1
|
Kobayashi T, Takeba Y, Ootaki M, Ohta Y, Kida K, Iiri T, Matsumoto N. Attenuation of intestinal peristalsis with age is attributed to decreased sensitivity of receptors in the enteric nervous system. Cell Tissue Res 2025:10.1007/s00441-025-03969-z. [PMID: 40146304 DOI: 10.1007/s00441-025-03969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Constipation and other digestive disorders are common in older adults. The autonomic nervous system plays a critical role in regulating digestive motility in the intestinal tract. However, studies on age-related changes in autonomic function and receptor expression in the intestinal tract are limited. In this study, we examined the expression of neurotransmitter receptors in the autonomic nervous system and the effects of acetylcholine and β-agonists on intestinal contraction and relaxation in the jejunum of aged rats. Jejunal sections collected from male and female Wistar/ST rats aged 4, 11, and 18 months were analyzed. Immunohistochemical staining and enzyme-linked immunosorbent assay were used to measure the expression of muscarinic acetylcholine receptors (CHRM2 and CHRM3) and β-adrenergic receptors (β2-ADR and β3-ADR). The effects of acetylcholine, isoproterenol, and mirabegron were assessed in the isolated jejunum for each age group. There was no significant difference in CHRM2 receptor expression among the age groups; however, CHRM3 receptor expression decreased with age. Additionally, the sensitivity to acetylcholine-induced contractile responses decreased with age. Although β2-ADR receptor expression did not differ among the age groups, β3-ADR receptor expression increased with age. Despite this, the relaxation response to isoproterenol and mirabegron decreased with age. Our study revealed an age-related decrease in CHRM3 expression and the contractile response to acetylcholine in the small intestine of rats. Although β-ADR expression, particularly β3-ADR, increased with age, the relaxation response to β-adrenergic agonists gradually decreased.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
2
|
Wang H, Willershäuser M, Karlas A, Gorpas D, Reber J, Ntziachristos V, Maurer S, Fromme T, Li Y, Klingenspor M. A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab 2019; 20:14-27. [PMID: 30580967 PMCID: PMC6358570 DOI: 10.1016/j.molmet.2018.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Brown adipose tissue (BAT) dissipates nutritional energy as heat through uncoupling protein 1 (UCP1). The discovery of functional BAT in healthy adult humans has promoted the search for pharmacological interventions to recruit and activate brown fat as a treatment of obesity and diabetes type II. These efforts require in vivo models to compare the efficacy of novel compounds in a relevant physiological context. METHODS We generated a knock-in mouse line expressing firefly luciferase and near-infrared red florescent protein (iRFP713) driven by the regulatory elements of the endogenous Ucp1 gene. RESULTS Our detailed characterization revealed that firefly luciferase activity faithfully reports endogenous Ucp1 gene expression in response to physiological and pharmacological stimuli. The iRFP713 fluorescence signal was detected in the interscapular BAT region of cold-exposed reporter mice in an allele-dosage dependent manner. Using this reporter mouse model, we detected a higher browning capacity in female peri-ovarian white adipose tissue compared to male epididymal WAT, which we further corroborated by molecular and morphological features. In situ imaging detected a strong luciferase activity signal in a previously unappreciated adipose tissue depot adjunct to the femoral muscle, now adopted as femoral brown adipose tissue. In addition, screening cultured adipocytes by bioluminescence imaging identified the selective Salt-Inducible Kinase inhibitor, HG-9-91-01, to increase Ucp1 gene expression and mitochondrial respiration in brown and brite adipocytes. CONCLUSIONS In our mouse model, firefly luciferase activity serves as a bona fide reporter for dynamic regulation of Ucp1. In addition, by means of iRFP713 we are able to monitor Ucp1 expression in a non-invasive fashion.
Collapse
Affiliation(s)
- Hui Wang
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Monja Willershäuser
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Angelos Karlas
- Chair for Biological Imaging, Technical University of Munich, Troger Str. 9, 81675 München, Germany
| | - Dimitris Gorpas
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Troger Str. 9, 81675 München, Germany
| | - Josefine Reber
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Troger Str. 9, 81675 München, Germany
| | - Stefanie Maurer
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Tobias Fromme
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Yongguo Li
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
3
|
Glucose-Insulin-Potassium Alleviates Intestinal Mucosal Barrier Injuries Involving Decreased Expression of Uncoupling Protein 2 and NLR Family-Pyrin Domain-Containing 3 Inflammasome in Polymicrobial Sepsis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4702067. [PMID: 28428961 PMCID: PMC5385915 DOI: 10.1155/2017/4702067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
Abstract
Uncoupling protein 2 (UCP2) may be critical for intestinal barrier function which may play a key role in the development of sepsis, and insulin has been reported to have anti-inflammatory effects. Male Sprague-Dawley rats were randomly allocated into five groups: control group, cecal ligation and puncture (CLP) group, sham surgery group, CLP plus glucose-insulin-potassium (GIK) group, and CLP plus glucose and potassium (GK) group. Ileum tissues were collected at 24 h after surgery. Histological and cytokine analyses, intestinal permeability tests, and western blots of intestinal epithelial tight junction component proteins and UCP2 were performed. Compared with CLP group, the CLP + GIK group had milder histological damage, lower levels of cytokines in the serum and ileum tissue samples, and lower UCP2 expression, whereas the CLP + GK group had no such effects. Moreover, the CLP + GIK group exhibited decreased epithelial permeability of the ileum and increased expression of zonula occludens-1, occludin, and claudin-1 in the ileum. The findings demonstrated that the UCP2 and NLR family-pyrin domain-containing 3/caspase 1/interleukin 1β signaling pathway may be involved in intestinal barrier injury and that GIK treatment decreased intestinal barrier permeability. Thus, GIK may be a useful treatment for intestinal barrier injury during sepsis.
Collapse
|
4
|
The role of α – and β – adrenergic receptors in the spasmolytic effects on rat ileum of Petroselinum crispum Latifolum (parsley). ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Lee JY, Kang HS, Park BE, Moon HJ, Sim SS, Kim CJ. Inhibitory effects of Geijigajakyak-Tang on trinitrobenzene sulfonic acid-induced colitis. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:244-251. [PMID: 19716872 DOI: 10.1016/j.jep.2009.08.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 08/10/2009] [Accepted: 08/19/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY Water extract of Geijigajakyak-Tang (GJT) consisting of five crude drugs [dried root of P. lactiflora Peony (Paeoniaceae), dried trunk bark of C. cassia Blume (Lauraceae), seed of Z. jujube var. inermis Mill (Rhamnaceae), fresh root of Z. officinale Rocoe (Zingiberaceae) and dried trunk bark of G. uralensis Fish (Leguminosae)] is a folk medicine used for the treatment of chronic colitis. This study was designed to further elucidate the effect of GJT on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. MATERIALS AND METHODS GJT orally given to mice before and after TNBS intoxication, and their clinical and morphological changes, myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels in colon tissues, were evaluated on Day 8 post-TNBS. Furthermore, the effect of six major constituents of individual herbs on ileum smooth muscle contraction and neutrophil chemotaxis was studied. RESULTS GJT had a significant anti-inflammatory effect based on clinical and morphologic changes, MPO activity and MDA levels in colon tissues as compared with sham control. GJT and 5 major active constituents of individual herbs, paeoniflorin, cinnamaldehyde, jujuboside A, jujubogenin, and diammonium glycyrhhizinate significantly inhibited neutrophil chemotaxis. GJT significantly inhibited muscle contraction (IC(50); 2.10 +/- 0.11 mg/ml), and 1,8-cineol has the most spasmolytic activity (IC(50); 0.10 +/- 0.03 mg/ml). CONCLUSION GJT has significant anti-inflammatory effects on TNBS-induced colitis via inhibitions of smooth muscle contraction and neutrophil chemotaxis.
Collapse
Affiliation(s)
- Ji Yun Lee
- Division of Pathophysiology and Pharmacology, College of Pharmacy, Chung-Ang University, Dongjak-Ku, Seoul 156-756, South Korea
| | | | | | | | | | | |
Collapse
|
6
|
El-Yazbi AF, Cho WJ, Schulz R, Daniel EE. Caveolin-1 knockout alters beta-adrenoceptors function in mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1020-30. [PMID: 16782699 DOI: 10.1152/ajpgi.00159.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
beta-Adrenoceptors are G protein-coupled receptors whose functions are closely associated with caveolae in the heart and cultured cell lines. In the gut, they are responsible, at least in part, for the mediation of the sympathetic stimulation that might lead to intestinal paralysis postoperatively. We examined the effect of caveolin-1 knockout on the beta-adrenoceptor response in mouse small intestine. The relaxation response to (-)-isoprenaline in carbachol-contracted small intestinal tissue segments was reduced in caveolin-1 knockout mice (cav1(-/-)) compared with their genetic controls (cav1(+/+)). Immunohistochemical staining showed that beta-adrenoceptor expression was similar in both strains in gut smooth muscle. Selective beta-adrenoceptor blockers shifted the concentration response curve (CRC) of (-)-isoprenaline to the right in cav1(+/+) intestine, but not in cav1(-/-), with greatest shift in case of the beta(3)-blocker, SR59230A. The CRC of the selective beta(3)-agonist BRL 37344 was also shifted to the right in cav1(-/-) compared with cav1(+/+). The cAMP-dependent protein kinase (PKA) inhibitor H-89 shifted the CRC of (-)-isoprenaline to the right in cav1(+/+) but not in cav1(-/-). H-89 reduced the relaxation due to forskolin and dibutyryl cAMP in cav1(+/+) but not in cav1(-/-), suggesting a reduction in PKA activity in cav1(-/-). In cav1(+/+), PKA was colocalized with caveolin-1 in the cell membrane, but PKA immunoreactivity persisted in cav1(-/-). Examination of PKA expression in the lipid raft-rich membrane fraction of the jejunum revealed reduced PKA expression in cav1(-/-) compared with cav1(+/+). The results of the present study show that the function of beta-adrenoceptors is reduced in cav1(-/-) small intestine likely owing to reduced PKA activity.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
7
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
8
|
O'Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV. Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Am J Physiol Cell Physiol 2004; 286:C1139-51. [PMID: 15075213 DOI: 10.1152/ajpcell.00371.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial membrane potential (DeltaPsi(m)) underlies many mitochondrial functions, including Ca(2+) influx into the mitochondria, which allows them to serve as buffers of intracellular Ca(2+). Spontaneous depolarizations of DeltaPsi(m), flickers, have been observed in isolated mitochondria and intact cells using the fluorescent cationic lipophile tetramethylrhodamine ethyl ester (TMRE), which distributes across the inner mitochondrial membrane in accordance with the Nernst equation. Flickers in cardiomyocytes have been attributed to uptake of Ca(2+) released from the sarcoplasmic reticulum (SR) via ryanodine receptors in focal transients called Ca(2+) sparks. We have shown previously that an increase in global Ca(2+) in smooth muscle cells causes an increase in mitochondrial Ca(2+) and depolarization of DeltaPsi(m). Here we sought to determine whether flickers in smooth muscle cells are caused by uptake of Ca(2+) released focally in Ca(2+) sparks. High-speed three-dimensional imaging was used to monitor DeltaPsi(m) in freshly dissociated myocytes from toad stomach that were simultaneously voltage clamped at 0 mV to ensure the cytosolic TMRE concentration was constant and equal to the low level in the bath (2.5 nM). This approach allows quantitative analysis of flickers as we have previously demonstrated. Depletion of SR Ca(2+) not only failed to eliminate flickers but rather increased their magnitude and frequency somewhat. Flickers were not altered in magnitude or frequency by ryanodine or xestospongin C, inhibitors of intracellular Ca(2+) release, or by cyclosporin A, an inhibitor of the permeability transition pore. Focal Ca(2+) release from the SR does not cause flickers in the cells employed here.
Collapse
Affiliation(s)
- Catherine M O'Reilly
- Dept. of Physiology, Univ. of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
9
|
Rousset S, Alves-Guerra MC, Ouadghiri-Bencherif S, Kozak LP, Miroux B, Richard D, Bouillaud F, Ricquier D, Cassard-Doulcier AM. Uncoupling protein 2, but not uncoupling protein 1, is expressed in the female mouse reproductive tract. J Biol Chem 2003; 278:45843-7. [PMID: 12941933 DOI: 10.1074/jbc.m306980200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Uncoupling proteins (UCPs) are transporters of the inner mitochondrial membrane. Whereas UCP1 is uniquely present in brown adipose tissue where it uncouples respiration from ATP synthesis and activates respiration and heat production, UCP2 is present in numerous tissues, and its exact function remains to be clarified. Two sets of data provided the rationale for this study: (i) the intriguing report that UCP1 is present in uterus of mice (Nibbelink, M., Moulin, K., Arnaud, E., Duval, C., Penicaud, L., and Casteilla, L. (2001) J. Biol. Chem. 276, 47291-47295); and (ii) an observation that Ucp2(-/-) female mice (homozygous matings) have smaller litters compared with Ucp2(+/+) animals (S. Rousset and A.-M. Cassard-Doulcier, unpublished observations). These data prompted us to examine the expression of UCP1 and UCP2 in the reproductive tract of female mice. Using wild type, Ucp1(-/-) mice, and Ucp2(-/-) mice, we were unable to detect UCP1 in uterus of mice with appropriate antibodies, and we conclude that the signal assigned to UCP1 by others was neither UCP1 nor UCP2. Using a polyclonal antibody against UCP2 and tissues from Ucp2(-/-) mice as controls, UCP2 was detected in ovary, oviduct, and uterus. Expression of Ucp2 mRNA was also observed in ovary and uterus using in situ hybridization analysis. Bone marrow transplantation experiments revealed that the UCP2 signal of the ovary was restricted to ovarian cells. UCP2 level in ovary decreased during follicular growth and increased during the pre-ovulatory period, during which aspects of an inflammatory process are known to exist. Because UCP2 down-regulates reactive oxygen species, a role in the regulation of inflammatory events linked to the preparation of ovulation is suggested.
Collapse
Affiliation(s)
- Sophie Rousset
- CNRS, Unité Propre de Recherche 9078, Faculté de Médecine Necker-Enfants malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|