose-dependent manner (0.0125, 0.25, 5, 100, 2000 mm, each for 25 min) at all skin sites. ET-1 at 400 nm (P < 0.05) compared to lower doses (40 pm and 4 nm) (all P > 0.05) significantly attenuated increases in CVC in response to 0.25 and 5 mm MCh. A high dose of ET-1 (400 nm) co-infused with l-NNA further attenuated CVC during 0.25, 5 and 100 mm MCh administration relative to the ET-1 site (all P < 0.05). Cutaneous vasodilatation in response to SNP was significantly blunted after administration of 400 nm ET-1 (P < 0.05). We show that ET-1 attenuates cutaneous vasodilatation through a NOS-independent mechanism, possibly through a vascular smooth muscle cell-dependent mechanism, and methacholine-induced sweating is not altered by ET-1.
Collapse
Affiliation(s)
- Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci 2016; 159:20-29. [PMID: 26939577 DOI: 10.1016/j.lfs.2016.02.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 02/08/2023]
Abstract
Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.
Collapse
|
39
|
Coşkun M, Ilhan N, Elbeyli A, Rifaioğlu MM, Inci M, Davran R, Tuzcu EA, Yarbağ A, Davarci M, Gökçe A. Changes in retinal vessels related to varicocele: a pilot investigation. Andrologia 2015; 48:536-41. [DOI: 10.1111/and.12475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- M. Coşkun
- Department of Ophthalmology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - N. Ilhan
- Department of Ophthalmology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - A. Elbeyli
- Department of Ophthalmology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - M. M. Rifaioğlu
- Department of Urology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - M. Inci
- Department of Urology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - R. Davran
- Department of Radiology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - E. A. Tuzcu
- Department of Ophthalmology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | | | - M. Davarci
- Department of Urology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - A. Gökçe
- Department of Urology; Medical Faculty; Sakarya University; Sakarya Turkey
| |
Collapse
|
40
|
Zwart SR, Gregory JF, Zeisel SH, Gibson CR, Mader TH, Kinchen JM, Ueland PM, Ploutz-Snyder R, Heer MA, Smith SM. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes. FASEB J 2015; 30:141-8. [PMID: 26316272 DOI: 10.1096/fj.15-278457] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
Ophthalmic changes have occurred in a subset of astronauts on International Space Station missions. Visual deterioration is considered the greatest human health risk of spaceflight. Affected astronauts exhibit higher concentrations of 1-carbon metabolites (e.g., homocysteine) before flight. We hypothesized that genetic variations in 1-carbon metabolism genes contribute to susceptibility to ophthalmic changes in astronauts. We investigated 5 polymorphisms in the methionine synthase reductase (MTRR), methylenetetrahydrofolate reductase (MTHFR), serine hydroxymethyltransferase (SHMT), and cystathionine β-synthase (CBS) genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances. Preflight dehydroepiandrosterone was positively associated with cotton wool spots, and serum testosterone response during flight was associated with refractive change. Block regression showed that B-vitamin status and genetics were significant predictors of many of the ophthalmic outcomes that we observed. In one example, genetics trended toward improving (P = 0.10) and B-vitamin status significantly improved (P < 0.001) the predictive model for refractive change after flight. We document an association between MTRR 66 and SHMT1 1420 polymorphisms and spaceflight-induced vision changes. This line of research could lead to therapeutic options for both space travelers and terrestrial patients.
Collapse
Affiliation(s)
- Sara R Zwart
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Jesse F Gregory
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Steven H Zeisel
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Charles R Gibson
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Thomas H Mader
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Jason M Kinchen
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Per M Ueland
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Robert Ploutz-Snyder
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Martina A Heer
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Scott M Smith
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
41
|
Örnek N, İnal M, Tulmaç ÖB, Özcan-Dağ Z, Örnek K. Ocular blood flow in polycystic ovary syndrome. J Obstet Gynaecol Res 2015; 41:1080-6. [PMID: 25655141 DOI: 10.1111/jog.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
AIM The aim of this study was to evaluate whether the presence of polycystic ovary syndrome (PCOS) alters ocular blood flow parameters. MATERIAL AND METHODS Color Doppler imaging of the orbital vessels was performed in 41 eyes of 41 patients with PCOS. Forty-eight eyes of 48 age-matched volunteers served as controls. The ophthalmic artery (OA), the central retinal artery and the posterior ciliary artery were examined. Ocular blood flow indices of the peak systolic velocity, diastolic velocity, end-diastolic velocity, systolic/diastolic ratio, resistive index and pulsatility index were computed. RESULTS The peak systolic velocity, diastolic velocity and end-diastolic velocity of the OA, central retinal artery and posterior ciliary artery were significantly increased in PCOS patients in comparison to the controls (all P < 0.001). The mean systolic/diastolic ratio, resistive index and pulsatility index of the OA in PCOS patients were significantly decreased (all P < 0.05). Ocular blood flow velocity was positively correlated with serum luteinizing hormone, follicle-stimulating hormone and total cholesterol levels. There was a significant negative correlation between serum glucose and insulin levels and ocular blood flow velocity. CONCLUSION Ocular blood flow velocity is increased in PCOS patients and vascular resistance seems to decrease only in the OA.
Collapse
Affiliation(s)
- Nurgül Örnek
- Department of Ophthalmology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Mikail İnal
- Department of Radiology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Özlem Banu Tulmaç
- Department of Gynecology and Obstetrics, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Zeynep Özcan-Dağ
- Department of Gynecology and Obstetrics, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Kemal Örnek
- Department of Ophthalmology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| |
Collapse
|
42
|
Polycystic Ovary Syndrome as a Paradigm for Prehypertension, Prediabetes, and Preobesity. Curr Hypertens Rep 2014; 16:500. [DOI: 10.1007/s11906-014-0500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Stachenfeld NS, Taylor HS. Challenges and methodology for testing young healthy women in physiological studies. Am J Physiol Endocrinol Metab 2014; 306:E849-53. [PMID: 24569589 PMCID: PMC3989744 DOI: 10.1152/ajpendo.00038.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological responses and control of body systems differ between women and men. Moreover, within women, female gonadal hormones have important influences on organs and systems outside of reproduction. Until the NIH Revitalization Act of 1993, laboratories focused physiological research primarily on men, and this focus placed limitations on women's health care. Thus, the NIH directive to include women required scientists and physicians studying humans to consider female reproductive physiology. Even though this directive was enacted over 20 years ago, there is still a great deal of misunderstanding as to the best methods to control hormones or account for changes in internal hormone exposure in women. This discussion describes common methods investigators use to include women in physiological studies and to examine the impact of female reproductive hormone exposure for research purposes. In some cases, the goal is to control for phase of the cycle, so women are studied when the endogenous hormones should be similar to each other. When the goal of the research is to examine the effects of hormones on a physiological response, it is important to use methods that will change hormone exposure in a controlled fashion. We recommend a method that employs gonadotropin-releasing hormone (GnRH) agonist or antagonist to suppress estrogens, gonadotropins, progesterone, and androgens followed by administration of these hormones. While this method is more invasive, it is safe and is the strongest research design to examine both hormone effects within women and between women and men.
Collapse
|