1
|
Li Z, Sun X. Epigenetic regulation in liver regeneration. Life Sci 2024; 353:122924. [PMID: 39038511 DOI: 10.1016/j.lfs.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The liver is considered unique in its enormous capacity for regeneration and self-repair. In contrast to other regenerative organs (i.e., skin, skeletal muscle, and intestine), whether the adult liver contains a defined department of stem cells is still controversial. In order to compensate for the massive loss of hepatocytes following liver injury, the liver processes a precisely controlled transcriptional reprogram that can trigger cell proliferation and cell-fate switch. Epigenetic events are thought to regulate the organization of chromatin architecture and gene transcription during the liver regenerative process. In this review, we will summarize how changes to the chromatin by epigenetic modifiers are translated into cell fate transitions to restore liver homeostasis during liver regeneration.
Collapse
Affiliation(s)
- Zilong Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China.
| | - Xinyue Sun
- Department of Pharmacology, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhuang C, Kang M, Oh J, Lee M. Pulmonary delivery of cell membrane-derived nanovesicles carrying anti-miRNA155 oligonucleotides ameliorates LPS-induced acute lung injury. Regen Biomater 2024; 11:rbae092. [PMID: 39220743 PMCID: PMC11364520 DOI: 10.1093/rb/rbae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acute lung injury (ALI) is a devastating inflammatory disease. MicroRNA155 (miR155) in alveolar macrophages and lung epithelial cells enhances inflammatory reactions by inhibiting the suppressor of cytokine signaling 1 (SOCS1) in ALI. Anti-miR155 oligonucleotide (AMO155) have been suggested as a potential therapeutic reagent for ALI. However, a safe and efficient carrier is required for delivery of AMO155 into the lungs for ALI therapy. In this study, cell membrane-derived nanovesicles (CMNVs) were produced from cell membranes of LA4 mouse lung epithelial cells and evaluated as a carrier of AMO155 into the lungs. For preparation of CMNVs, cell membranes were isolated from LA4 cells and CMNVs were produced by extrusion. Cholesterol-conjugated AMO155 (AMO155c) was loaded into CMNVs and extracellular vesicles (EVs) by sonication. The physical characterization indicated that CMNVs with AMO155c (AMO155c/CMNV) were membrane-structured vesicles with a size of ∼120 nm. The delivery efficiency and therapeutic efficacy of CMNVs were compared with those of EVs or polyethylenimine (25 kDa, PEI25k). The delivery efficiency of AMO155c by CMNVs was similar to that by EVs. As a result, the miR155 levels were reduced by AMO155c/CMNV and AMO155c/EV. AMO155c/CMNV were administered intratracheally into the ALI models. The SOCS1 levels were increased more efficiently by AMO155c/CMNV than by the others, suggesting that miR155 effectively was inhibited by AMO155c/CMNV. In addition, the inflammatory cytokines were reduced more effectively by AMO155c/CMNV than they were by AMO155c/EV and AMO155c/PEI25k, reducing inflammation reactions. The results suggest that CMNVs are a useful carrier of AMO155c in the treatment of ALI.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Jihun Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| |
Collapse
|
3
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
4
|
Huang S, Li Y, Wang B, Zhou Z, Li Y, Shen L, Cong J, Han L, Xiang X, Xia J, He D, Zhao Z, Zhou Y, Li Q, Dai G, Shen H, Lin T, Wu A, Jia J, Xiao D, Li J, Zhao W, Lin X. Hepatocyte-specific METTL3 ablation by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and postnatal lethality. Aging (Albany NY) 2024; 16:7217-7248. [PMID: 38656880 PMCID: PMC11087113 DOI: 10.18632/aging.205753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
AIM In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.
Collapse
Affiliation(s)
- Shihao Huang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingchun Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingjie Wang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yonglong Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Lingjun Shen
- Department of Tuberculosis, Yunnan Clinical Medical Center for Infectious Diseases, The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jinge Cong
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Liuxin Han
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Jiawei Xia
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Danhua He
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhanlin Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Ying Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiwen Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanqi Dai
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanzhang Shen
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Taoyan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aibing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Junshuang Jia
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, the First People’s Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Wentao Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Xiaolin Lin
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
5
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Geervliet E, Terstappen LWMM, Bansal R. Hepatocyte survival and proliferation by fibroblast growth factor 7 attenuates liver inflammation, and fibrogenesis during acute liver injury via paracrine mechanisms. Biomed Pharmacother 2023; 167:115612. [PMID: 37797460 DOI: 10.1016/j.biopha.2023.115612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Hepatocyte damage during liver injury instigates activation of macrophages and hepatic stellate cells (HSCs) resulting in liver inflammation and fibrosis respectively. Improving hepatocyte survival and proliferation thereby ameliorating inflammation and fibrosis represents a promising approach for the treatment of liver injury. In the liver, fibroblast growth factors (FGFs) play a crucial role in promoting hepatocyte proliferation and tissue regeneration. Among 22 FGFs, FGF7 induces hepatocyte survival and liver regeneration as shown previously in mouse models of cholestatic liver injury and partial hepatectomy. We hypothesized that FGF7 promotes hepatocyte survival and proliferation by interacting with FGFR2b, expressed on hepatocytes, and ameliorates liver injury (inflammation and early fibrogenesis) via paracrine mechanisms. To prove this hypothesis and to study the effect of FGF7 on hepatocytes and liver injury, we administered FGF7 exogenously to mice with acute carbon tetrachloride (CCl4)-induced liver injury. We thereafter studied the underlying mechanisms and the effect of exogenous FGF7 on hepatocyte survival and proliferation, and the consequent paracrine effects on macrophage-induced inflammation, and HSCs activation in vitro and in vivo. We observed that the expression of FGF7 as well as FGFR2 is upregulated during acute liver injury. Co-immunostaining of FGF7 and collagen-I confirmed that FGF7 is expressed by HSCs and is possibly captured by the secreted ECM. Immunohistochemical analysis of liver sections showed increased hepatocyte proliferation upon exogenous FGF7 treatment as determined by Ki67 expression. Mechanistically, exogenous FGF7 improved hepatocyte survival (and increased drug detoxification) via AKT and ERK pathways while maintaining hepatocyte quiescence restricting hepatocarcinogenesis via P27 pathways. Flow cytometry analysis revealed that improved hepatocyte survival and proliferation leads to a decrease in infiltrated monocytes-derived macrophages, as a result of reduced CCL2 (and CXCL8) expression by hepatocytes. Moreover, conditioned medium studies showed reduced collagen-I secretion by HSCs (indicative of HSCs activation) upon treatment with FGF7-treated hepatocytes conditioned medium. Altogether, we show that exogenous administration of FGF7 induces hepatocyte survival and proliferation and leads to amelioration of inflammatory response and fibrosis in acute liver injury via paracrine mechanisms. Our study further demonstrates that FGF7, FGF7 derivatives, or nano-engineered FGF7 may benefit patients with hepatic dysfunction.
Collapse
Affiliation(s)
- Eline Geervliet
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands.
| |
Collapse
|
7
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Bi J, Liu J, Chen X, Shi N, Wu H, Tang H, Mao J. MiR-155-5p-SOCS1/JAK1/STAT1 participates in hepatic lymphangiogenesis in liver fibrosis and cirrhosis by regulating M1 macrophage polarization. Hum Exp Toxicol 2023; 42:9603271221141695. [PMID: 36651907 DOI: 10.1177/09603271221141695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The role and underlying mechanism of liver macrophages and their derived miR-155-5p in hepatic lymphangiogenesis in liver fibrosis remain unclear. Here, we investigated the mechanism by which macrophages and miR-155-5p were involved in lymphangiogenesis during liver fibrosis and cirrhosis. METHODS In vivo, hepatic lymphatic vessel expansion was evaluated; the liver macrophage subsets, proportion of peripherally-derived macrophages and expressions of CCL25, MCP-1, VAP-1 and MAdCAM-1 were documented; and miR-155-5p in the peripheral blood and liver was detected. In vitro, macrophages with miR-155-5p overexpression and inhibition were used to clarify the effect of miR-155-5p on regulation of macrophage polarization and the possible signalling pathway. RESULTS Hepatic lymphangiogenesis was observed in mice with liver fibrosis and cirrhosis challenged with carbon tetrachloride (CCl4). In the liver, the number of M1 macrophages was associated with lymphangiogenesis and the degree of fibrosis. The liver recruitment of peripherally-derived macrophages occurred during liver fibrosis. The levels of miR-155-5p in the liver and peripheral blood gradually increased with aggravation of liver fibrosis. In vitro, SOCS1, a target of miR-155-5p, regulated macrophage polarization into the M1 phenotype through the JAK1/STAT1 pathway. CONCLUSION MiR-155-5p-SOCS1/JAK1/STAT1 pathway participates in hepatic lymphangiogenesis in mice with liver fibrosis and cirrhosis induced by CCl4 by regulating the polarization of macrophages into the M1 phenotype.
Collapse
Affiliation(s)
- Jian Bi
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jia Liu
- Department of Respiratory and Critical Disease, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiuli Chen
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Na Shi
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Hao Wu
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Haiying Tang
- Department of Respiratory and Critical Disease, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jingwei Mao
- Department of Gastroenterology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
9
|
Liu Y, Li YQ, Huang SH, Li YL, Xia JW, Jia JS, Wei F, Wang JH, Dai GQ, Wang YC, Li XY, Han LX, Zhang XL, Xiang XD, Zhao WT, Xiao D, Lin XL. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY) 2021; 13:21155-21190. [PMID: 34517344 PMCID: PMC8457585 DOI: 10.18632/aging.203402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the role of embryonic gene Cripto-1 (CR-1) in hepatocellular carcinoma (HCC) using hepatocyte-specific CR-1-overexpressing transgenic mice. The expression of truncated 1.7-kb CR-1 transcript (SF-CR-1) was significantly higher than the full-length 2.0-kb CR-1 transcript (FL-CR-1) in a majority of HCC tissues and cell lines. Moreover, CR-1 mRNA and protein levels were significantly higher in HCC tissues than adjacent normal liver tissues. Hepatocyte-specific over-expression of CR-1 in transgenic mice enhanced hepatocyte proliferation after 2/3 partial hepatectomy (2/3 PHx). CR-1 over-expression significantly increased in vivo xenograft tumor growth of HCC cells in nude mice and in vitro HCC cell proliferation, migration, and invasion. CR-1 over-expression in the transgenic mouse livers deregulated HCC-related signaling pathways such as AKT, Wnt/β-catenin, Stat3, MAPK/ERK, JNK, TGF-β and Notch, as well as expression of HCC-related genes such as CD5L, S100A8, S100A9, Timd4, Orm2, Orm3, PDK4, DMBT1, G0S2, Plk2, Plk3, Gsta1 and Gsta2. However, histological signs of precancerous lesions, hepatocyte dysplasia or HCC formation were not observed in the livers of 3-, 6- or 8-month-old hepatocyte-specific CR-1-overexpressing transgenic mice. These findings demonstrate that liver-specific CR-1 overexpression in transgenic mice deregulates signaling pathways and genes associated with HCC.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yan-Qing Li
- Department of Hematology, Central Hospital of Xuhui District, Shanghai 200030, China
| | - Shi-Hao Huang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hong Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Guan-Qi Dai
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yu-Cai Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Yan Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Liu-Xin Han
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Xu-Dong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Wen-Tao Zhao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Deng Y, Julaiti A, Ran W, He Y. RETRACTED: Bone marrow mesenchymal stem cells-derived exosomal microRNA-19b-3p targets SOCS1 to facilitate progression of esophageal cancer. Life Sci 2021; 278:119491. [PMID: 33862112 DOI: 10.1016/j.lfs.2021.119491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1D, 2K, 3C/F/G, 4B+H and 5B+H, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yanchao Deng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Ainiwaer Julaiti
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Wei Ran
- The First Clinical Medicine College of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yao He
- The First Clinical Medicine College of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| |
Collapse
|
11
|
Tu W, Gong J, Song J, Tian D, Wang Z. miR-20a/TCF4 axis-mediated inhibition of hepatocytes proliferation impairs liver regeneration in mice PHx model by regulating CDC2 and CDC6. J Cell Mol Med 2021; 25:5220-5237. [PMID: 33951279 PMCID: PMC8178283 DOI: 10.1111/jcmm.16530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs have emerged as essential regulators in the biological process of liver regeneration by modulating the post‐transcriptional expression of the target genes. In the present study, we found miR‐20a expression is decreased remarkably in three rodent liver regeneration models using miRNA PCR array and Venn diagram analysis. Inhibition of miR‐20a expression enhanced hepatocytes proliferation in vivo and in vitro. In contrast, overexpression of miR‐20a reduces hepatocytes proliferation and subsequently impaired liver regeneration in the mouse PHx model. Moreover, we have identified TCF4 as a target gene of miR‐20a using the PCR Array and luciferase assay. Next, mice with TCF4 deficiency were used to establish the PHx model and subjected to the examination of liver regeneration capacity. We found TCF4‐deficient mice exhibited impaired liver regeneration compared with control. Given that TCF4 acts as a transcription factor, we sort to elucidate the downstream genes involved in liver regeneration. Promoter analysis and Chip assay confirmed that TCF4 enhances CDC2 and CDC6 expression through binding to the promoter region and leads to the proliferation and cell cycle progression in hepatocytes. In conclusion, this study provides evidence that the miR20a‐TCF4‐CDC2/6 axis plays an essential role during liver regeneration.
Collapse
Affiliation(s)
- Wei Tu
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Gong
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, Tian Z, Huang B, Wei F, Sang X, Shao L, Zhou J, Wang Z, Liu S, Sui X, Guo Q, Guo W, Li X. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater 2021; 6:2711-2728. [PMID: 33665503 PMCID: PMC7895679 DOI: 10.1016/j.bioactmat.2021.01.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. hWJMSC-Exos can promote cell proliferation, migration and polarization in vitro. hWJMSC-Exos can enhance the repair effect of ACECM scaffold in vivo. hWJMSC-Exos can inhibit inflammation in the joint cavity. hWJMSC-Exos contain a variety of miRNAs that promote osteochondral regeneration.
Collapse
Affiliation(s)
- Shuangpeng Jiang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Gao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Fuxin Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhuang Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bo Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fu Wei
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinyu Sang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Liuqi Shao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jian Zhou
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhenyong Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weimin Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
13
|
Hussein RM. Upregulation of miR-33 and miR-155 by gum acacia mitigates hyperlipidaemia and inflammation but not weight increase induced by Western diet ingestion in mice. Arch Physiol Biochem 2021:1-7. [PMID: 33529079 DOI: 10.1080/13813455.2021.1876734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study, for the first time, investigates the effect of gum acacia (GA) on the expression of miR-33 and miR-155 and its association with the obesity and inflammation induced by Western diet (WD) consumption in mice. METHODS Animals were divided into: normal diet (ND) group, WD group, GA group and GA + WD group. RESULTS The WD group exhibited higher total body, liver, visceral fat weights, blood total cholesterol, triglycerides and glucose levels compared to ND group. The liver tissues showed severe inflammation and degeneration with higher hepatic TNF-α level. Interestingly, GA + WD group showed a decrease in the biochemical parameters and hepatic TNF-α level but had no effect on the weight increase. It also showed a significant upregulation of miR-33 and miR-155 compared to WD group. CONCLUSIONS GA mitigated the hyperlipidaemia and inflammation but not weight increase induced by WD ingestion via upregulation of miR-33 and miR-155 while reducing TNF-α level.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Wang S, Ling Y, Yao Y, Zheng G, Chen W. Luteolin inhibits respiratory syncytial virus replication by regulating the MiR-155/SOCS1/STAT1 signaling pathway. Virol J 2020; 17:187. [PMID: 33239033 PMCID: PMC7688008 DOI: 10.1186/s12985-020-01451-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants, children, immunocompromised adults, and elderly individuals. Currently, there are few therapeutic options available to prevent RSV infection. The present study aimed to investigate the effects of luteolin on RSV replication and the related mechanisms. Material and methods We pretreated cells and mice with luteolin before infection with RSV, the virus titer, expressions of RSV-F, interferon (IFN)-stimulated genes (ISGs), and production of IFN-α and IFN-β were determined by plaque assay, RT-qPCR, and ELISA, respectively. The activation of Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling pathway was detected by Western blotting and luciferase assay. Proteins which negatively regulate STAT1 were determined by Western blotting. Then cells were transfected with suppressor of cytokine signaling 1 (SOCS1) plasmid and virus replication and ISGs expression were determined. Luciferase reporter assay and Western blotting were performed to detect the relationship between SOCS1 and miR-155. Results Luteolin inhibited RSV replication, as shown by the decreased viral titer and RSV-F mRNA expression both in vitro and in vivo. The antiviral activity of luteolin was attributed to the enhanced phosphorylation of STAT1, resulting in the increased production of ISGs. Further study showed that SOCS1 was downregulated by luteolin and SOCS1 is a direct target of microRNA-155 (miR-155). Inhibition of miR-155 rescued luteolin-mediated SOCS1 downregulation, whereas upregulation of miR-155 enhanced the inhibitory effect of luteolin. Conclusion Luteolin inhibits RSV replication by regulating the miR-155/SOCS1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Saisai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yiting Ling
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yuanyuan Yao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Gang Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Hao WC, Zhong QL, Pang WQ, Dian MJ, Li J, Han LX, Zhao WT, Zhang XL, Xiao SJ, Xiao D, Lin XL, Jia JS. MST4 inhibits human hepatocellular carcinoma cell proliferation and induces cell cycle arrest via suppression of PI3K/AKT pathway. J Cancer 2020; 11:5106-5117. [PMID: 32742458 PMCID: PMC7378920 DOI: 10.7150/jca.45822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Objective: MST4 has exhibited functions in regulating cell polarity, Golgi apparatus, cell migration, and cancer. Mechanistically, it affects the activity of p-ERK, Hippo-YAP pathway and autophagy. The aim of this study is to further examine the functions of MST4 in hepatocellular carcinoma (HCC) and the underlying mechanism. Methods: The expression level of MST4 in HCC and noncancer adjacent liver tissues was determined by qRT-PCR and immunohistochemistry staining. Wild-type MST4 (MST4) and a dominant-negative mutant of MST4 (dnMST4) were overexpressed in HCC cell lines, respectively. CCK-8 assay, EdU incorporation assay, and soft agar assay were used to determine cell proliferation in vitro. The xenograft mouse model was employed to determine HCC cell growth in vivo. Cell cycle analysis was performed by PI staining and flow cytometry. The expression of key members in PI3K/AKT pathway was detected by Western blot analysis. Results: In our study, we reported new evidence that MST4 was frequently down-regulated in HCC tissues. Gain-of-function and loss-of-function experiments demonstrated that MST4 negatively regulated in vitro HCC cell proliferation. Additionally, MST4 overexpression suppressed Bel-7404 cell tumor growth in nude mice. Further experiments revealed that the growth-inhibitory effect of MST4 overexpression was partly due to a G1-phase cell cycle arrest. Importantly, mechanistic investigations suggested that dnMST4 significantly elevated the phosphorylation levels of key members of PI3K/AKT pathway, and the selective PI3K inhibitor LY294002 can reverse the proliferation-promoting effect of dnMST4. Conclusions: Overall, our results provide a new insight into the clinical significance, functions and molecular mechanism of MST4 in HCC, suggesting that MST4 might have a potential therapeutic value in the HCC clinical treatment.
Collapse
Affiliation(s)
- Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Ling Zhong
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Pang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei-Juan Dian
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Radiotherapy Center, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Liu-Xin Han
- The third people's hospital of Kunming, Kunming 650041, China
| | - Wen-Tao Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming 650118, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Sheng-Jun Xiao
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Liu D, Han P, Gao C, Gao W, Yao X, Liu S. microRNA-155 Modulates Hepatic Stellate Cell Proliferation, Apoptosis, and Cell Cycle Progression in Rats With Alcoholic Hepatitis via the MAPK Signaling Pathway Through Targeting SOCS1. Front Pharmacol 2020; 11:270. [PMID: 32317960 PMCID: PMC7154100 DOI: 10.3389/fphar.2020.00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the regulatory function of the non-coding microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in alcoholic hepatitis (AH) and its potential mechanism associated with the mitogen-activated protein kinase (MAPK) signaling pathway. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured in a rat model of AH. The biological prediction website microRNA.org and dual-luciferase reporter gene assay were used to identify whether SOCS1 was a direct target of miR-155, and the effects of miR-155 and SOCS1 on the viability, cycle progression, and apoptosis of hepatic stellate cells were assessed using RT-qPCR, Western blot assay, MTT assay, Annexin V/PI double staining, and PI single staining. The levels of ALT, AST, MDA, and TBIL and the liver cell morphology were all prominently changed in AH model rats. miR-155 suppressed SOCS1 by specifically binding to SOCS1-3'-UTR to activate the MAPK signaling pathway. SOCS1 had low expression while miR-155 was highly expressed in AH rats. miR-155 promoted hepatic stellate cell viability and cycle progression and reduced cell apoptosis by silencing SOCS1. Together, we find that silenced miR-155 could upregulate SOCS1 and inactivate the MAPK signaling pathway, thereby inhibiting the proliferation of alcoholic hepatic stellate cells and promoting cell apoptosis.
Collapse
Affiliation(s)
- Dengtao Liu
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Ping Han
- Department of Pulmonary and Critical Care Medicine, Linyi People's Hospital, Linyi, China
| | - Chunhai Gao
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Wei Gao
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaocui Yao
- Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Shulan Liu
- Department of Imaging, Linyi People's Hospital, Linyi, China
| |
Collapse
|
17
|
Sun K, Zhang G. Long noncoding RNA CASC2 suppresses esophageal squamous cell carcinoma progression by increasing SOCS1 expression. Cell Biosci 2019; 9:90. [PMID: 31728180 PMCID: PMC6842511 DOI: 10.1186/s13578-019-0353-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related deaths worldwide. Emerging evidence suggests the involvement of long noncoding RNAs (lncRNAs) in tumorigenesis. LncRNA Cancer Susceptibility Candidate 2 (CASC2) has been demonstrated to act as a tumor suppressor contributing to the development and progression of several cancers. However, the functional significance and underlying mechanism of CASC2 in ESCC progression has not been well elucidated. Methods The expression levels of CASC2 in ESCC tissues were detected by qRT-PCR. CASC2 overexpression and knockdown models were established and used to investigate the functional role of CASC2 in ESCC cells. RIP, RNA pull-down and dual-luciferase assay was used to detect the association between CASC2 and miR-155. The interaction between CASC2 and Suppressor Of Cytokine Signaling 1 (SOCS1) was assessed by RIP and RNA pull-down assays. Results In the present study, we found that CASC2 was significantly downregulated in ESCC tissues and positively correlated with overall survival time of patients with ESCC. Functional assays demonstrated that CASC2 suppressed proliferation, migration and invasion, as well as enhanced drug sensitivity in ESCC cells. Mechanistically, CASC2 inhibited ESCC progression by upregulating the expression of SOCS1 via two different ways. CASC2 acted as competing endogenous RNA (ceRNA) for miR-155 to post-transcriptionally increase SOCS1 expression. On the other hand, CASC2 was capable of interacting with SOCS1 protein and suppressing its degradation. Conclusion Conclusively, these results demonstrated that CASC2 could exert as a tumor suppressive lncRNA in ESCC progression via regulating SOCS1.
Collapse
Affiliation(s)
- Ke Sun
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 of Jinghua Road, Jianxi District, Luoyang, 471003 Henan China
| | - Guangping Zhang
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 of Jinghua Road, Jianxi District, Luoyang, 471003 Henan China
| |
Collapse
|
18
|
Gupta P, Sata TN, Ahamad N, Islam R, Yadav AK, Mishra A, Nithyananthan S, Thirunavukkarasu C, Sanal MG, Venugopal SK. Augmenter of liver regeneration enhances cell proliferation through the microRNA-26a/Akt/cyclin D1 pathway in hepatic cells. Hepatol Res 2019; 49:1341-1352. [PMID: 31267617 DOI: 10.1111/hepr.13404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
AIM Hepatocytes can proliferate and regenerate when injured by toxins, viral infections, and so on. Augmenter of liver regeneration (ALR) is a key regulator of liver regeneration, but the mechanism is unknown. The role of ALR in other cell types is not known. In the present study, we investigated the relationship between microRNA (miRNA)-26a and ALR in the Huh7 cell line and adipose tissue-derived mesenchymal cells from chronic liver disease patients and healthy individuals. METHODS Huh7 cells were transfected independently with ALR and miRNA-26a expression vectors, and their effects on cell proliferation, the expression of miRNA-26a, and activation of the phosphatase and tensin homolog and Akt signaling pathways were determined. The experiments were repeated on mesenchymal stem cells derived from healthy individuals and chronic liver disease patients to see whether the observations can be replicated in primary cells. RESULTS Overexpression of ALR or miRNA-26a resulted in an increase of the phosphorylation of Akt and cyclin D1 expression, whereas it resulted in decreased levels of p-GSK-3β and phosphatase and tensin homolog in Huh7 cells. The inhibition of ALR expression by ALR siRNA or anti-miR-26a decreased the Akt/cyclin D1 signaling pathway, leading to decreased proliferation. Mesenchymal stem cells isolated from the chronic liver disease patients had a higher ALR expression, while the mesenchymal stem cells isolated from healthy volunteers responded to the growth factor treatments for increased ALR expression. It was found that there was a significant increase in miRNA-26a expression and proliferation. CONCLUSIONS These data clearly showed that ALR induced the expression of miRNA-26a, which downregulated phosphatase and tensin homolog, resulting in an increased p-Akt/cyclin D1 pathway and enhanced proliferation in hepatic cells.
Collapse
Affiliation(s)
- Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Naushad Ahamad
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Rakibul Islam
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Ajay K Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Amit Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Subramaniyam Nithyananthan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, Tamil Nadu, India
| | | | - M G Sanal
- Department of Research, Institute of Liver and Biliary Sciences, D1 Vasant Kunj, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
19
|
miR-26a promotes hepatocellular carcinoma invasion and metastasis by inhibiting PTEN and inhibits cell growth by repressing EZH2. J Transl Med 2019; 99:1484-1500. [PMID: 31201367 DOI: 10.1038/s41374-019-0270-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
A previous study revealed that therapeutic miR-26a delivery suppresses tumorigenesis in a murine liver cancer model, whereas we found that forced miR-26a expression increased hepatocellular carcinoma (HCC) cell migration and invasion, which prompted us to characterize the causes and mechanisms underlying enhanced invasion due to ectopic miR-26a expression. Gain-of-function and loss-of-function experiments demonstrated that miR-26a promoted migration and invasion of BEL-7402 and HepG2 cells in vitro and positively modulated matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and MMP-10 expression. In addition, exogenous miR-26a expression significantly enhanced the metastatic ability of HepG2 cells in vivo. miR-26a negatively regulated in vitro proliferation of HCC cells, and miR-26a overexpression suppressed HepG2 cell tumor growth in nude mice. Further studies revealed that miR-26a inhibited cell growth by repressing the methyltransferase EZH2 and promoted cell migration and invasion by inhibiting the phosphatase PTEN. Furthermore, PTEN expression negatively correlated with miR-26a expression in HCC specimens from patients with and without metastasis. Thus, our findings suggest for the first time that miR-26a promotes invasion/metastasis by inhibiting PTEN and inhibits cell proliferation by repressing EZH2 in HCC. More importantly, our data also suggest caution if miR-26a is used as a target for cancer therapy in the future.
Collapse
|
20
|
Zhao L, Ouyang Y, Bai Y, Gong J, Liao H. miR-155-5p inhibits the viability of vascular smooth muscle cell via targeting FOS and ZIC3 to promote aneurysm formation. Eur J Pharmacol 2019; 853:145-152. [DOI: 10.1016/j.ejphar.2019.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
|
21
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
22
|
Bai H, Guo J, Chang C, Guo X, Xu C, Jin W. Comprehensive analysis of lncRNA-miRNA-mRNA during proliferative phase of rat liver regeneration. J Cell Physiol 2019; 234:18897-18905. [PMID: 30916358 PMCID: PMC6617821 DOI: 10.1002/jcp.28529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022]
Abstract
This study aims to reveal the regulatory mechanism of lncRNAs-miRNAs-mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA-miRNA-mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.
Collapse
Affiliation(s)
- Haijing Bai
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| |
Collapse
|