1
|
Koekkoek LL, van der Gun LL, Serlie MJ, la Fleur SE. The Clash of Two Epidemics: the Relationship Between Opioids and Glucose Metabolism. Curr Diab Rep 2022; 22:301-310. [PMID: 35593927 PMCID: PMC9188528 DOI: 10.1007/s11892-022-01473-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We are currently in the midst of a global opioid epidemic. Opioids affect many physiological processes, but one side effect that is not often taken into consideration is the opioid-induced alteration in blood glucose levels. RECENT FINDINGS This review shows that the vast majority of studies report that opioid stimulation increases blood glucose levels. In addition, plasma levels of the endogenous opioid β-endorphin rise in response to low blood glucose. In contrast, in hyperglycaemic baseline conditions such as in patients with type 2 diabetes mellitus (T2DM), opioid stimulation lowers blood glucose levels. Furthermore, obesity itself alters sensitivity to opioids, changes opioid receptor expression and increases plasma β-endorphin levels. Thus, opioid stimulation can have various side effects on glycaemia that should be taken into consideration upon prescribing opioid-based medication, and more research is needed to unravel the interaction between obesity, glycaemia and opioid use.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Luna L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
- Department of Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Meibergdreef 9, K2-283, 1105 AZ, Amsterdam, the Netherlands.
- Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Ahrén B. Effects of beta-endorphin, met-enkephalin, and dynorphin A on basal and stimulated insulin secretion in the mouse. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1989; 5:165-78. [PMID: 2574736 DOI: 10.1007/bf02924417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since opioid peptides and opiate receptors have been demonstrated in the pancreatic islets, we investigated the effects of beta-endorphin, met-enkephalin, and dynorphin A, on basal and stimulated insulin secretion in the mouse. Each of the three opioid peptides was injected intravenously (0.06-64 nmol/kg) alone or together with each of the three insulin releasing agents glucose (2.8 mmol/kg), carbachol (cholinergic agonist, 0.16 mumol/kg), or terbutaline (beta 2-adrenoceptor agonist, 3.6 mumol/kg). It was found that beta-endorphin, met-enkephalin, and dynorphin A were all without effect on basal plasma insulin levels, except a slight elevation by beta-endorphin induced at 2 min after its injection at 64 nmol/kg (to 41 +/- 2 microU/mL vs 28 +/- 4 microU/mL in controls; p less than 0.05). Glucose- and terbutaline-induced insulin secretion were inhibited by beta-endorphin at the lower dose levels of 0.25 (p less than 0.01) and 1 nmol/kg (p less than 0.05). This effect was counteracted by the opiate receptor antagonist naloxone (500 micrograms/kg). In contrast, beta-endorphin at the high dose levels of 16 and 64 nmol/kg augmented the glucose- and terbutaline-induced insulin secretion (p less than 0.05). Carbachol-induced insulin secretion was not affected by beta-endorphin at the lower dose levels but augmented by the peptide at 64 nmol/kg (p less than 0.01). Met-enkephalin inhibited glucose- (p less than 0.01) and terbutaline- (p less than 0.05) induced insulin secretion at the high dose rates of 16 and 64 nmol/kg, but the peptide was without effect on carbachol-induced insulin secretion. The inhibitory effects were counteracted by naloxone. Dynorphin A did not affect stimulated insulin secretion at any of the dose levels tested. In summary, in the mouse 1. beta-Endorphin at low dose levels inhibits and at high dose levels augments stimulated insulin secretion; 2. Met-enkephalin inhibits stimulated insulin secretion; and 3. Dynorphin A does not affect insulin secretion. It is suggested that the main influence of beta-endorphin and met-enkephalin under in vivo conditions in the mouse is to inhibit stimulated insulin secretion.
Collapse
Affiliation(s)
- B Ahrén
- Department of Pharmacology, Lund University, Sweden
| |
Collapse
|