1
|
Kunz HE, Michie KL, Gries KJ, Zhang X, Ryan ZC, Lanza IR. A Randomized Trial of the Effects of Dietary n3-PUFAs on Skeletal Muscle Function and Acute Exercise Response in Healthy Older Adults. Nutrients 2022; 14:nu14173537. [PMID: 36079794 PMCID: PMC9459748 DOI: 10.3390/nu14173537] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is critical for maintaining mobility, independence, and metabolic health in older adults. However, a common feature of aging is the progressive loss of skeletal muscle mass and function, which is often accompanied by mitochondrial impairments, oxidative stress, and insulin resistance. Exercise improves muscle strength, mitochondrial health, and cardiorespiratory fitness, but older adults often exhibit attenuated anabolic responses to acute exercise. Chronic inflammation associated with aging may contribute to this "anabolic resistance" and therapeutic interventions that target inflammation may improve exercise responsiveness. To this end, we conducted a randomized controlled trial to determine the effect of 6 months of dietary omega-3 polyunsaturated fatty acids (n3-PUFA) supplementation on skeletal muscle function (mass, strength), mitochondrial physiology (respiration, ATP production, ROS generation), and acute exercise responsiveness at the level of the muscle (fractional synthesis rate) and the whole-body (amino acid kinetics) in healthy older adults. When compared with a corn oil placebo (n = 33; 71.5 ± 4.8 years), older adults treated with 4 g/day n3-PUFA (n = 30; 71.4 ± 4.5 years) exhibited modest but significant increases in muscle strength (3.1 ± 14.7% increase in placebo vs. 7.5 ± 14.1% increase in n3-PUFA; p = 0.039). These improvements in muscle strength with n3-PUFA supplementation occurred in the absence of any effects on mitochondrial function and a minor attenuation of the acute response to exercise compared to placebo. Together, these data suggest modest benefits of dietary n3-PUFAs to muscle function in healthy older adults. Future studies may elucidate whether n3-PUFA supplementation improves the exercise response in elderly individuals with co-morbidities, such as chronic inflammatory disease or sarcopenia.
Collapse
Affiliation(s)
- Hawley E. Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kelly L. Michie
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin J. Gries
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physical Therapy, School of Health Professions, Concordia University of Wisconsin, Mequon, WI 53097, USA
| | - Xiaoyan Zhang
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zachary C. Ryan
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R. Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
2
|
Cruthirds CL, Deutz NE, Harrykissoon R, Zachria AJ, Engelen MP. A low postabsorptive whole body protein balance is associated with markers of poor daily physical functioning in Chronic Obstructive Pulmonary Disease. Clin Nutr 2022; 41:885-893. [PMID: 35279559 PMCID: PMC8983572 DOI: 10.1016/j.clnu.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS Postabsorptive whole body protein kinetics are related to age, gender, body mass index (BMI), and habitual protein intake level. It is unclear how protein synthesis, breakdown, and postabsorptive protein balance rates are affected in Chronic Obstructive Pulmonary Disease (COPD)) and whether these relate to disease severity, lifestyle characteristics and poor daily functioning. METHODS We studied 91 COPD (GOLD 1-4) and 56 age matched control subjects without COPD or other chronic or acute health disease/condition in the postabsorptive state and measured body composition by Dual-energy X-ray Absorptiometry, and disease severity and comorbidities by medical screening, blood analysis and questionnaires. We assessed whole body production rates of phenylalanine and tyrosine by pulse stable isotope tracer infusion to calculate whole body protein breakdown (PB) and hydroxylation of phenylalanine to tyrosine, representative of postabsorptive protein balance. We measured muscle and cognitive function, and physical performance by isokinetic dynamometry, cognitive assessments, and 6-min walk test. We assessed physical activity level, mood and dietary protein intake by questionnaires. We measured plasma enrichments by LC-MS/MS and statistics by Fisher's exact test or analysis of covariance. Data are mean [95% CI]. RESULTS The COPD patients had moderate to severe airflow obstruction, multiple comorbidities, and elevated values for plasma high sensitivity c-reactive protein (hs-CRP) and glucose. Although PB (3630 [3361, 3900] vs 3504 [3297, 3711] umol/h, p = 0.1649) was not different, postabsorptive protein balance was lower in COPD patients (274.2 [242.4, 306.1] vs 212.9 [194.7, 231.0] umol/h, p < 0.0001), both compared to control subjects. A lower postabsorptive protein balance was associated with age (p < 0.0001) and higher levels for systolic blood pressure (p = 0.0051) and hs-CRP (p = 0.0046) but not with lung function. Furthermore, a lower postabsorptive protein balance level was associated with a lower intake of total calories and protein (p < 0.0001) and lower muscle strength (p = 0.0248), while only in COPD with a lower physical performance (p = 0.0343). We found no association with cognitive function or mood. For all subjects, a cumulative model that included group, gender, age, BMI, systolic blood pressure, hs-CRP, caloric intake, protein intake, and leg strength was able to explain 55% of the variation in postabsorptive protein balance. CONCLUSION These data suggest that systemic inflammation, high blood pressure and low protein intake are risk factors of a lower postabsorptive protein balance in COPD patients. A lower postabsorptive protein balance is associated with markers of poor daily physical functioning.
Collapse
|
3
|
Kunz HE, Port JD, Kaufman KR, Jatoi A, Hart CR, Gries KJ, Lanza IR, Kumar R. Skeletal muscle mitochondrial dysfunction and muscle and whole body functional deficits in cancer patients with weight loss. J Appl Physiol (1985) 2022; 132:388-401. [PMID: 34941442 PMCID: PMC8791841 DOI: 10.1152/japplphysiol.00746.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reductions in skeletal muscle mass and function are often reported in patients with cancer-associated weight loss and are associated with reduced quality of life, impaired treatment tolerance, and increased mortality. Although cellular changes, including altered mitochondrial function, have been reported in animals, such changes have been incompletely characterized in humans with cancer. Whole body and skeletal muscle physical function, skeletal muscle mitochondrial function, and whole body protein turnover were assessed in eight patients with cancer-associated weight loss (10.1 ± 4.2% body weight over 6-12 mo) and 19 age-, sex-, and body mass index (BMI)-matched healthy controls to characterize skeletal muscle changes at the whole body, muscle, and cellular level. Potential pathways involved in cancer-induced alterations in metabolism and mitochondrial function were explored by interrogating skeletal muscle and plasma metabolomes. Despite similar lean mass compared with control participants, patients with cancer exhibited reduced habitual physical activity (57% fewer daily steps), cardiorespiratory fitness [22% lower V̇o2peak (mL/kg/min)] and leg strength (35% lower isokinetic knee extensor strength), and greater leg neuromuscular fatigue (36% greater decline in knee extensor torque). Concomitant with these functional declines, patients with cancer had lower mitochondrial oxidative capacity [25% lower State 3 O2 flux (pmol/s/mg tissue)] and ATP production [23% lower State 3 ATP production (pmol/s/mg tissue)] and alterations in phospholipid metabolite profiles indicative of mitochondrial abnormalities. Whole body protein turnover was unchanged. These findings demonstrate mitochondrial abnormalities concomitant with whole body and skeletal muscle functional derangements associated with human cancer, supporting future work studying the role of mitochondria in the muscle deficits associated with cancer.NEW & NOTEWORTHY To our knowledge, this is the first study to suggest that skeletal muscle mitochondrial deficits are associated with cancer-associated weight loss in humans. Mitochondrial deficits were concurrent with reductions in whole body and skeletal muscle functional capacity. Whether mitochondrial deficits are causal or secondary to cancer-associated weight loss and functional deficits remains to be determined, but this study supports further exploration of mitochondria as a driver of cancer-associated losses in muscle mass and function.
Collapse
Affiliation(s)
- Hawley E. Kunz
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - John D. Port
- 2Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Kenton R. Kaufman
- 3Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Aminah Jatoi
- 4Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Corey R. Hart
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin J. Gries
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ian R. Lanza
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- 5Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota,6Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Everman S, Meyer C, Tran L, Hoffman N, Carroll CC, Dedmon WL, Katsanos CS. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans. Am J Physiol Endocrinol Metab 2016; 311:E671-E677. [PMID: 27530230 PMCID: PMC5241558 DOI: 10.1152/ajpendo.00120.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023]
Abstract
Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (μmol·kg-1·min-1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.
Collapse
Affiliation(s)
- Sarah Everman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Christian Meyer
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Lee Tran
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona; Mayo Clinic in Arizona, Scottsdale, Arizona; and
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona; Mayo Clinic in Arizona, Scottsdale, Arizona; and
| | | | | | - Christos S Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona; Mayo Clinic in Arizona, Scottsdale, Arizona; and
| |
Collapse
|
5
|
Hines KM, Ford GC, Klaus KA, Irving BA, Ford BL, Johnson KL, Lanza IR, Nair KS. Application of high-resolution mass spectrometry to measure low abundance isotope enrichment in individual muscle proteins. Anal Bioanal Chem 2015; 407:4045-52. [PMID: 25832482 PMCID: PMC4539943 DOI: 10.1007/s00216-015-8641-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
Stable isotope-labeled amino acids have long been used to measure the fractional synthesis rate of proteins, although the mass spectrometry platforms used for such analyses have changed throughout the years. More recently, tandem mass spectrometers such as triple quadrupoles have been accepted as the standard platform for enrichment measurement due to their sensitivity and the enhanced specificity offered by multiple reaction monitoring (MRM) experiments. The limit in the utility of such platforms for enrichment analysis occurs when measuring very low levels of enrichment from small amounts of sample, particularly proteins isolated from two-dimensional gel electrophoresis (2D-GE), where interference from contaminant ions impacts the sensitivity of the measurement. We therefore applied a high-resolution orbitrap mass spectrometer to the analysis of [ring-(13)C6]-phenylalanine enrichment in individual muscle proteins isolated with 2D-GE. Comparison of samples analyzed on both platforms revealed that the high-resolution MS has significantly improved sensitivity relative to the triple quadrupole MS at very low-level enrichments due to its ability to resolve interferences in the m/z dimension. At higher enrichment levels, enrichment measurements from the orbitrap platform showed significant correlation (R (2) > 0.5) with those of the triple quadrupole platform. Together, these results indicate that high-resolution MS platforms such as the orbitrap are not only as capable of performing isotope enrichment measurements as the more commonly preferred triple quadrupole instruments, but offer unparalleled advantages in terms of mass accuracy and sensitivity in the presence of similar-mass contaminants.
Collapse
Affiliation(s)
- Kelly M. Hines
- Metabolomics Resource Core, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - G. Charles Ford
- Metabolomics Resource Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine A. Klaus
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A. Irving
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Beverly L. Ford
- Metabolomics Resource Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth L. Johnson
- Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, MN 55905
| | - Ian R. Lanza
- Metabolomics Resource Core, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - K. Sreekumaran Nair
- Metabolomics Resource Core, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Liebau F, Jensen MD, Nair KS, Rooyackers O. Upper-body obese women are resistant to postprandial stimulation of protein synthesis. Clin Nutr 2014; 33:802-7. [PMID: 24269078 PMCID: PMC4019711 DOI: 10.1016/j.clnu.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Upper-body, i.e. visceral, obesity is associated with insulin resistance and impaired protein synthesis. It is unclear whether postprandial stimulation of protein synthesis is affected by body fat distribution. We investigated the postprandial protein anabolic response in a cohort of obese women. METHODS Participants were studied after an overnight fast and after a mixed meal, grouped as upper-body obese (UBO, waist-to-hip ratio, WHR, >0.85, n = 6) vs. lower-body obese (LBO, WHR <0.80, n = 7). Lipid and carbohydrate metabolism were assessed by measurements of plasma free fatty acids (FFA), insulin and glucose plasma concentrations, and calculation of the Quicki index from fasting glucose and insulin values. Different labels of stable isotopes of phenylalanine were administered intravenously and orally, and leg and whole-body protein breakdown and synthesis were calculated from phenylalanine/tyrosine isotopic enrichments in femoral arterial and venous blood, using equations for steady-state kinetics. Data are denoted as mean ± SD. RESULTS Age (38 vs. 40, p = 0.549) and body-mass index (33.7 ± 1.9 vs. 35.0 ± 1.8, p = 0.241) were similar in both groups. UBO subjects had more visceral fat (p = 0.002) and higher fat-free body mass (FFM) (p = 0.015). Plasma insulin concentrations were greater in UBO than LBO women (p = 0.013), and UBO were less insulin sensitive (Quicki = 0.32 ± 0.01 vs. 0.36 ± 0.02, p = 0.005). Protein kinetics across the leg were not different between groups. Fasting whole body protein balance was similarly negative in both groups (UBO -6.5 ± 2.4 vs. LBO -7.6 ± 0.9 μmol/kgFFM/h, p = 1.0). Postprandially, whole body protein balance became less positive in UBO than in LBO (14.8 ± 3.7 vs. 20.2 ± 3.7 μmol/kgFFM/h, p = 0.017). CONCLUSIONS Whole-body protein balance following a meal is less positive in upper-body obese, insulin-resistant, women than in lower-body obese women.
Collapse
Affiliation(s)
- Felix Liebau
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge and Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Olav Rooyackers
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
McCoy RG, Nair KS. The 2010 ESPEN Sir David Cuthbertson Lecture: new and old proteins: clinical implications. Clin Nutr 2013; 32:728-36. [PMID: 23481224 PMCID: PMC3700593 DOI: 10.1016/j.clnu.2012.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023]
Abstract
The past century had witnessed vast advances in biomedical research, particularly in the fields of genomics and proteomics, yet the translation of these discoveries into clinical practice has been hindered by gaps in mechanistic understanding of variability governing disease susceptibility and pathogenesis. Among the greatest challenges are the dynamic nature of the proteome and the imperfect methodologies currently available to study it. Here, we review key recently developed proteomic techniques that have allowed for dynamic characterization of protein quality, as well as quantity, and discuss their potential applications in understanding aging and metabolic disorders including diabetes. These methodologies revealed that senescence is characterized, in part, by decreased rates of de novo protein synthesis and potentially also degradation, in addition to concomitantly increased levels of oxidative stress, ultimately resulting in excessive accumulation of damaged and dysfunctional proteins. Insulin may be a key mediator in these pathologies, as hyperinsulinemia has been shown to hinder protein degradation while transient insulin deficiency may accelerate oxidative damage. We also discuss two interventions that have been proposed to delay, and possibly reverse, senescence by augmenting protein degradation: chronic caloric restriction and aerobic exercise.
Collapse
Affiliation(s)
- Rozalina G. McCoy
- Department of Internal Medicine, Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - K. Sreekumaran Nair
- Department of Internal Medicine, Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
8
|
Short KR, Irving BA, Basu A, Johnson CM, Nair KS, Basu R. Effects of type 2 diabetes and insulin on whole-body, splanchnic, and leg protein metabolism. J Clin Endocrinol Metab 2012; 97:4733-41. [PMID: 23032060 PMCID: PMC3591680 DOI: 10.1210/jc.2012-2533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/12/2012] [Indexed: 01/07/2023]
Abstract
CONTEXT Type 2 diabetes (T2D) is characterized by insulin resistance to glucose metabolism. Most studies suggest that protein metabolism is unaffected by T2D, but regional protein metabolism and response to multiple doses of insulin have not been examined. OBJECTIVE Our objective was to determine whether insulin regulation of splanchnic and leg protein metabolism are affected by T2D during hyperglycemia and graded insulin levels. DESIGN AND SETTING We conducted a cross-sectional study at an academic medical center. PARTICIPANTS T2D and non-T2D adults were matched for age (62 yr) and body mass index (30 kg/m(2)). INTERVENTIONS Glucose was maintained at approximately 9 mmol/liter while insulin was infused at three progressively higher rates, achieving circulating concentrations of approximately 150, 350, and 700 pmol/liter, respectively. MAIN OUTCOME MEASURES Protein kinetics were measured using labeled phenylalanine (Phe) and tyrosine (Tyr). RESULTS Whole-body protein breakdown and synthesis rates were higher in T2D but declined with increasing insulin in both groups. Leg Phe and Tyr appearance and disappearance and estimates of protein breakdown and synthesis, respectively, were higher in T2D but did not decline significantly with insulin, resulting in similar net balance between groups. Splanchnic response to insulin was blunted in T2D, shown by a smaller reduction in rates of disappearance and net balance of Phe and Tyr as insulin increased. Splanchnic conversion of Phe to Tyr was lower in T2D and less sensitive to insulin, whereas nonsplanchnic Phe to Tyr tended to be higher in T2D. CONCLUSIONS T2D results in higher whole-body, splanchnic, and leg protein turnover and blunts the insulin-mediated suppression of splanchnic protein anabolism under hyperglycemic, hyperinsulinemic conditions.
Collapse
Affiliation(s)
| | | | - Ananda Basu
- Endocrinology Research Unit (K.R.S., B.A.I., A.B., K.S.N., R.B.), Mayo Clinic School of Medicine, and Department of Vascular and Interventional Radiology (C.M.J.), Mayo Clinic, Rochester, Minnesota 55905
| | - C. Michael Johnson
- Endocrinology Research Unit (K.R.S., B.A.I., A.B., K.S.N., R.B.), Mayo Clinic School of Medicine, and Department of Vascular and Interventional Radiology (C.M.J.), Mayo Clinic, Rochester, Minnesota 55905
| | | | | |
Collapse
|
9
|
Groen BBL, Res PT, Pennings B, Hertle E, Senden JMG, Saris WHM, van Loon LJC. Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab 2012; 302:E52-60. [PMID: 21917635 DOI: 10.1152/ajpendo.00321.2011] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of skeletal muscle mass with aging has been attributed to an impaired muscle protein synthetic response to food intake. Therefore, nutritional strategies are targeted to modulate postprandial muscle protein accretion in the elderly. The purpose of this study was to assess the impact of protein administration during sleep on in vivo protein digestion and absorption kinetics and subsequent muscle protein synthesis rates in elderly men. Sixteen healthy elderly men were randomly assigned to an experiment during which they were administered a single bolus of intrinsically l-[1-(13)C]phenylalanine-labeled casein protein (PRO) or a placebo (PLA) during sleep. Continuous infusions with l-[ring-(2)H(5)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied to assess in vivo dietary protein digestion and absorption kinetics and subsequent muscle protein synthesis rates during sleep. We found that exogenous phenylalanine appearance rates increased following protein administration. The latter stimulated protein synthesis, resulting in a more positive overnight whole body protein balance (0.30 ± 0.1 vs. 11.8 ± 1.0 μmol phenylalanine·kg(-1)·h(-1) in PLA and PRO, respectively; P < 0.05). In agreement, overnight muscle protein fractional synthesis rates were much greater in the PRO experiment (0.045 ± 0.002 vs. 0.029 ± 0.002%/h, respectively; P < 0.05) and showed abundant incorporation of the amino acids ingested via the intrinsically labeled protein (0.058 ± 0.006%/h). This is the first study to show that dietary protein administration during sleep is followed by normal digestion and absorption kinetics, thereby stimulating overnight muscle protein synthesis. Dietary protein administration during sleep stimulates muscle protein synthesis and improves overnight whole body protein balance. These findings may provide a basis for novel interventional strategies to attenuate muscle mass loss.
Collapse
Affiliation(s)
- Bart B L Groen
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Beelen M, Zorenc A, Pennings B, Senden JM, Kuipers H, van Loon LJC. Impact of protein coingestion on muscle protein synthesis during continuous endurance type exercise. Am J Physiol Endocrinol Metab 2011; 300:E945-54. [PMID: 21364122 DOI: 10.1152/ajpendo.00446.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigates the impact of protein coingestion with carbohydrate on muscle protein synthesis during endurance type exercise. Twelve healthy male cyclists were studied during 2 h of fasted rest followed by 2 h of continuous cycling at 55% W(max). During exercise, subjects received either 1.0 g·kg(-1)·h(-1) carbohydrate (CHO) or 0.8 g·kg(-1)·h(-1) carbohydrate with 0.2 g·kg(-1)·h(-1) protein hydrolysate (CHO+PRO). Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body protein turnover and muscle protein synthesis rates at rest and during exercise conditions. Protein coingestion stimulated whole body protein synthesis and oxidation rates during exercise by 22 ± 3 and 70 ± 17%, respectively (P < 0.01). Whole body protein breakdown rates did not differ between experiments. As a consequence, whole body net protein balance was slightly negative in CHO and positive in the CHO+PRO treatment (-4.9 ± 0.3 vs. 8.0 ± 0.3 μmol Phe·kg(-1)·h(-1), respectively, P < 0.01). Mixed muscle protein fractional synthetic rates (FSR) were higher during exercise compared with resting conditions (0.058 ± 0.006 vs. 0.035 ± 0.006%/h in CHO and 0.070 ± 0.011 vs. 0.038 ± 0.005%/h in the CHO+PRO treatment, respectively, P < 0.05). FSR during exercise did not differ between experiments (P = 0.46). We conclude that muscle protein synthesis is stimulated during continuous endurance type exercise activities when carbohydrate with or without protein is ingested. Protein coingestion does not further increase muscle protein synthesis rates during continuous endurance type exercise.
Collapse
Affiliation(s)
- Milou Beelen
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Beelen M, Koopman R, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, Saris WHM, van Loon LJC. Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. Am J Physiol Endocrinol Metab 2008; 295:E70-7. [PMID: 18430966 DOI: 10.1152/ajpendo.00774.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to the effect of nutritional intervention on postexercise muscle protein synthesis, little is known about the potential to modulate protein synthesis during exercise. This study investigates the effect of protein coingestion with carbohydrate on muscle protein synthesis during resistance-type exercise. Ten healthy males were studied in the evening after they consumed a standardized diet throughout the day. Subjects participated in two experiments in which they ingested either carbohydrate or carbohydrate with protein during a 2-h resistance exercise session. Subjects received a bolus of test drink before and every 15 min during exercise, providing 0.15 g x kg(-1) x h(-1) carbohydrate with (CHO + PRO) or without (CHO) 0.15 g x kg(-1) x h(-1) protein hydrolysate. Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body and muscle protein synthesis rates during exercise. Protein coingestion lowered whole body protein breakdown rates by 8.4 +/- 3.6% (P = 0.066), compared with the ingestion of carbohydrate only, and augmented protein oxidation and synthesis rates by 77 +/- 17 and 33 +/- 3%, respectively (P < 0.01). As a consequence, whole body net protein balance was negative in CHO, whereas a positive net balance was achieved after the CHO + PRO treatment (-4.4 +/- 0.3 vs. 16.3 +/- 0.4 micromol phenylalanine x kg(-1) x h(-1), respectively; P < 0.01). In accordance, mixed muscle protein fractional synthetic rate was 49 +/- 22% higher after protein coingestion (0.088 +/- 0.012 and 0.060 +/- 0.004%/h in CHO + PRO vs. CHO treatment, respectively; P < 0.05). We conclude that, even in a fed state, protein coingestion stimulates whole body and muscle protein synthesis rates during resistance-type exercise.
Collapse
Affiliation(s)
- Milou Beelen
- Department of Human Movement Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Koopman R, Beelen M, Stellingwerff T, Pennings B, Saris WHM, Kies AK, Kuipers H, van Loon LJC. Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 2007; 293:E833-42. [PMID: 17609259 DOI: 10.1152/ajpendo.00135.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to assess the impact of coingestion of various amounts of carbohydrate combined with an ample amount of protein intake on postexercise muscle protein synthesis rates. Ten healthy, fit men (20 +/- 0.3 yr) were randomly assigned to three crossover experiments. After 60 min of resistance exercise, subjects consumed 0.3 g x kg(-1) x h(-1) protein hydrolysate with 0, 0.15, or 0.6 g x kg(-1) x h(-1) carbohydrate during a 6-h recovery period (PRO, PRO + LCHO, and PRO + HCHO, respectively). Primed, continuous infusions with L-[ring-(13)C(6)]phenylalanine, L-[ring-(2)H(2)]tyrosine, and [6,6-(2)H(2)]glucose were applied, and blood and muscle samples were collected to assess whole body protein turnover and glucose kinetics as well as protein fractional synthesis rate (FSR) in the vastus lateralis muscle over 6 h of postexercise recovery. Plasma insulin responses were significantly greater in PRO + HCHO compared with PRO + LCHO and PRO (18.4 +/- 2.9 vs. 3.7 +/- 0.5 and 1.5 +/- 0.2 U.6 h(-1) x l(-1), respectively, P < 0.001). Plasma glucose rate of appearance (R(a)) and disappearance (R(d)) increased over time in PRO + HCHO and PRO + LCHO, but not in PRO. Plasma glucose R(a) and R(d) were substantially greater in PRO + HCHO vs. both PRO and PRO + LCHO (P < 0.01). Whole body protein breakdown, synthesis, and oxidation rates, as well as whole body protein balance, did not differ between experiments. Mixed muscle protein FSR did not differ between treatments and averaged 0.10 +/- 0.01, 0.10 +/- 0.01, and 0.11 +/- 0.01%/h in the PRO, PRO + LCHO, and PRO + HCHO experiments, respectively. In conclusion, coingestion of carbohydrate during recovery does not further stimulate postexercise muscle protein synthesis when ample protein is ingested.
Collapse
Affiliation(s)
- René Koopman
- Department of Movement Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Short KR, Nygren J, Bigelow ML, Nair KS. Effect of short-term prednisone use on blood flow, muscle protein metabolism, and function. J Clin Endocrinol Metab 2004; 89:6198-207. [PMID: 15579778 DOI: 10.1210/jc.2004-0908] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucocorticoids can cause muscle atrophy, but the effect on muscle protein metabolism in humans has not been adequately studied to know whether protein synthesis, breakdown, or both are altered. We tested the effect of 6 d of oral prednisone (Pred, 0.5 mg/kg.d) on muscle protein metabolism and function. Six healthy subjects (three men/three women, 22-41 yr) completed two trials (randomized, double-blind, cross-over) with Pred and placebo. Fasting glucose, insulin, IGF-I, and glucagon were higher on Pred vs. placebo, whereas IGF-II and IGF binding protein-1 and -2 were lower. Whole-body amino acid fluxes, blood urea nitrogen, and urinary nitrogen loss were not statistically different between trials. Leg blood flow was 25% lower on Pred leading to 15-30% lower amino acid flux among the artery, vein, and muscle. However, amino acid net balance and rates of protein synthesis and breakdown were unchanged, as were synthesis rates of total mixed, mitochondrial, sarcoplasmic, and myosin heavy chain muscle proteins. Muscle mitochondrial function, muscle strength, and resting energy expenditure were also unchanged. These results demonstrate that a short-term moderate dose of prednisone affects glucose metabolism but has no effect on whole-body or leg muscle protein metabolism or muscle function.
Collapse
Affiliation(s)
- Kevin R Short
- Endocrinology Research Unit, Mayo Clinic School of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
14
|
Battezzati A, Benedini S, Fattorini A, Losa M, Mortini P, Bertoli S, Lanzi R, Testolin G, Biolo G, Luzi L. Insulin action on protein metabolism in acromegalic patients. Am J Physiol Endocrinol Metab 2003; 284:E823-9. [PMID: 12388147 DOI: 10.1152/ajpendo.00020.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.
Collapse
|
15
|
Tugtekin I, Wachter U, Barth E, Weidenbach H, Wagner DA, Adler G, Georgieff M, Radermacher P, Vogt JA. Phenylalanine kinetics in healthy volunteers and liver cirrhotics: implications for the phenylalanine breath test. Am J Physiol Endocrinol Metab 2002; 283:E1223-31. [PMID: 12424105 DOI: 10.1152/ajpendo.0311.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expired 13CO2 recovery from an oral l-[1-13C]phenylalanine ([13C]Phe) dose has been used to quantify liver function. This parameter, however, does not depend solely on liver function but also on total CO2 production, Phe turnover, and initial tracer distribution. Therefore, we evaluated the impact of these factors on breath test values. Nine ethyl-toxic cirrhotic patients and nine control subjects received intravenously 2 mg/kg of [13C]Phe, and breath and blood samples were collected over 4 h. CO2 production was measured by indirect calorimetry. The exhaled 13CO2 enrichments were analyzed by isotope ratio mass spectrometry and the [13C]Phe and l-[1-13C]tyrosine enrichments by gas chromatography-mass spectrometry. The cumulative 13CO2 recovery was significantly lower in cirrhotic patients (7 vs. 12%; P < 0.01), in part due to lower total CO2 production rates. Phe turnover in cirrhotic patients was significantly lower (33 vs. 44 micro mol. kg(-1). h(-1); P < 0.05). When these extrahepatic factors were considered in the calculation of the Phe oxidation rate, the intergroup differences were even more pronounced (3 vs. 7 micro mol. kg(-1). h(-1)) than those for 13CO2 recovery data. Also, the Phe-to-Tyr conversion rate, another indicator of Phe oxidation, was significantly reduced (0.7 vs. 3.0 micro mol. kg(-1). h(-1)).
Collapse
Affiliation(s)
- I Tugtekin
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik für Anästhesiologie Ulm, und Abteilung Innere Medizin I, Medizinische Universitätsklinik und Poliklinik Ulm, 89070 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|