1
|
Wang Z, Cao QY, Xiang C, Yu C, Xie C, Luo B, Zhu DQ, Xu Y, Chen YJ, Wu T, Teng GJ. Bariatric arterial embolization slows gastric emptying and improves postprandial glycaemia in obese dogs with impaired glucose tolerance. Diabetes Obes Metab 2024; 26:4490-4500. [PMID: 39075922 DOI: 10.1111/dom.15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024]
Abstract
AIM To evaluate the effects of bariatric arterial embolization (BAE) on gastric emptying of, and the glycaemic response to, an oral glucose load in an obese canine model with impaired glucose tolerance. METHODS Eleven male dogs were fed a high-fat, high-fructose diet for 7 weeks before receiving BAE, which involved selective embolization of the left gastric artery (n = 5; 14.9 ± 0.8 kg), or the sham (n = 6; 12.6 ± 0.8 kg) procedure. Postprocedural body weight was measured weekly for 4 weeks. Prior to and at 4 weeks postprocedure, a glucose solution containing 13C-acetate was administered orally for evaluation of the gastric half-emptying time (T50) and the glycaemic response. The relationship between the changes in the blood glucose area under the curve over the first 60 minutes (AUC0-60min) and the T50 was also assessed. RESULTS At 4 weeks postprocedure, BAE reduced body weight (BAE vs. the sham procedure: -5.7% ± 0.9% vs. 3.5% ± 0.9%, P < .001), slowed gastric emptying (T50 at baseline vs. postprocedure: 75.5 ± 2.0 vs. 82.5 ± 1.8 minutes, P = .021 in the BAE group; 73.8 ± 1.8 vs. 74.3 ± 1.9 minutes in the sham group) and lowered the glycaemic response to oral glucose (AUC0-60min at baseline vs. postprocedure: 99.2 ± 13.7 vs. 67.6 ± 9.8 mmol·min/L, P = .043 in the BAE group; 100.2 ± 13.4 vs. 103.9 ± 14.6 mmol·min/L in the sham group). The change in the glucose AUC0-60min correlated inversely with that of the T50 (r = -0.711; P = .014). CONCLUSIONS In a canine model with impaired glucose tolerance, BAE, while reducing body weight, slowed gastric emptying and attenuated the glycaemic response to an oral glucose load.
Collapse
Affiliation(s)
- Zhi Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Qing-Yue Cao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chunjie Xiang
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chao Yu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Cong Xie
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Biao Luo
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Dan-Qi Zhu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yi Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ya-Jing Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Tongzhi Wu
- Adelaide Medical School, Center of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Makwana R, Sanger GJ. Characterization of rat gastric myogenic contractions and modulation by oxytocin and arginine-vasopressin. Eur J Pharmacol 2023; 955:175906. [PMID: 37429518 DOI: 10.1016/j.ejphar.2023.175906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Interstitial cells of Cajal generate slow wave gastric electrical activity, initiating spontaneous muscle contractions. This becomes dysrhythmic during nausea when [Arg8]-vasopressin (AVP) is also released. In human stomach AVP increased spontaneous contraction activity and muscle tone, not neuronally-mediated contractions. Rodents cannot vomit, releasing the related hormone, oxytocin (OT) instead. We hypothesised that rat stomach would behave differently. EXPERIMENTAL APPROACH Spontaneous and electrically-evoked (EFS) contractions were measured in rat forestomach and antrum circular muscle. Custom software defined spontaneous contractions by analysing eight motility parameters. RESULTS The forestomach was quiescent. Irregular antrum contractions became regular adjacent to the pylorus (1.7 ± 0.4 mN; 1.2 ± 0.1 contractions/min, n = 12). These were unaffected by tetrodotoxin (10-6 M), atropine (10-6 M) and L-NAME (3 × 10-4 M). In both regions, AVP (pEC50∼9.0) and OT (∼0.5 log10-unit less potent) caused contraction (greater in antrum), competitively antagonized by, respectively, SR49059 (pKB∼9.5) and L371257 (pKB∼9.0), reduced by tetrodotoxin but unaffected by atropine. In the antrum, AVP and OT (∼2 log10-units less potent/efficacious) regularized and increased spontaneous contraction amplitude, frequency, rates of contraction/decay. In both regions, EFS-evoked contractions, abolished by atropine/tetrodotoxin, were reduced by AVP and OT, with AVP more potent and efficacious, particularly in forestomach. CONCLUSION Irregular spontaneous contractions of gastric antrum suggest variable ICC-muscle coupling. AVP and less potently, OT, enhanced frequency and force of contractions via V1A and OT receptors. Compared with human, differences in contraction regularity, potency and ability of AVP/OT to affect neuronal function suggests caution when using rat stomach to model ICC functions and nauseagenic stimuli.
Collapse
Affiliation(s)
- Raj Makwana
- Blizard Institute, Queen Mary University of London, UK
| | | |
Collapse
|
3
|
Tsymbalyuk OV, Davydovska TL, Naumenko AM, Voiteshenko IS, Veselsky SP, Nyporko AY, Pidhaietska AY, Kozolup MS, Skryshevsky VA. Mechanisms of regulation of motility of the gastrointestinal tract and the hepatobiliary system under the chronic action of nanocolloids. Sci Rep 2023; 13:3823. [PMID: 36882506 PMCID: PMC9992515 DOI: 10.1038/s41598-023-30958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Modern cutting edge technologies of chemical synthesis enable the production of unique nanostructures with excess energy and high reactivity. Uncontrolled use of such materials in the food industry and pharmacology entail a risk for the development of a nanotoxicity crisis. Using the methods of tensometry, mechanokinetic analysis, biochemical methods, and bioinformatics, the current study showed that chronic (for six months) intragastrical burdening of rats with aqueous nanocolloids (AN) ZnO and TiO2 caused violations of the pacemaker-dependent mechanisms of regulation of spontaneous and neurotransmitter-induced contractions of the gastrointestinal tract (GIT) smooth muscles (SMs), and transformed the contraction efficiency indices (AU, in Alexandria units). Under the same conditions, the fundamental principle of distribution of physiologically relevant differences in the numeric values of the mechanokinetic parameters of spontaneous SM contractions between different parts of GIT is violated, which can potentially cause its pathological changes. Using molecular docking, typical bonds in the interfaces of the interaction of these nanomaterials with myosin II, a component of the contractile apparatus of smooth muscle cells (SMC) were investigated. In this connection, the study addressed the question of possible competitive relations between ZnO and TiO2 nanoparticles and actin molecules for binding sites on the myosin II actin-interaction interface. In addition, using biochemical methods, it was shown that chronic long-term exposure to nanocolloids causes changes in the primary active ion transport systems of cell plasma membranes, the activity of marker liver enzymes and disrupts the blood plasma lipid profile, which indicates the hepatotoxic effect of these nanocolloids.
Collapse
Affiliation(s)
- Olga V Tsymbalyuk
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Tamara L Davydovska
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anna M Naumenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Ivan S Voiteshenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Stanislav P Veselsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Alex Y Nyporko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anastasiia Y Pidhaietska
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Mariya S Kozolup
- Department of Foreign Languages for Sciences, Ivan Franko National University of Lviv, 41 Doroshenko St., Lviv, 79000, Ukraine
| | - Valeriy A Skryshevsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine. .,Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Str., Kyiv, 01033, Ukraine.
| |
Collapse
|
4
|
Yu H, Liu Y, Chu M, Si Y, Ye Y, Ge T, Zhao H, Zhang H. Structural Relationships Between Interstitial Cells of Cajal and Smooth Muscle Cells/Nerve Fibers in the Gastric Muscularis Mucosae of Chinese Giant Salamander. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:227-235. [PMID: 33353579 DOI: 10.1017/s1431927620024861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interstitial cells of Cajal (ICC) play an essential role in the motility of the gastrointestinal tract, and they have been identified in many laboratory animals and in humans. However, the information of ICC in lower animals is still very limited. In the present study, ICC were identified in the gastric muscularis mucosae of an amphibian—the Chinese giant salamander, by c-Kit immunohistochemistry and transmission electron microscopy. ICC showed c-Kit immunoreactivity and had spindle-shaped cell bodies and 1–2 long processes. ICC were located between smooth muscle cells (SMC) in gastric muscularis mucosae. Ultrastructurally, ICC appeared as polygon-, spindle-, and awl-shaped with long cytoplasmic prolongations between SMC. ICC had distinctive characteristics, such as nuclei with peripheral electron-dense heterochromatin, caveolae, and abundant intracytoplasmatic vacuoles, mitochondria, and rough endoplasmic reticula. Moreover, lamellar bodies and two types of condensed granules were observed in the cytoplasm of ICC. Notably, ICC establish close contacts with each other. Moreover, ICC establish gap junctions with SMC. In addition, ICC were frequently observed close to nerve fibers. In summary, the present study demonstrated the presence of ICC in the gastric muscularis mucosae of the Chinese giant salamander.
Collapse
Affiliation(s)
- Hang Yu
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Yangquan Liu
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Meng Chu
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Yu Si
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Tingting Ge
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan528231, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan528231, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang330045, China
| |
Collapse
|
5
|
Li H, Xu W, Liu X, Ye J, Li P, Shang F, Yu X. Curcumin Alleviates the Side Effects of Cisplatin on Gastric Emptying of Mice by Inhibiting the Signal Changes of Acetylcholine and Interstitial Cells of Cajal. J Med Food 2020; 23:920-927. [PMID: 32833554 DOI: 10.1089/jmf.2019.4599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is a widely used anticancer drug that has adverse effects on gastrointestinal function. Curcumin is a natural polyphenol extracted from the rhizome of turmeric that has a wide range of biological activities. The present study investigated the effects of cisplatin on gastric emptying in mice and examined whether these can be inhibited by curcumin. We found that pretreatment with curcumin (200 mg/kg/day) for 10-30 days partly inhibited the decreases in gastric emptying rate and body weight induced by cisplatin. Furthermore, cisplatin reduced acetylcholine (ACh) concentration and the messenger RNA (mRNA) level of ACh receptor (AChR) as well as acetylcholinesterase activity in the stomach of mice; caused ultrastructural damage to interstitial cells of Cajal (ICC); and altered the expression of c-kit/stem cell factor and the gap junction protein connexin 43 in ICC. Curcumin pretreatment inhibited the effects of cisplatin on ACh indicators and ICC. These results demonstrate that curcumin can protect against cisplatin-induced gastric emptying disorder and thus has therapeutic potential for alleviating this condition in cancer patients receiving cisplatin chemotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Physiology and Pathophysiology, Qingdao University Medical College, Qingdao, P.R. China
| | - Wenhua Xu
- Department of Laboratory Biochemistry, Qingdao University Medical College, Qingdao, P.R. China
| | - Xuying Liu
- Student of "5 + 3" Integration of Clinical Medicine, Grade 2015, Qingdao University Medical College, Qingdao, P.R. China
| | - Junli Ye
- Department of Physiology and Pathophysiology, Qingdao University Medical College, Qingdao, P.R. China
| | - Peijie Li
- Department of Pathology, The First Affiliated Hospital of Zhejiang University, Hangzhou, P.R. China
| | - Fangfang Shang
- Department of Pathology, Navy 971 Hospital of PLA, Qingdao, P.R. China
| | - Xiaoling Yu
- Department of Physiology and Pathophysiology, Qingdao University Medical College, Qingdao, P.R. China
| |
Collapse
|
6
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
7
|
Lentle RG, Reynolds GW, Hulls CM, Chambers JP. Advanced spatiotemporal mapping methods give new insights into the coordination of contractile activity in the stomach of the rat. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1064-G1075. [PMID: 27765760 DOI: 10.1152/ajpgi.00308.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023]
Abstract
We used spatiotemporal mapping of strain rate to determine the direction of propagation and amplitudes of the longitudinal and circumferential components of antrocorporal (AC) contractions and fundal contractions in the rat stomach maintained ex vivo and containing a volume of fluid that was within its normal functional capacity. In the region of the greater curvature the longitudinal and circular components of AC contractions propagated synchronously at right angles to the arciform geometric axis of the stomach. However, the configuration of AC contractions was U shaped, neither the circular nor the longitudinal component of contractions being evident in the upper proximal corpus. Similarly, in the distal upper antrum of some preparations, circumferential components propagated more rapidly than longitudinal components. Ongoing "high-frequency, low-amplitude myogenic contractions" were identified in the upper proximal gastric corpus and on the anterior and posterior wall of the fundus. The amplitudes of these contractions were modulated in the occluded stomach by low-frequency pressure waves that occurred spontaneously. Hence the characteristics of phasic contractions vary regionally in the antrum and corpus and a previously undescribed high-frequency contractile component was identified in the proximal corpus and fundus, the latter being modulated in synchrony with cyclic variation in intrafundal pressure in the occluded fundus.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - G W Reynolds
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - C M Hulls
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - J P Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Phillips RJ. Vagal Intramuscular Arrays: The Specialized Mechanoreceptor Arbors That Innervate the Smooth Muscle Layers of the Stomach Examined in the Rat. J Comp Neurol 2015; 524:713-37. [PMID: 26355387 DOI: 10.1002/cne.23892] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/14/2023]
Abstract
The fundamental roles that the stomach plays in ingestion and digestion notwithstanding, little morphological information is available on vagal intramuscular arrays (IMAs), the afferents that innervate gastric smooth muscle. To characterize IMAs better, rats were given injections of dextran biotin in the nodose ganglia, and, after tracer transport, stomach whole mounts were collected. Specimens were processed for avidin-biotin permanent labeling, and subsets of the whole mounts were immunohistochemically processed for c-Kit or stained with cuprolinic blue. IMAs (n = 184) were digitized for morphometry and mapping. Throughout the gastric muscle wall, IMAs possessed common phenotypic features. Each IMA was generated by a parent neurite arborizing extensively, forming an array of multiple (mean = 212) branches averaging 193 µm in length. These branches paralleled, and coursed in apposition with, bundles of muscle fibers and interstitial cells of Cajal. Individual arrays averaged 4.3 mm in length and innervated volumes of muscle sheet, presumptive receptive fields, averaging 0.1 mm(3) . Evaluated by region and by muscle sheet, IMAs displayed architectural adaptations to the different loci. A subset (32%) of circular muscle IMAs issued specialized polymorphic collaterals to myenteric ganglia, and a subset (41%) of antral longitudinal muscle IMAs formed specialized net endings associated with the serosal boundary. IMAs were concentrated in regional patterns that correlated with the unique biomechanical adaptations of the stomach, specifically proximal stomach reservoir functions and antral emptying operations. Overall, the structural adaptations and distributions of the IMAs were consonant with the hypothesized stretch receptor roles of the afferents.
Collapse
Affiliation(s)
- Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Cherie N Hudson
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Jennifer L McAdams
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Elizabeth A Baronowsky
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| | - Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, 47907-2081
| |
Collapse
|
9
|
YU H, CHENG JP, ZHANG DQ, TANG CJ, HUANG KY, TAN LJ, YANG SB, MEI ZG. Effect of acupuncture combined with Chinese medicine on the expression of interstitial cells of Cajal, substance P and nerve nitric oxide synthase in diabetic mice with gastroparesis antrum. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2015. [DOI: 10.1016/s1003-5257(15)30062-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Kito Y, Mitsui R, Ward SM, Sanders KM. Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine. Am J Physiol Gastrointest Liver Physiol 2015; 308:G378-88. [PMID: 25540230 PMCID: PMC4346752 DOI: 10.1152/ajpgi.00308.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Slow waves (slow wavesICC) were recorded from myenteric interstitial cells of Cajal (ICC-MY) in situ in the rabbit small intestine, and their properties were compared with those of mouse small intestine. Rabbit slow wavesICC consisted of an upstroke depolarization followed by a distinct plateau component. Ni(2+) and nominally Ca(2+)-free solutions reduced the rate-of-rise and amplitude of the upstroke depolarization. Replacement of Ca(2+) with Sr(2+) enhanced the upstroke component but decreased the plateau component of rabbit slow wavesICC. In contrast, replacing Ca(2+) with Sr(2+) decreased both components of mouse slow wavesICC. The plateau component of rabbit slow wavesICC was inhibited in low-extracellular-Cl(-)-concentration (low-[Cl(-)]o) solutions and by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of Cl(-) channels, cyclopiazonic acid (CPA), an inhibitor of internal Ca(2+) pumps, or bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). Bumetanide also inhibited the plateau component of mouse slow wavesICC. NKCC1-like immunoreactivity was observed mainly in ICC-MY in the rabbit small intestine. Membrane depolarization with a high-K(+) solution reduced the upstroke component of rabbit slow wavesICC. In cells depolarized with elevated external K(+), DIDS, CPA, and bumetanide blocked slow wavesICC. These results suggest that the upstroke component of rabbit slow wavesICC is partially mediated by voltage-dependent Ca(2+) influx, whereas the plateau component is dependent on Ca(2+)-activated Cl(-) efflux. NKCC1 is likely to be responsible for Cl(-) accumulation in ICC-MY. The results also suggest that the mechanism of the upstroke component differs in rabbit and mouse slow wavesICC in the small intestine.
Collapse
Affiliation(s)
- Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan; Department of Cell Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, Japan; and
| | - Retsu Mitsui
- 2Department of Cell Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, Japan; and
| | - Sean M. Ward
- 3Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- 3Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
11
|
Kito Y, Kurahashi M, Mitsui R, Ward SM, Sanders KM. Spontaneous transient hyperpolarizations in the rabbit small intestine. J Physiol 2014; 592:4733-45. [PMID: 25217377 DOI: 10.1113/jphysiol.2014.276337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Four types of electrical activity were recorded and related to cell structure by intracellular recording and dye injection into impaled cells in muscles of rabbit small intestine. The specific cell types from which recordings were made were longitudinal smooth muscle cells (LSMCs), circular smooth muscle cells (CSMCs), interstitial cells of Cajal distributed in the myenteric region (ICC-MY) and fibroblast-like cells (FLCs). Slow waves (slow wavesSMC) were recorded from LSMCs and CSMCs. Slow waves (slow wavesICC) were of greatest amplitude (>50 mV) and highest maximum rate of rise (>10 V s(-1)) in ICC-MY. The dominant activity in FLCs was spontaneous transient hyperpolarizations (STHs), with maximum amplitudes above 30 mV. STHs were often superimposed upon small amplitude slow waves (slow wavesFLC). STHs displayed a cyclical pattern of discharge irrespective of background slow wave activity. STHs were inhibited by MRS2500 (3 μm), a P2Y1 antagonist, and abolished by apamin (0.3 μm), a blocker of small conductance Ca(2+)-activated K(+) channels. Small amplitude STHs (<15 mV) were detected in smooth muscle layers, whereas STHs were not resolved in cells identified as ICC-MY. Electrical field stimulation evoked purinergic inhibitory junction potentials (IJPs) in CSMCs. Purinergic IJPs were not recorded from ICC-MY. These results suggest that FLCs may regulate smooth muscle excitability in the rabbit small intestine via generation of rhythmic apamin-sensitive STHs. Stimulation of P2Y1 receptors modulates the amplitudes of STHs. Our results also suggest that purinergic inhibitory motor neurons regulate the motility of the rabbit small intestine by causing IJPs in FLCs that conduct to CSMCs.
Collapse
Affiliation(s)
- Yoshihiko Kito
- Department of Pharmacology, Faculty of Medicine, Saga University, Nabeshima, Saga, 849-8501, Japan Department of Cell Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
12
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
13
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
14
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
15
|
Bautista-Cruz F, Paterson WG. Evidence for altered circular smooth muscle cell function in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1059-65. [PMID: 21885685 DOI: 10.1152/ajpgi.00020.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrergic neurotransmission to gut smooth muscle is impaired in W/W(v) mutant mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). In addition, these mice have been reported to have smaller amplitude unitary potentials (UPs) and a more negative resting membrane potential (RMP) than control mice. These abnormalities have been attributed to absence of ICC-IM, but it remains possible that they are due to alterations at the level of the smooth muscle itself. Amphotericin-B-perforated patch-clamp recordings and Ca(2+) imaging (fura 2) were compared between freshly isolated single circular smooth muscle cells (CSM) from W/W(v) mutant and control mice lower esophageal sphincter (LES). There was no significant difference in seal resistance, capacitance, or input resistance in response to applied electrotonic current pulses between CSM cells from W/W(v) mutants and controls. Compared with control mice, RMP was more negative and UPs significantly smaller in CSM cells from mutant mice LES. Administration of caffeine induced an inward current in cells from both mutant and control mice, but the current density was significantly larger in cells from W/W(v) mutants. Membrane potential hyperpolarization induced by sodium nitroprusside was larger in cells from control mice vs. W/W(v) mutants. In addition, intracellular Ca(2+) transients induced by caffeine were significantly increased in cells from mutants. These findings indicate that LES CSM is abnormal in W/W(v) mutant mice. Thus some physiological functions attributed to ICC-IM based on experiments in smooth muscle of ICC deficient mice may need to be reconsidered.
Collapse
Affiliation(s)
- Francisco Bautista-Cruz
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Department of Medicine, Queen's University Kingston, Ontario, Canada
| | | |
Collapse
|
16
|
Kito Y. The functional role of intramuscular interstitial cells of Cajal in the stomach. J Smooth Muscle Res 2011; 47:47-53. [PMID: 21757854 DOI: 10.1540/jsmr.47.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intramuscular interstitial cells of Cajal (ICC-IM) are found within the smooth muscle layers of the stomach. ICC-IM are mainly spindle shaped cells with bipolar processes orientated along the long axis of surrounding smooth muscle cells. ICC-IM make close contacts with nerve varicosities and form gap junctions with neighbouring smooth muscle cells, indicating that ICC-IM mediate enteric motor neurotransmission. These morphological properties of ICC-IM are similar throughout the stomach. However, the electrical properties of these cells differ from region to region. In the fundus, ICC-IM generate spontaneous transient depolarizations (STDs), resulting in an ongoing discharge of unitary potentials in the smooth muscle cells. ICC-IM in the corpus generate slow waves and as they fire at the highest frequency they serve as the dominant pacemaker cells in the stomach. On the other hand, ICC-IM in the antrum generate the secondary component of slow waves triggered by the initial component that propagates passively from myenteric ICC (ICC-MY). Thus, the different electrical properties of ICC-IM play a critical role in creating the distinct functions of the proximal and distal regions of the stomach such that the fundus acts as a reservoir of food, the corpus as a dominant pacemaker region, while the antrum acts as a region for mixing and propulsion of food.
Collapse
Affiliation(s)
- Yoshihiko Kito
- Department of Physiology, Nagoya City University Medical School, Japan.
| |
Collapse
|
17
|
Shigemasa Y, Kito Y, Hashitani H, Suzuki H. Factors which determine the duration of follower potentials in longitudinal smooth muscle isolated from the guinea-pig stomach antrum. J Smooth Muscle Res 2011; 47:89-110. [PMID: 21979408 DOI: 10.1540/jsmr.47.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In isolated longitudinal muscle tissues of the guinea-pig stomach antrum, recording electrical responses from smooth muscle cells revealed a periodical generation of follower potentials with variable durations. The I-D relationship, made by plotting the duration as a function of the interval before generating follower potential, was linear. Experiments were carried out to investigate the effects of chemicals which had been known to modulate the release of Ca(2+) from the internal stores (2-aminoethoxy-diphenyl-borate, cyclopiazonic acid, caffeine), inhibit mitochondrial metabolic activity (m-chlorophenyl hydrazone, 2-deoxy-D-glucose, potassium cyanide, rotenone), inhibit ATP-sensitive K-channels distributed in mitochondria (glibenclamide, 5-hydroxydecanoic acid) and inhibit the activity of proteinkinase C (chelerythrine), on the I-D relationship of follower potentials. The effects of depolarization on follower potentials were assessed by stimulating tissues with high potassium solution. Experiments were carried out mainly in the presence of nifedipine which minimized the movements of muscles with no modulation of follower potentials. Cycropiazonic acid and caffeine reduced the slope of I-D relationship, with associated reduction of the duration and frequency of follower potentials. 2-Aminoethoxydiphenyl borate reduced the duration and amplitude and increased the frequency of follower potentials, with depolarization of the membrane, and the effects were simulated by high potassium solution. m-Chlorophenyl hydrazone, potassium cyanide, 2-deoxy-D-glucose, rotenone, 5-hydroxydecanoic acid and glibenclamide reduced the slope of I-D relationship, with associated reduction of the frequency of follower potentials. Chelerythrine did not modulate the slope of I-D relationship, with reduced frequency of follower potentials. It seemed likely that the amount of Ca(2+) released from the internal stores and also mitochondrial function had causal relationship to the duration of pacemaker potentials, suggesting that internal Ca-stores and mitochondria are taking the central role for determining the duration of the pacemaker activity. Proteinkinase C did not seem to participate to the function of mitochondria and internal Ca(2+) stores.
Collapse
Affiliation(s)
- Yuhsuke Shigemasa
- Department of Cell Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
18
|
Bhetwal BP, An CL, Fisher SA, Perrino BA. Regulation of basal LC20 phosphorylation by MYPT1 and CPI-17 in murine gastric antrum, gastric fundus, and proximal colon smooth muscles. Neurogastroenterol Motil 2011; 23:e425-36. [PMID: 21883701 PMCID: PMC3173524 DOI: 10.1111/j.1365-2982.2011.01769.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) govern myosin light chain (LC20) phosphorylation and smooth muscle contraction. Rho kinase (ROK) inhibits MLCP, resulting in greater LC20 phosphorylation and force generation at a given [Ca(2+) ](i) . Here, we investigate the role of ROK in regulating LC20 phosphorylation and spontaneous contractions of gastric fundus, gastric antrum, and proximal colon smooth muscles. METHODS Protein and phosphorylation levels were determined by western blotting. The effects of Y27632, nicardipine, and GF109203X on phosphorylation levels and contraction were measured. KEY RESULTS γ-Actin expression is similar in all three smooth muscles. LC20 and pS19 are highest, but ROK1 and ROK2 are lowest, in antrum and proximal colon smooth muscles. LZ +/- myosin phosphatase targeting subunit 1 (MYPT1), CPI-17, and pT696, pT853, and pT38 are highest in fundus and proximal colon smooth muscles. Myosin phosphatase-rho interacting protein (M-RIP) expression is lowest in fundus, and highest in antrum and proximal colon smooth muscles. Y27632 reduced pT853 in each smooth muscle, but reduced pT696 only in fundus smooth muscles. Nicardipine had no effect on pT38 in each smooth muscle, while GF109203X reduced pT38 in proximal colon and fundus smooth muscles. Y27632 or nicardipine reduced pS19 in proximal colon and fundus smooth muscles. Y27632 or nicardipine inhibited antrum and proximal colon smooth muscle spontaneous contractions, but only Y27632 reduced fundus smooth muscle tone. Zero external Ca(2+) relaxed each smooth muscle and abolished LC20 phosphorylation. CONCLUSIONS & INFERENCES Organ-specific mechanisms involving the MLCP interacting proteins LZ +/- MYPT1, M-RIP, and CPI-17 are critical to regulating basal LC20 phosphorylation in gastrointestinal smooth muscles.
Collapse
Affiliation(s)
- Bhupal P. Bhetwal
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| | - Chang Long An
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| | - Steven A. Fisher
- Departments of Medicine (Cardiology), and Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian A. Perrino
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
19
|
Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S. Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 2011; 5:93. [PMID: 21833164 PMCID: PMC3153851 DOI: 10.3389/fnins.2011.00093] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Normal motility of the colon is critical for quality of life and efforts to normalize abnormal colon function have had limited success. A better understanding of control systems of colonic motility is therefore essential. We report here a hypothesis with supporting experimental data to explain the origin of rhythmic propulsive colonic motor activity induced by general distention. The theory holds that both networks of interstitial cells of Cajal (ICC), those associated with the submuscular plexus (ICC-SMP) and those associated with the myenteric plexus (ICC-MP), orchestrate propagating contractions as pacemaker cells in concert with the enteric nervous system (ENS). ICC-SMP generate an omnipresent slow wave activity that causes propagating but non-propulsive contractions ("rhythmic propagating ripples") enhancing absorption. The ICC-MP generate stimulus-dependent cyclic depolarizations propagating anally and directing propulsive activity ("rhythmic propulsive motor complexes"). The ENS is not essential for both rhythmic motor patterns since distention and pharmacological means can produce the motor patterns after blocking neural activity, but it supplies the primary stimulus in vivo. Supporting data come from studies on segments of the rat colon, simultaneously measuring motility through spatiotemporal mapping of video recordings, intraluminal pressure, and outflow measurements.
Collapse
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Kito Y, Suzuki H. Properties of Rikkunshi-to (TJ-43)-induced relaxation of rat gastric fundus smooth muscles. Am J Physiol Gastrointest Liver Physiol 2010; 298:G755-63. [PMID: 20167876 DOI: 10.1152/ajpgi.00333.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relaxant effects of Rikkunshi-to (TJ-43), a gastroprotective herbal medicine, on rat gastric fundus were investigated. Experiments were carried out using standard tension and intracellular microelectrode recording techniques. During contraction induced by enprostil (0.5 microM), a prostaglandin E(2) analog, TJ-43, produced relaxation dose dependently (0.1-5.0 mg/ml) in the rat fundic circular smooth muscle (CSM) strips. The relaxant effects of TJ-43 were not affected by tetrodotoxin or 1 H[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one (10 microM), an inhibitor of soluble guanylate cyclase. TJ-43 inhibited enprostil-induced membrane depolarization. Apamin (1 microM), a blocker of small-conductance Ca(2+)-activated K(+) (SK) channel, inhibited T-43-induced membrane repolarization. TJ-43-induced relaxation was biphasic, comprising of an initial fast followed by a second slow relaxation. The fast relaxation was abolished by apamin. Application of high K(+) (29.4 mM [K(+)](o)) also abolished the fast relaxation induced by TJ-43. In diabetic Goto-Kakizaki (GK) rat fundic CSM strips, the relaxant responses of TJ-43 during enprostil-induced contraction were increased compared with control rat strips. These results indicate that TJ-43 elicited fast muscle relaxation through membrane hyperpolarization induced by the activation of SK channels; the time-dependent slow relaxation reflects an additional direct of TJ-43 on CSM in the rat gastric fundus. Because TJ-43-evoked relaxation of fundic CSM strips was more potent in diabetic GK rat than in control rat, further analysis of this herb could lead to better treatments of diabetic gastroparesis.
Collapse
Affiliation(s)
- Yoshihiko Kito
- Dept. of Physiology, Nagoya City Univ. Medical School, Mizuho-ku, Nagoya, Japan.
| | | |
Collapse
|