1
|
Kumar A, Jayawardena D, Priyamvada S, Anbazhagan AN, Chatterjee I, Saksena S, Dudeja PK. SLC26A3 (DRA, the Congenital Chloride Diarrhea Gene): A Novel Therapeutic Target for Diarrheal Diseases. Cell Mol Gastroenterol Hepatol 2024; 19:101452. [PMID: 39736385 PMCID: PMC12003007 DOI: 10.1016/j.jcmgh.2024.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Diarrhea associated with enteric infections, gut inflammation, and genetic defects poses a major health burden and results in significant morbidity and mortality. Impaired fluid and electrolyte absorption or secretion in the intestine are the hallmark of diarrhea. Electroneutral NaCl absorption in the mammalian GI tract involves the coupling of Na+/H+ and Cl-/HCO3- exchangers. SLC26A3 (Down Regulated in Adenoma, DRA) is the major anion exchanger involved in luminal Cl- absorption and HCO3- secretion. Mutations in the SLC26A3 gene cause a severe disease called congenital chloride diarrhea (CLD). Multiple studies have shown that DRA function or expression is downregulated in infectious diarrheal disorders caused by EPEC, C rodentium, Salmonella, Clostridioides difficile and Cryptosporidium parvum infection. In addition, DRA levels are severely depleted in colonic mucosa of IBD patients and in mouse models of IBD (eg, DSS, TNBS, adoptive T-cell transfer, anti-CD-40, and IL-10 KO colitis). In addition, genetic defects exhibiting diarrhea including microvillus inclusion disease (MVID), keratin-8 depletion, knock-out mouse models of transcriptional factors (eg, CDX-2 and HNF1α/1β) also exhibit severe down regulation of DRA. Also, recent studies have shown that DRA is not only critical for chloride absorption but also plays a key role in maintaining gut epithelial barrier integrity, microbiome composition, and has now emerged as an IBD susceptibility gene. In this review, we provide strong evidence that DRA may serve as a novel therapeutic target with dual benefits in not only correcting diarrheal phenotype but also improving gut barrier integrity and inflammation in pathogen infection or IBD.
Collapse
Affiliation(s)
- Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
2
|
Yang Y, Miao J, Du J, Xu S, Zhang K, Wu T, Tao C, Wang Y, Fang M, Yang S. Deficiency of SLC26A3 promotes jejunal barrier damage in metabolic disease-susceptible transgenic pigs. Int J Biol Macromol 2024; 281:136245. [PMID: 39368571 DOI: 10.1016/j.ijbiomac.2024.136245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Intestinal disorders are common in metabolic syndrome. However, their pathogenesis is still not fully understood. Pig and human intestines are highly similar in terms of associated metabolic processes. Here, we successfully constructed a metabolic disease-susceptible transgenic (TG) Bama pig model by knocking in three humanized disease risk genes with the CRISPR/Cas9 technique to assess its potential as a model for human intestinal diseases and explore the possible pathological mechanisms involved. We found that jejunal barrier integrity was disrupted and that the infiltration of inflammatory cells increased in TG pigs after high-fat and high-sucrose diet (HFHSD) treatment. We revealed significant differences in the transcriptome, associated microbiome profiles and microbial metabolite short-chain fatty acid (SCFA) content of the jejunum of TG pigs. Notably, we found that SLC26A3 was significantly downregulated in TG pigs. Knockdown or overexpression of the SLC26A3 gene in IPEC-J2 cells significantly affected the expression of MUC2, MUC13 and occludin. Furthermore, in vitro experiments further verified that CDX2 directly regulated the expression of SLC26A3. Mechanistically, CDX2 mediated intestinal barrier function by enhancing the expression of SLC26A3 by binding to its promoter region between -1120 and - 1070 bp. TG pigs represent a promising model that provides new insights into preclinical research on human intestinal metabolic diseases associated with metabolic disorders and revealed that SLC26A3 may be a potential therapeutic target for intestinal metabolic diseases.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Juan Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Meiying Fang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Li J, Simmons AJ, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. A Specialized Epithelial Cell Type Regulating Mucosal Immunity and Driving Human Crohn's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560293. [PMID: 37873404 PMCID: PMC10592875 DOI: 10.1101/2023.09.30.560293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder that may affect any part of gastrointestinal tract with extra-intestinal manifestations and associated immune dysregulation. To characterize heterogeneity in CD, we profiled single-cell transcriptomics of 170 samples from 65 CD patients and 18 non-inflammatory bowel disease (IBD) controls in both the terminal ileum (TI) and ascending colon (AC). Analysis of 202,359 cells identified a novel epithelial cell type in both TI and AC, featuring high expression of LCN2, NOS2, and DUOX2, and thus is named LND. LND cells, confirmed by high-resolution in-situ RNA imaging, were rarely found in non-IBD controls, but expanded significantly in active CD. Compared to other epithelial cells, genes defining LND cells were enriched in antimicrobial response and immunoregulation. Moreover, multiplexed protein imaging demonstrated that LND cell abundance was associated with immune infiltration. Cross-talk between LND and immune cells was explored by ligand-receptor interactions and further evidenced by their spatial colocalization. LND cells showed significant enrichment of expression specificity of IBD/CD susceptibility genes, revealing its role in immunopathogenesis of CD. Investigating lineage relationships of epithelial cells detected two LND cell subpopulations with different origins and developmental potential, early and late LND. The ratio of the late to early LND cells was related to anti-TNF response. These findings emphasize the pathogenic role of the specialized LND cell type in both Crohn's ileitis and Crohn's colitis and identify novel biomarkers associated with disease activity and treatment response.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A. Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N. Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W. Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N. Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dawn B. Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L. Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N. Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S. Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A. Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T. Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA
| | - Elizabeth A. Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - David A. Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Ken S. Lau
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt Univerity Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt Univerity Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Lin C, Lin P, Lin H, Yao H, Liu S, He R, Chen H, Teng Z, Hoffman RM, Ye J, Zhu G. SLC26A3/NHERF2-IκB/NFκB/p65 feedback loop suppresses tumorigenesis and metastasis in colorectal cancer. Oncogenesis 2023; 12:41. [PMID: 37573425 PMCID: PMC10423209 DOI: 10.1038/s41389-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Colorectal cancer (CRC) is a formidable disease due to the intricate mechanisms that drive its proliferation and metastasis. Despite significant progress in cancer research, the integration of these mechanisms that influence cancer cell behavior remains elusive. Therefore, it is imperative to comprehensively elucidate the underlying mechanisms driving CRC proliferation and metastasis. In this study, we reported a novel role of SLC26A3 in suppressing CRC progression. We found that SLC26A3 expression was downregulated in CRC, which was proportionally correlated with survival. Our in vivo and in vitro experiments demonstrated that up-regulation of SLC26A3 inhibited CRC proliferation and metastasis, while down-regulation of SLC26A3 promoted CRC progression by modulating the expression level of IκB. Furthermore, we identified NHERF2 as a novel interacting protein of SLC26A3 responsible for stabilizing the IκB protein and removing ubiquitination modification. Mechanistically, SLC26A3 augmented the interaction between NHERF2 and IκB, subsequently reducing its degradation. This process inhibited the dissociation of p65 from the IκB/p65/p50 complex and reduced the translocation of p65 from the cytoplasm to the nucleus. Moreover, our investigation revealed that NF-κB/p65 directly bound to the promoter of SLC26A3, leading to a decline in its mRNA expression. Thus, SLC26A3 impeded the nuclear translocation of NF-κB/p65, enhancing the transcription of SLC26A3 and establishing a positive regulatory feedback loop in CRC cells. Collectively, these results suggest that a SLC26A3/NHERF2-IκB/NF-κB/p65 signaling loop suppresses proliferation and metastasis in CRC cells. These findings propose a novel SLC26A3-driven signaling loop that regulates proliferation and metastasis in CRC, providing promising therapeutic interventions and prognostic targets for the management of CRC.
Collapse
Affiliation(s)
- Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Huayan Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hengxin Yao
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Sarker R, Lin R, Singh V, Donowitz M, Tse CM. SLC26A3 (DRA) is stimulated in a synergistic, intracellular Ca 2+-dependent manner by cAMP and ATP in intestinal epithelial cells. Am J Physiol Cell Physiol 2023; 324:C1263-C1273. [PMID: 37154494 PMCID: PMC10243534 DOI: 10.1152/ajpcell.00523.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ruxian Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Varsha Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chung-Ming Tse
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Jayawardena D, Priyamvada S, Kageyama T, White Z, Kumar A, Griggs TF, Majumder A, Akram R, Anbazhagan AN, Sano T, Dudeja PK. Loss of SLC26A3 Results in Colonic Mucosal Immune Dysregulation via Epithelial-Immune Cell Crosstalk. Cell Mol Gastroenterol Hepatol 2022; 15:903-919. [PMID: 36535508 PMCID: PMC9971172 DOI: 10.1016/j.jcmgh.2022.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Down-regulation of chloride transporter SLC26A3 or down-regulated in adenoma (DRA) in colonocytes has recently been linked to the pathogenesis of ulcerative colitis (UC). Because exaggerated immune responses are one of the hallmarks of UC, these current studies were undertaken to define the mechanisms by which loss of DRA relays signals to immune cells to increase susceptibility to inflammation. METHODS NanoString Immunology Panel, fluorescence assisted cell sorting, immunoblotting, immunofluorescence, and quantitative real-time polymerase chain reaction assays were used in wild-type and DRA knockout (KO) mice. Interleukin (IL)-33 blocking was used to determine specific changes in immune cells and co-housing/broad spectrum antibiotics administration, and ex vivo studies in colonoids were conducted to rule out the involvement of microbiota. Colonoid-derived monolayers from healthy and UC patient biopsies were analyzed for translatability. RESULTS There was a marked induction of Th2 (>2-fold), CD4+ Th2 cells (∼8-fold), RORγt+ Th17, and FOXP3+ regulatory T cells (Tregs). DRA KO colons also exhibited a robust induction of IL-33 (>8-fold). In vivo studies using blocking of IL-33 established that T2 immune dysregulation (alterations in ILC2, Th2, and GATA3+ iTregs) in response to loss of DRA was due to altered epithelial-immune cell crosstalk via IL-33. CONCLUSIONS Loss of DRA in colonocytes triggers the release of IL-33 to drive a type 2 immune response. These observations emphasize the critical importance of DRA in mucosal immune homeostasis and its implications in the pathogenesis of UC.
Collapse
Affiliation(s)
- Dulari Jayawardena
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Takahiro Kageyama
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Theodor F Griggs
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Apurba Majumder
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ramsha Akram
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K Dudeja
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
7
|
Abdelmaksoud HF, Osman EEA, Abdel-Hameed SS, Aboushousha T, Naggar HME. In vivo evaluation of anticryptosporidial effects of wheat germ extracts in immunocompromised mice. J Parasit Dis 2022; 46:833-844. [PMID: 36091283 PMCID: PMC9458818 DOI: 10.1007/s12639-022-01502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022] Open
Abstract
Cryptosporidium species is a prime cause of diarrheal disease in individuals with competent immunity. In patients with compromised immunity, infections are more severe particularly in developing countries. Wheat germ oil was described to have antiparasitic effect. This study was done to evaluate the possible role of wheat germ extracts in Cryptosporidium parvum (C. parvum) infected immunocompromised mice. Thirty white albino mice were classified into six groups as follow: four study groups, all immunosuppressed and infected with C. parvum oocysts. These four groups received treatments as follow: Group (I): treated with nitazoxanide. Group (II): treated with wheat germ oil. Group (III): treated with wheat germ extracted by hexane. Group (IV): treated with wheat germ extracted by ethanol. The remaining two groups were immunosuppressed control groups as follow: Group (V): only infected with C. parvum oocysts (Positive control). Group (VI): non-infected (Negative control). Stool samples were collected and examined to detect oocyst and the ileocecal region was subjected to histopathological and immunohistochemical examination. Wheat germ extracts showed a statistically significant effect against C. parvum specially wheat germ oil with P value: < 0.001, this effect was also confirmed by pathological and immunohistochemical examinations. C. parvum has an influence on human health by its effect in diarrheal disease. Wheat germ oil and its extracts has proved to be a reliable herb for C. parvum. treatment confirmed by different methodologies.
Collapse
Affiliation(s)
| | - Ezzat E. A. Osman
- Department of Medicinal Chemistry, Theodor Bilharz Institute, Giza, Egypt
| | | | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Heba M. El Naggar
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Yu Q. Slc26a3 (DRA) in the Gut: Expression, Function, Regulation, Role in Infectious Diarrhea and Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:575-584. [PMID: 32989468 DOI: 10.1093/ibd/izaa256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transport of transepithelial Cl- and HCO3- is crucial for the function of the intestinal epithelium and maintains the acid-based homeostasis. Slc26a3 (DRA), as a key chloride-bicarbonate exchanger protein in the intestinal epithelial luminal membrane, participates in the electroneutral NaCl absorption of intestine, together with Na+/H+ exchangers. Increasing recent evidence supports the essential role of decreased DRA function or expression in infectious diarrhea and inflammatory bowel disease (IBD). METHOD In this review, we give an overview of the current knowledge of Slc26a3, including its cloning and expression, function, roles in infectious diarrhea and IBD, and mechanisms of actions. A better understanding of the physiological and pathophysiological relevance of Slc26a3 in infectious diarrhea and IBD may reveal novel targets for future therapy. CONCLUSION Understanding the physiological function, regulatory interactions, and the potential mechanisms of Slc26a3 in the pathophysiology of infectious diarrhea and IBD will define novel therapeutic approaches in future.
Collapse
Affiliation(s)
- Qin Yu
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan City, China
| |
Collapse
|
9
|
The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Arch 2020; 473:95-106. [PMID: 33205229 DOI: 10.1007/s00424-020-02495-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023]
Abstract
The membrane-bound transport proteins responsible for oxalate secretion across the large intestine remain unidentified. The apical chloride/bicarbonate (Cl-/HCO3-) exchanger encoded by Slc26a6, known as PAT-1 (putative anion transporter 1), is a potential candidate. In the small intestine, PAT-1 makes a major contribution to oxalate secretion but whether this role extends into the large intestine has not been directly tested. Using the PAT-1 knockout (KO) mouse, we compared the unidirectional absorptive ([Formula: see text]) and secretory ([Formula: see text]) flux of oxalate and Cl- across cecum, proximal colon, and distal colon from wild-type (WT) and KO mice in vitro. We also utilized the non-specific inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) to confirm a role for PAT-1 in WT large intestine and (in KO tissues) highlight any other apical anion exchangers involved. Under symmetrical, short-circuit conditions the cecum and proximal colon did not transport oxalate on a net basis, whereas the distal colon supported net secretion. We found no evidence for the participation of PAT-1, or indeed any other DIDS-sensitive transport mechanism, in oxalate or Cl- by the large intestine. Most unexpectedly, mucosal DIDS concurrently stimulated [Formula: see text] and [Formula: see text] by 25-68% across each segment without impacting net transport. For the colon, these changes were directly proportional to increased transepithelial conductance suggesting this response was the result of bidirectional paracellular flux. In conclusion, PAT-1 does not contribute to oxalate or Cl- transport by the large intestine, and we urge caution when using DIDS with mouse colonic epithelium.
Collapse
|
10
|
Zheng WB, Zou Y, He JJ, Elsheikha HM, Liu GH, Hu MH, Wang SL, Zhu XQ. Global profiling of lncRNAs-miRNAs-mRNAs reveals differential expression of coding genes and non-coding RNAs in the lung of beagle dogs at different stages of Toxocara canis infection. Int J Parasitol 2020; 51:49-61. [PMID: 32991917 DOI: 10.1016/j.ijpara.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
The roundworm Toxocara canis causes toxocariasis in dogs and larval migrans in humans. Better understanding of the lung response to T. canis infection could explain why T. canis must migrate to and undergoes part of its development inside the lung of the definitive host. In this study, we profiled the expression patterns of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in the lungs of Beagle dogs infected by T. canis, using high throughput RNA sequencing. At 24 h p.i., 1,012 lncRNAs, 393 mRNAs and 10 miRNAs were differentially expressed (DE). We also identified 883 DElncRNAs, 264 DEmRNAs and 20 DEmiRNAs at 96 h p.i., and 996 DElncRNAs, 342 DEmRNAs and eight DEmiRNAs at 36 days p.i., between infected and control dogs. Significant changes in the levels of expression of transcripts related to immune response and inflammation were associated with the antiparasitic response of the lung to T. canis. The remarkable increase in the expression of scgb1a1 at all time points after infection suggests the need for consistent moderation of the excessive inflammatory response. Also, upregulation of foxj1 at 24 h p.i., and downregulation of IL-1β and IL-21 at 96 h p.i., suggest an attenuation of the humoral immunity of infected dogs. These results indicate that T. canis pathogenesis in the lung is mediated through contributions from both pro-inflammatory and anti-inflammatory mechanisms. Competing endogenous RNA (ceRNA) network analysis revealed significant interactions between DElncRNAs, DEmiRNAs and DEmRNAs, and improved our understanding of the ceRNA regulatory mechanisms in the context of T. canis infection. These data provide comprehensive understanding of the regulatory networks that govern the lung response to T. canis infection and reveal new mechanistic insights into the interaction between the host and parasite during the course of T. canis infection in the canine.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, Guangdong Province 510240, China
| | - Shui-Lian Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China.
| |
Collapse
|
11
|
Gene Expression Profiling of Mediators Associated with the Inflammatory Pathways in the Intestinal Tissue from Patients with Ulcerative Colitis. Mediators Inflamm 2020; 2020:9238970. [PMID: 32410873 PMCID: PMC7201440 DOI: 10.1155/2020/9238970] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Multiple genes have been associated with IBD, and many of these can be linked to alterations in autophagy, UPR, ubiquitination, and metabolic and immune response pathways. The aim of this study was to analyze a transcriptomic panel of mediators associated with the inflammatory pathways in the colonic mucosa of UC patients. Patients and Methods. We studied a total of 100 patients with definitive diagnosis of UC (50 active and 50 in remission) and a control group (50 subjects) without endoscopic evidence of intestinal inflammation. Colonic mucosal biopsies were taken by colonoscopy and preserved in RNA later. Gene expression were measured by real-time polymerase chain reaction (RT-PCR). Results The gene expressions of XBP1, AGR2, HSPA5, UBE2L3, TNFRSF14, LAMP3, FCGR2A, LSP1, CTLA4, SOD2, TDO2, and ALDOB mRNA levels were significantly higher in the colonic mucosa from UC patients (both quiescent and active) as compared to the control group (P < 0.05). Conversely, IRGM, ORDML3, UBD, CUL2, CYLD, FOXC2, FOXO4, DOK3, and SNX20 mRNA levels were found to be significantly lower in patients with active disease, as compared to those with active disease (P < 0.05). Gene expressions of IRGM, CTLA4, FOXO4, SLC26A3, SLC39A4, SOD2, TDO2, and ALDOB were associated with clinical outcomes, such as medical treatment in response to aminosalicylates, histological remission, clinical course, and evolution. Conclusions : The gene expressions of FOXO4, ALDOB, SOD2, TOD2, SLC26A3, and SLC39A4 were associated with the clinical course and histological activity and are of relevance since these provide the utility of new prognostic markers in IBD. Gene expression signature showed dysregulation in mediators associated with autophagy, ubiquitination, ER stress, oxidative stress, carbohydrate metabolism, solute transport, and T cell regulation in the colonic mucosa from patients with UC, suggesting that these genes could be involved in the pathogenesis of UC.
Collapse
|
12
|
[Establishment of a congenital chloride diarrhea-associated SLC26A3 c.392C>G (p.P131R) polymorphism-expressing cell model and a preliminary analysis of its mechanism of action]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 31753097 PMCID: PMC7389292 DOI: 10.7499/j.issn.1008-8830.2019.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To establish a congenital chloride diarrhea (CCD)-associated SLC26A3 c.392C>G (p.P131R) polymorphism-expressing cell model, and to investigate its biological function. METHODS The sequence of the SLC26A3 gene in GenBank was used to design the upstream and downstream single-guide RNA (sgRNA) that could specifically recognize the 392 locus of the SLC26A3 gene, and the sgRNA was mixed with the pSpCas9-puro vector after enzyme digestion to construct an eukaryotic recombinant expression plasmid (pSpCas9-SLC26A3). Caco-2 cells were transfected with the recombinant plasmid and synthesized single-stranded DNA oligonucleotides (ssODNs), and Taqman genotyping assay and Sanger sequencing were used to identify the expression of SLC26A3 c.392C>G (p.P131R) in Caco-2 cells. Wild-type Caco-2 cells were selected as normal control group and the Caco-2 cells with successful expression of SLC26A3 c.392C>G (p.P131R) was selected as P131R group. Both groups were treated with 100 ng/mL tumor necrosis factor-α (TNF-α), and then the normal control group was named as TNF-α group, and the P131R group was named as TNF-α+P131R group. Electric cell-substrate impedance sensing (ECIS) assay was used to evaluate the change in the monolayer barrier function of intestinal epithelial cells in the above four groups, and Western blot was used to measure the change in the expression of SLC26A3 protein in the normal control group and the P131R group. RESULTS The eukaryotic recombinant expression plasmid (pSpCas9-SLC26A3) was successfully constructed. Both Taqman genotyping assay and Sanger sequencing confirmed the successful establishment of the Caco-2 cell model of SLC26A3 c.392C>G (p.P131R) expression. ECIS assay showed that compared with the normal control group, the P131R group had a significant increase in the monolayer permeability of intestinal epithelial cells (P<0.05), and at the same time, the P131R group had a significantly greater increase in cell membrane permeability after the induction with 100 ng/mL TNF-α (P<0.05). Western blot showed that compared with the normal control group, the P131R group had a significant reduction in the expression of SLC26A3 protein (P=0.001). CONCLUSIONS SLC26A3 c.392C>G (p.P131R) can reduce the expression of SLC26A3 protein, increase the monolayer permeability of intestinal epithelial cells, and thus lead to diarrhea.
Collapse
|
13
|
Zhang N, Heruth DP, Wu W, Zhang LQ, Nsumu MN, Shortt K, Li K, Jiang X, Wang B, Friesen C, Li DY, Ye SQ. Functional characterization of SLC26A3 c.392C>G (p.P131R) mutation in intestinal barrier function using CRISPR/CAS9-created cell models. Cell Biosci 2019; 9:40. [PMID: 31114672 PMCID: PMC6518688 DOI: 10.1186/s13578-019-0303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background Congenital chloride diarrhea (CCD) in a newborn is a rare autosomal recessive disorder with life-threatening complications, requiring early diagnostics and treatment to prevent severe dehydration and infant mortality. SLC26A3 rs386833481 (c.392C>G; p.P131R) gene polymorphism is an important genetic determinant of CCD. Here, we report the influence of the non-synonymous SLC26A3 variant rs386833481 gene polymorphism on the function of the epithelial barrier and the potential mechanisms of these effects. Results We found that P131R-SLC26A3 increased dysfunction of the epithelial barrier compared with wild type SLC26A3 in human colonic Caco-2 and mouse colonic CMT-93 cells. When P131R-SLC26A3 was subsequently reverted to wild type, the epithelial barrier function was restored similar to wild type cells. Further study demonstrated that variant P131R-SLC26A3 disrupts function of epithelial barrier through two distinct molecular mechanisms: (a) decreasing SLC26A3 expression through a ubiquitination pathway and (b) disrupting a key interaction with its partner ZO-1/CFTR, thereby increasing the epithelial permeability. Conclusion Our study provides an important insight of SLC26A3 SNPs in the regulation of the epithelial permeability and indicates that SLC26A3 rs386833481 is likely a causative mutation in the dysfunction of epithelial barrier of CCD, and correction of this SNP or increasing SLC26A3 function could be therapeutically beneficial for chronic diarrhea diseases.
Collapse
Affiliation(s)
- Nini Zhang
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Daniel P Heruth
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Weibin Wu
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,8Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Qin Zhang
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,5Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| | - Marianne N Nsumu
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| | - Katherine Shortt
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,6Division of Cell Biology & Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO USA
| | - Kelvin Li
- 7Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA USA
| | - Xun Jiang
- 4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Baoxi Wang
- 4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Craig Friesen
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Ding-You Li
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Shui Qing Ye
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,6Division of Cell Biology & Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO USA
| |
Collapse
|
14
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. J Transl Med 2018; 98:462-476. [PMID: 29330471 DOI: 10.1038/s41374-017-0005-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
SLC26A3 encodes a Cl-/HCO3- ion transporter that is also known as downregulated in adenoma (DRA) and is involved in HCO3-/mucus formation. The role of DRA in the epithelial barrier has not been previously established. In this study, we investigated the in vivo and in vitro mechanisms of DRA in the colon epithelial barrier. Immunofluorescence (IF) and co-immunoprecipitation (co-IP) studies reveal that DRA binds directly to tight junction (TJ) proteins and affects the expression of TJ proteins in polarized Caco-2BBe cells. Similarly, DRA colocalizes with ZO-1 in the intestinal epithelium. Knockdown or overexpression of DRA leads to alterations in TJ proteins and epithelial permeability. In addition, TNF-α treatment downregulates DRA by activating NF-кB and subsequently affecting intestinal epithelial barrier integrity. Furthermore, overexpression of DRA partly reverses the TNF-α-induced damage by stabilizing TJ proteins. Neutralization of TNF-α in dextran sulfate sodium (DSS)-induced colitis mice demonstrates improved the outcomes, and the therapeutic effect of the TNF-α neutralizing mAb is mediated in part by the preservation of DRA expression. These data suggest that DRA may be one of the therapeutic targets of TNF-α. Moreover, DRA delivered by adenovirus vector significantly prevents the exacerbation of colitis and improves epithelial barrier function by promoting the recovery of TJ proteins in DSS-treated mice. In conclusion, DRA plays a role in protecting the epithelial barrier and may be a therapeutic target in gut homeostasis.
Collapse
|