1
|
Guillén-Yunta M, Valcárcel-Hernández V, García-Aldea Á, Soria G, García-Verdugo JM, Montero-Pedrazuela A, Guadaño-Ferraz A. Neurovascular unit disruption and blood-brain barrier leakage in MCT8 deficiency. Fluids Barriers CNS 2023; 20:79. [PMID: 37924081 PMCID: PMC10623792 DOI: 10.1186/s12987-023-00481-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.
Collapse
Affiliation(s)
- Marina Guillén-Yunta
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Víctor Valcárcel-Hernández
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Ángel García-Aldea
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Guadalupe Soria
- Laboratory of Surgical and Experimental Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology and Department of Cellular Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Ana Montero-Pedrazuela
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain.
| | - Ana Guadaño-Ferraz
- Laboratory of Thyroid Hormones and CNS, Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas 'Alberto-Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Chakrabarti N, Sarkar PK, Ray AK, Martin JV. Unveiling the nongenomic actions of thyroid hormones in adult mammalian brain: The legacy of Mary B. Dratman. Front Endocrinol (Lausanne) 2023; 14:1240265. [PMID: 37842308 PMCID: PMC10570802 DOI: 10.3389/fendo.2023.1240265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
A comprehensive review was conducted to compile the contributions of Mary B. Dratman and studies by other researchers in the field of nongenomic actions of thyroid hormones in adult mammalian brain. Dratman and her collaborators authored roughly half of the papers in this area. It has been almost fifty years since Dratman introduced the novel concept of thyroid hormones as neurotransmitters for the first time. The characterization of unique brain-region specific accumulation of thyroid hormones within the nerve terminals in adult mammals was a remarkable contribution by Dratman. It suggested a neurotransmitter- or neuromodulator-like role of thyroid hormone and/or its derivative, 3-iodothyronamine within adrenergic systems in adult mammalian brain. Several studies by other researchers using synaptosomes as a model system, have contributed to the concept of direct nongenomic actions of thyroid hormones at synaptic regions by establishing that thyroid hormones or their derivatives can bind to synaptosomal membranes, alter membrane functions including enzymatic activities and ion transport, elicit Ca2+/NO-dependent signaling pathways and induce substrate-protein phosphorylation. Such findings can help to explain the physiological and pathophysiological roles of thyroid hormone in psychobehavioral control in adult mammalian brain. However, the exact mode of nongenomic actions of thyroid hormones at nerve terminals in adult mammalian brain awaits further study.
Collapse
Affiliation(s)
- Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
- (CPEPA-UGC) Centre for Electro-Physiological and Neuroimaging studies including Mathematical Modelling, University of Calcutta, Kolkata, West Bengal, India
| | - Pradip K. Sarkar
- Department of Basic Sciences, Parker University, Dallas, TX, United States
| | - Arun K. Ray
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, India
| | - Joseph V. Martin
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
3
|
Martin JV, Sarkar PK. Nongenomic roles of thyroid hormones and their derivatives in adult brain: are these compounds putative neurotransmitters? Front Endocrinol (Lausanne) 2023; 14:1210540. [PMID: 37701902 PMCID: PMC10494427 DOI: 10.3389/fendo.2023.1210540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023] Open
Abstract
We review the evidence regarding the nongenomic (or non-canonical) actions of thyroid hormones (thyronines) and their derivatives (including thyronamines and thyroacetic acids) in the adult brain. The paper seeks to evaluate these compounds for consideration as candidate neurotransmitters. Neurotransmitters are defined by their (a) presence in the neural tissue, (b) release from neural tissue or cell, (c) binding to high-affinity and saturable recognition sites, (d) triggering of a specific effector mechanism and (e) inactivation mechanism. Thyronines and thyronamines are concentrated in brain tissue and show distinctive patterns of distribution within the brain. Nerve terminals accumulate a large amount of thyroid hormones in mature brain, suggesting a synaptic function. However, surprisingly little is known about the potential release of thyroid hormones at synapses. There are specific binding sites for thyroid hormones in nerve-terminal fractions (synaptosomes). A notable cell-membrane binding site for thyroid hormones is integrin αvβ3. Furthermore, thyronines bind specifically to other defined neurotransmitter receptors, including GABAergic, catecholaminergic, glutamatergic, serotonergic and cholinergic systems. Here, the thyronines tend to bind to sites other than the primary sites and have allosteric effects. Thyronamines also bind to specific membrane receptors, including the trace amine associated receptors (TAARs), especially TAAR1. The thyronines and thyronamines activate specific effector mechanisms that are short in latency and often occur in subcellular fractions lacking nuclei, suggesting nongenomic actions. Some of the effector mechanisms for thyronines include effects on protein phosphorylation, Na+/K+ ATPase, and behavioral measures such as sleep regulation and measures of memory retention. Thyronamines promptly regulate body temperature. Lastly, there are numerous inactivation mechanisms for the hormones, including decarboxylation, deiodination, oxidative deamination, glucuronidation, sulfation and acetylation. Therefore, at the current state of the research field, thyroid hormones and their derivatives satisfy most, but not all, of the criteria for definition as neurotransmitters.
Collapse
Affiliation(s)
- Joseph V. Martin
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Pradip K. Sarkar
- Department of Basic Sciences, Parker University, Dallas, TX, United States
| |
Collapse
|
4
|
Moffett SX, Klein EA, Brannigan G, Martin JV. L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors. PLoS One 2019; 14:e0223272. [PMID: 31584962 PMCID: PMC6777777 DOI: 10.1371/journal.pone.0223272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3’,5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.
Collapse
Affiliation(s)
- Steven X. Moffett
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Joseph V. Martin
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
5
|
Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes. PLoS One 2015; 10:e0139072. [PMID: 26421724 PMCID: PMC4589331 DOI: 10.1371/journal.pone.0139072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/09/2015] [Indexed: 11/28/2022] Open
Abstract
Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.
Collapse
|
6
|
Zucchi R, Accorroni A, Chiellini G. Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol 2014; 5:402. [PMID: 25360120 PMCID: PMC4199266 DOI: 10.3389/fphys.2014.00402] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/28/2014] [Indexed: 11/23/2022] Open
Abstract
3-iodothyronamine (T1AM) is an endogenous amine, that has been detected in many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favored learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signaling and might play a significant physiological and/or pathophysiological role. T1AM analogs have already been synthetized and their therapeutical potential is currently under investigation. 3-iodothyronamine (T1AM) is a biogenic amine whose structure is closely related to that of thyroid hormone (3,5,3′-triiodothyronine, or T3). The differences with T3 are the absence of the carboxylate group and the substitution of iodine with hydrogen in 5 and 3′ positions (Figure 1). In this paper we will review the evidence supporting the hypothesis that T1AM is a chemical messenger, namely that it is an endogenous substance able to interact with specific receptors producing significant functional effects. Special emphasis will be placed on neurological and metabolic effects, which are likely to have physiological and pathophysiological importance.
Collapse
Affiliation(s)
- Riccardo Zucchi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| | - Alice Accorroni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| |
Collapse
|
7
|
James TD, Moffett SX, Scanlan TS, Martin JV. Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity. Horm Behav 2013; 64:81-8. [PMID: 23702093 PMCID: PMC4091812 DOI: 10.1016/j.yhbeh.2013.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/22/2013] [Accepted: 05/11/2013] [Indexed: 11/27/2022]
Abstract
The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3',5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 μg T1AM, but not after 0.3 or 10 μg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose-response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain.
Collapse
Affiliation(s)
- Thomas D. James
- Center for Computational and Integrative Biology, Rutgers University, 315 Penn Street, Camden, NJ 08102, USA
| | - Steven X. Moffett
- Center for Computational and Integrative Biology, Rutgers University, 315 Penn Street, Camden, NJ 08102, USA
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph V. Martin
- Center for Computational and Integrative Biology, Rutgers University, 315 Penn Street, Camden, NJ 08102, USA
- Corresponding author. Fax: +1 856 225 6312., (J.V. Martin)
| |
Collapse
|
8
|
Revisiting thyroid hormones in schizophrenia. J Thyroid Res 2012; 2012:569147. [PMID: 22545225 PMCID: PMC3321576 DOI: 10.1155/2012/569147] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 02/07/2023] Open
Abstract
Thyroid hormones are crucial during development and in the adult brain. Of interest, fluctuations in the levels of thyroid hormones at various times during development and throughout life can impact on psychiatric disease manifestation and response to treatment. Here we review research on thyroid function assessment in schizophrenia, relating interrelations between the pituitary-thyroid axis and major neurosignaling systems involved in schizophrenia's pathophysiology. These include the serotonergic, dopaminergic, glutamatergic, and GABAergic networks, as well as myelination and inflammatory processes. The available evidence supports that thyroid hormones deregulation is a common feature in schizophrenia and that the implications of thyroid hormones homeostasis in the fine-tuning of crucial brain networks warrants further research.
Collapse
|
9
|
Gompf HS, Greenberg JH, Aston-Jones G, Ianculescu AG, Scanlan TS, Dratman MB. 3-Monoiodothyronamine: the rationale for its action as an endogenous adrenergic-blocking neuromodulator. Brain Res 2010; 1351:130-140. [PMID: 20615397 PMCID: PMC2926234 DOI: 10.1016/j.brainres.2010.06.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 01/02/2023]
Abstract
The investigations reported here were designed to gain insights into the role of 3-monoiodothyronamine (T1AM) in the brain, where the amine was originally identified and characterized. Extensive deiodinase studies indicated that T1AM was derived from the T4 metabolite, reverse triiodothyronine (revT3), while functional studies provided well-confirmed evidence that T1AM has strong adrenergic-blocking effects. Because a state of adrenergic overactivity prevails when triiodothyronine (T3) concentrations become excessive, the possibility that T3's metabolic partner, revT3, might give rise to an antagonist of those T3 actions was thought to be reasonable. All T1AM studies thus far have required use of pharmacological doses. Therefore we considered that choosing a physiological site of action was a priority and focused on the locus coeruleus (LC), the major noradrenergic control center in the brain. Site-directed injections of T1AM into the LC elicited a significant, dose-dependent neuronal firing rate change in a subset of adrenergic neurons with an EC(50)=2.7 microM, a dose well within the physiological range. Further evidence for its physiological actions came from autoradiographic images obtained following intravenous carrier-free (125)I-labeled T1AM injection. These showed that the amine bound with high affinity to the LC and to other selected brain nuclei, each of which is both an LC target and a known T3 binding site. This new evidence points to a physiological role for T1AM as an endogenous adrenergic-blocking neuromodulator in the central noradrenergic system.
Collapse
Affiliation(s)
- Heinrich S Gompf
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Joel H Greenberg
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary Aston-Jones
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Alexandra G Ianculescu
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Tom S Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Mary B Dratman
- Department of Medicine (Endocrinology), University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Ianculescu AG, Friesema ECH, Visser TJ, Giacomini KM, Scanlan TS. Transport of thyroid hormones is selectively inhibited by 3-iodothyronamine. MOLECULAR BIOSYSTEMS 2010; 6:1403-10. [PMID: 20358049 PMCID: PMC3257980 DOI: 10.1039/b926588k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thyroid hormone transporters are responsible for the cellular uptake of thyroid hormones, which is a prerequisite for their subsequent metabolism and action at nuclear thyroid hormone receptors. A recently discovered thyroid hormone derivative, 3-iodothyronamine (T(1)AM), has distinct biological effects that are opposite those of thyroid hormone. Here we investigate the effects of T(1)AM on thyroid hormone transporters using COS-1 cells transfected with the multispecific organic anion transporting polypeptides (OATPs) 1A2, 1B3, and 1C1, as well as the specific thyroid hormone transporters MCT8 and MCT10, and show that T(1)AM displays differential inhibition of T(3) and T(4) cellular uptake by these transporters. T(1)AM inhibits T(3) and T(4) transport by OATP1A2 with IC(50) values of 0.27 and 2.1 microM, respectively. T(4) transport by OATP1C1, which is thought to play a key role in thyroid hormone transport across the blood-brain barrier, is inhibited by T(1)AM with an IC(50) of 4.8 microM. T(1)AM also inhibits both T(3) and T(4) uptake via MCT8, the most specific thyroid hormone transporter identified to date, with IC(50) values of 95 and 31 microM, respectively. By contrast, T(1)AM has no effect on thyroid hormone transport by OATP1B3 and MCT10. Given that OATP1A2, OATP1C1, and MCT8 are all present in the brain, T(1)AM may play an important role in modulating thyroid hormone delivery and activity in specific target regions in the central nervous system.
Collapse
Affiliation(s)
- Alexandra G. Ianculescu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California, USA
| | - Edith C. H. Friesema
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Kathleen M. Giacomini
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Guadaño-Ferraz A, Obregón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A 1997; 94:10391-6. [PMID: 9294221 PMCID: PMC23373 DOI: 10.1073/pnas.94.19.10391] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thyroid hormone plays an essential role in mammalian brain maturation and function, in large part by regulating the expression of specific neuronal genes. In this tissue, the type 2 deiodinase (D2) appears to be essential for providing adequate levels of the active thyroid hormone 3,5,3'-triiodothyronine (T3) during the developmental period. We have studied the regional and cellular localization of D2 mRNA in the brain of 15-day-old neonatal rats. D2 is expressed in the cerebral cortex, olfactory bulb, hippocampus, caudate, thalamus, hypothalamus, and cerebellum and was absent from the white matter. At the cellular level, D2 is expressed predominantly, if not exclusively, in astrocytes and in the tanycytes lining the third ventricle and present in the median eminence. These results suggest a close metabolic coupling between subsets of glial cells and neurons, whereby thyroxine is taken up from the blood and/or cerebrospinal fluid by astrocytes and tanycytes, is deiodinated to T3, and then is released for utilization by neurons.
Collapse
Affiliation(s)
- A Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientí ficas 28029 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Goldman M, Dratman MB, Crutchfield FL, Jennings AS, Maruniak JA, Gibbons R. Intrathecal triiodothyronine administration causes greater heart rate stimulation in hypothyroid rats than intravenously delivered hormone. Evidence for a central nervous system site of thyroid hormone action. J Clin Invest 1985; 76:1622-5. [PMID: 3840496 PMCID: PMC424146 DOI: 10.1172/jci112146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To determine whether intracerebrally localized iodothyronines produce thyroid hormone-related functional effects, heart rate responses were compared in conscious hypothyroid rats given triiodothyronine (T3) by either the intrathecal or the intravenous route. A significant increase in heart rate occurred within 18 h after 1.5 nmol T3/100 g body wt was delivered intrathecally through a cannula previously placed in the lateral cerebral ventricle. Injection of the same T3 dose intravenously through an indwelling jugular catheter or injection of vehicle only by either route produced no significant increase in heart rate during the 48-h postinjection period of observation. These differences were observed even though integrated serum T3 concentrations were significantly lower after intrathecal than after intravenous T3 injection. The results indicate that thyroid hormone effects on heart rate are exerted within the brain as well as within the heart.
Collapse
|
13
|
Silva JE, Leonard JL, Crantz FR, Larsen PR. Evidence for two tissue-specific pathways for in vivo thyroxine 5'-deiodination in the rat. J Clin Invest 1982; 69:1176-84. [PMID: 7068853 PMCID: PMC370183 DOI: 10.1172/jci110554] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Propylthiouracil (PTU) is a well known inhibitor of thyroxine (T(4)) to triiodothyronine (T(3)) conversion as evidenced by its effect in several in vitro systems and by the decrease in serum T(3) caused by this drug in either rats or man receiving T(4) replacement. However, the failure of PTU to decrease the intrapituitary T(3) concentration and to completely blunt the serum T(3) concentration in T(4)-replaced athyreotic rats suggest that there may be a PTU-insensitive pathway of T(4) to T(3) conversion in some tissues. To address this question, we have studied the in vivo effect of PTU treatment on the generation of [(125)I]T(3) from [(125)I]T(4) in the serum and cerebral cortex (Cx), cerebellum (Cm), liver (L), and anterior pituitary (P) of euthyroid rats. Whereas PTU decreased the concentration of [(125)I]T(3) in the serum, L homogenates, and L nuclei after [(125)I]T(4), it did not affect the concentration of [(125)I]T(3) in homogenates or nuclei of Cx, Cm, or P. Iopanoic acid pretreatment significantly reduced the [(125)I]T(3) concentration in serum, homogenates, and cell nuclei of all these organs. Neither agent affected the metabolism or tissue distribution of simultaneously injected [(131)I]T(3). The presence of PTU in these tissues was evaluated by in vitro assessment of iodothyronine 5'-deiodinating activity using both [(125)I]rT(3) and [(125)I]T(4) as substrates. In agreement with the in vivo findings, generation of [(125)I]T(3) from T(4) in vitro was not affected by PTU in Cx, Cm, P but it was inhibited by 76% in L. However, rT(3) 5'-deiodination, known to be sensitive to PTU in these tissues, was inhibited in all four indicating that the PTU given in vivo was present in significant amounts. These results demonstrate that in rat Cx, Cm, and P unlike liver, PTU does not inhibit T(4) to T(3) conversion in vivo despite the presence of the drug in the tissues in amounts that significantly inhibit reverse T(3) 5'-deiodination. These results show that in vivo 5'-deiodination of T(4) proceeds via a PTU-insensitive pathway in the central nervous system and pituitary, while this pathway is not quantitatively important in the L. This mechanism accounts for the "locally generated" T(3) in central nervous system and pituitary and could also provide the approximately one-third of extrathyroidally produced T(3) not blocked by PTU administration in athyreotic T(4)-replaced rat.
Collapse
|
14
|
Kaplan MM, Yaskoski KA. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J Clin Invest 1981; 67:1208-14. [PMID: 7204575 PMCID: PMC370683 DOI: 10.1172/jci110136] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To explore the control of thyroid hormone metabolism in brain during maturation, we have measured iodothyronine deiodination in homogenates of rat cerebrum, cerebellum, and hypothalamus from 1 d postnatally through adulthood. Homogenates were incubated with (125)I-l-thyroxine (T(4)) + [(131)I]3,5,3'-l-triiodothyronine (T(3)) + 100 mM dithiothreitol. Nonradioactive T(4), T(3), and 3,3',5'-triiodothyronine (rT(3)) were included, as appropriate. The net production rate of [(125)I]T(3) from T(4) in 1-d cerebral homogenates was similar to the rate in adult cerebral homogenates (9.9+/-2.5[SEM]% vs. 8.9+/-1.2% T(4) to T(3) conversion in 2 h). Production of T(3) was not detectable in 1-d cerebellar and hypothalamic homogenates. The net T(3) production rate in adult cerebellar homogenates was twice as great as, and that in adult hypothalamic homogenates similar to, the rate in cerebral homogenates. Tyrosyl ring deiodination rates of T(4) and T(3) were more than three times as great in cerebral homogenates from 1-d-old rats as in adult cerebral homogenates. In cerebellar homogenates from 1-d-old rats, tyrosyl ring deiodination rates were much greater than the rates in adult cerebellar homogenates, but less than those in 1-d cerebral homogenates. In 1-d hypothalamic homogenates, tyrosyl ring deiodination rates were the highest of all the tissues tested, whereas rates in adult hypothalamic homogenates were similar to those in adult cerebral homogenates. During maturation, T(4) 5'-deiodination rates increased after 7 d and exceeded adult rates between 14 and 35 d in cerebral and cerebellar homogenates, and at 28 and 35 d in hypothalamic homogenates. In cerebral homogenates, the peak in reaction rate at 28 d reflected an increase in the maximum enzyme activity (V(max)) of the reaction. T(4) and T(3) tyrosyl ring deiodination rates decreased progressively with age down to adult rates, which were attained at 14 d for cerebrum and cerebellum and at 28 d for hypothalamus. These studies demonstrate quantitative differences in T(4) 5'-deiodinase activities in cerebrum, cerebellum, and hypothalamus at all ages, with the overall maturational pattern differing from the developmental patterns of both the pituitary and hepatic T(4) 5'-deiodinases. Iodothyronine tyrosyl ring deiodinase activities also vary quantitatively among these same brain regions and exhibit a pattern and a time-course of maturation different from that of the T(4) 5'-deiodinase. These enzymes could have important roles in the regulation of intracellular T(3) concentrations and, hence, on the expression of thyroid hormone effects.
Collapse
|
15
|
Kaplan MM, Yaskoski KA. Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. J Clin Invest 1980; 66:551-62. [PMID: 7400328 PMCID: PMC371684 DOI: 10.1172/jci109887] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Conversion of thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)) in rat brain has recently been shown in in vivo studies. This process contributes a substantial fraction of endogenous nuclear T(3) in the rat cerebral cortex and cerebellum. Production of T(4) metabolites besides T(3) in the brain has also been suggested. To determine the nature of these reactions, we studied metabolism of 0.2-1.0 nM [(125)I]T(4) and 0.1-0.3 nM [(131)I]T(3) in whole homogenates and subcellular fractions of rat cerebral cortex and cerebellum. Dithiothreitol (DTT) was required for detectable metabolic reactions: 100 mM DTT was routinely used. Ethanol extracts of incubation mixtures were analyzed by paper chromatography in t-amyl alcohol:hexane:ammonia and in 1-butanol:acetic acid. Rates of production of iodothyronines from T(4) and T(3) were greater at pH 7.5 than at 6.4 or 8.6 and greater at 37 degrees C than at 22 degrees or 4 degrees C. Lowering the pH, reducing the protein or DTT concentrations, and preheating homogenates to 100 degrees C all increased excess I(-) production but reduced iodothyronine production. In cerebral cortical homogenates from normal rats, products of T(4) degradation were as follows (percent added T(4)+/-SEM in nine experiments): T(3), 1.9+/-0.5%; 3,3',5'-triiodothyronine (rT(3)), 34.0+/-2.4%; 3,3'-diiodothyronine (3,3'-T(2)), 5.8+/-1.6%; 3'-iodothyronine (3'-T(1)), </=2.5%; and excess I(-), 4.7+/-1.2%. In the same experiments, products of T(3) degradation were 3,3'-T(2), 63.3+/-5.5%, and 3'-T(1), 12.6+/-1.4%. Cerebral cortical homogenates from hyperthyroid rats and normals were similar in regard to T(4) to T(3) deiodination. In contrast, in cerebral cortical homogenates from hypothyroid rats, phenolic ring deiodination rates were increased and tyrosyl ring deiodination rates were decreased compared with normals.T(4) to T(3) conversion rates in cerebellar homogenates were greater than rates in cerebral cortical homogenates from the same normal rats and less than rates in cerebellar homogenates from hypothyroid rats. T(4) and T(3) tyrosyl ring deiodination rates were greatly diminished in cerebellar homogenates compared with cerebral cortical homogenates in normal and hypothyroid rats. High-speed (1,000-160,000 g) pellets from cerebral cortical homogenates were enriched in phenolic and tyrosyl ring deiodinating activities relative to cytosol. Fractional conversion of T(4) to T(3) was inhibited by T(4), iopanoic acid, and rT(3), but not by T(3). Tyrosyl ring deiodination reactions were inhibited by T(3), T(4), and iopanoic acid, but not by rT(3). These studies demonstrate separate phenolic and tyrosyl ring iodothyronine deiodinase enzymes in rat brain. The brain phenolic ring deiodinase serves in vivo as a T(4) 5'-deiodinase and closely resembles anterior pituitary T(4) 5'-deiodinase in physiological and biochemical characteristics. The physiological significance of the tyrosyl ring iodothyronine deiodinase enzyme is unclear; it shares several properties with rat hepatic T(4) 5-deiodinase.
Collapse
|
16
|
Crantz FR, Larsen PR. Rapid thyroxine to 3,5,3'-triiodothyronine conversion and nuclear 3,5,3'-triiodothyronine binding in rat cerebral cortex and cerebellum. J Clin Invest 1980; 65:935-8. [PMID: 7358853 PMCID: PMC434484 DOI: 10.1172/jci109749] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)) conversion was evaluated in vivo in cerebral cortex, cerebellum, and anterior pituitary of male euthyroid Sprague-Dawley rats. Tracer quantities of (125)I-T(4) and (131)I-T(3) were injected into controls and iopanoic acid-pretreated rats 3 h before isolation of nuclei from these tissues. Specifically-bound nuclear (131)I-T(3), denoted T(3)(T(3)); (125)I-T(3), denoted T(3)(T(4)); and (125)I-T(4) were extracted and identified by chromatography. Plasma iodothyronines were similarly quantitated. In control rats, nuclear T(3)(T(3)) (percent dose per milligram DNA x 10(-4)) was 174+/-31 in cerebral cortex, 50+/-9 in cerebellum, and 932+/-158 in pituitary (all values, mean+/-SEM). Nuclear T(3)(T(4)) (percent dose per milligram DNA x 10(-4)) was 23.3+/-3.3 in cortex, 3.5+/-0.6 in cerebellum, and 39.4+/-6.9 in pituitary. Two-thirds of nuclear T(3)(T(4)) derived from local T(4) to T(3) conversion. Nuclear T(3)(T(4)) in all tissues was reduced to less than 15% of its control value by iopanoic acid treatment and all of the residual nuclear T(3)(T(4)) could be accounted for by plasma T(3)(T(4)). Nuclear T(3)(T(3)) binding was not inhibited by iopanoic acid. These results indicate there is rapid local T(4) to T(3) conversion in rat brain and nuclear binding of the T(3) produced. We have previously found that local T(3)(T(4)) production is the source of approximately 50% of the T(3) in rat anterior pituitary. The present observations that the ratio of locally derived nuclear T(3)(T(4)) to nuclear T(3)(T(3)) is much higher in cerebral cortex (0.1) and cerebellum (0.04) than in anterior pituitary (0.015) suggest that this locally produced T(3)(T(4)) is the predominant source of intracellular T(3) in these portions of rat brain.
Collapse
|