1
|
Kim SH. [A New Paradigm in Diagnosing Functional Gastroduodenal Disorders: High-Resolution Electrogastrography]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:145-152. [PMID: 39449258 DOI: 10.4166/kjg.2024.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
High-resolution electrogastrography (HR-EGG) presents a new paradigm in diagnosing and treating functional gastroduodenal disorders. Unlike traditional electrogastrography, HR-EGG allows for a more precise analysis of the gastric electrical activity, offering improved diagnostic accuracy. Recent studies have revealed the clinical potential of HR-EGG, particularly in detecting abnormal electrical patterns in patients with functional dyspepsia and gastroparesis, supporting the development of novel therapeutic strategies. The non-invasive HR-EGG method has shown promise in identifying new biomarkers. Moreover, further integration of artificial intelligence, is expected to enhance diagnostic efficiency and develop more refined treatment models for functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Seung Han Kim
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Alighaleh S, Cheng LK, Angeli-Gordon TR, O'Grady G, Paskaranandavadivel N. Optimization of Gastric Pacing Parameters Using High-Resolution Mapping. IEEE Trans Biomed Eng 2023; 70:2964-2971. [PMID: 37130253 DOI: 10.1109/tbme.2023.3272521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Abnormal slow-wave activity has been associated with functional motility disorders. Gastric pacing has been investigated to correct slow-wave abnormalities, but clinical therapies are yet to be established. This study aimed to define optimal parameters to advance the application of gastric pacing. METHODS High-resolution gastric mapping was utilized to evaluate four pacing parameters in in-vivo pig studies: (i) orientation of the pacing electrodes (longitudinal vs circumferential), (ii) pacing energy (900 vs 10,000 ms mA2), (iii) the pacing location (corpus vs antrum), and (iv) pacing period (between 12 and 36 s). RESULTS The probability of slow-wave initiation and entrainment with the pacing electrodes oriented longitudinally was significantly higher than with electrodes orientated circumferentially (86 vs 10%). High-energy pacing accelerated entrainment over the entire mapped field compared to low-energy pacing (3.1±1.5 vs 7.3±2.4 impulses, p < 0.001). Regardless of the location of the pacing site, the new site of slow-wave initiation was always located 4-12 mm away from the pacing site, between the greater curvature and negative pacing electrode. A pacing period between 14-30 s resulted in stable slow-wave initiation and entrainment. CONCLUSION These data will now inform effective application of gastric pacing in future studies, including human translation.
Collapse
|
3
|
Nagahawatte ND, Cheng LK, Avci R, Angeli-Gordon TR, Paskaranandavadivel N. Systematic review of small intestine pacing parameters for modulation of gut function. Neurogastroenterol Motil 2023; 35:e14473. [PMID: 36194179 PMCID: PMC10078404 DOI: 10.1111/nmo.14473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The efficacy of conventional treatments for severe and chronic functional motility disorders remains limited. High-energy pacing is a promising alternative therapy for patients that fail conventional treatment. Pacing primarily regulates gut motility by modulating rhythmic bio-electrical events called slow waves. While the efficacy of this technique has been widely investigated on the stomach, its application in the small intestine is less developed. This systematic review was undertaken to summarize the status of small intestinal pacing and evaluate its efficacy in modulating bowel function through preclinical research studies. METHODS The literature was searched using Scopus, PubMed, Ovid, Cochrane, CINAHL, and Google Scholar. Studies investigating electrophysiological, motility, and/or nutrient absorption responses to pacing were included. A critical review of all included studies was conducted comparing study outcomes against experimental protocols. RESULTS The inclusion criteria were met by 34 publications. A range of pacing parameters including amplitude, pulse width, pacing direction, and its application to broad regional small intestinal segments were identified and assessed. Out of the 34 studies surveyed, 20/23 studies successfully achieved slow-wave entrainment, 9/11 studies enhanced nutrient absorption and 21/27 studies modulated motility with pacing. CONCLUSION Small intestine pacing shows therapeutic potential in treating disorders such as short bowel syndrome and obesity. This systematic review proposes standardized protocols to maximize research outcomes and thereby translate to human studies for clinical validation. The use of novel techniques such as high-resolution electrical, manometric, and optical mapping in future studies will enable a mechanistic understanding of pacing.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee, USA.,Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
4
|
Calder S, Cheng LK, Andrews CN, Paskaranandavadivel N, Waite S, Alighaleh S, Erickson JC, Gharibans A, O'Grady G, Du P. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine. Am J Physiol Gastrointest Liver Physiol 2022; 323:G295-G305. [PMID: 35916432 DOI: 10.1152/ajpgi.00049.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric disorders are increasingly prevalent, but reliable noninvasive tools to objectively assess gastric function are lacking. Body-surface gastric mapping (BSGM) is a noninvasive method for the detection of gastric electrophysiological features, which are correlated with symptoms in patients with gastroparesis and functional dyspepsia. Previous studies have validated the relationship between serosal and cutaneous recordings from limited number of channels. This study aimed to comprehensively evaluate the basis of BSGM from 64 cutaneous channels and reliably identify spatial biomarkers associated with slow-wave dysrhythmias. High-resolution electrode arrays were placed to simultaneously capture slow waves from the gastric serosa (32 × 6 electrodes at 4 mm spacing) and epigastrium (8 × 8 electrodes at 20 mm spacing) in 14 porcine subjects. BSGM signals were processed based on a combination of wavelet and phase information analyses. A total of 1,185 individual cycles of slow waves were assessed, out of which 897 (76%) were classified as normal antegrade waves, occurring in 10 (71%) subjects studied. BSGM accurately detected the underlying slow wave in terms of frequency (r = 0.99, P = 0.43) as well as the direction of propagation (P = 0.41, F-measure: 0.92). In addition, the cycle-by-cycle match between BSGM and transitions of gastric slow wave dysrhythmias was demonstrated. These results validate BSGM as a suitable method for noninvasively and accurately detecting gastric slow-wave spatiotemporal profiles from the body surface.NEW & NOTEWORTHY Gastric dysfunctions are associated with abnormalities in the gastric bioelectrical slow waves. Noninvasive detection of gastric slow waves from the body surface can be achieved through multichannel, high-resolution, body-surface gastric mapping (BSGM). BSGM matched the spatiotemporal characteristics of gastric slow waves recorded directly and simultaneously from the serosal surface of the stomach. Abnormal gastric slow waves, such as retrograde propagation, ectopic pacemaker, and colliding wavefronts can be detected by changes in the phase of BSGM.
Collapse
Affiliation(s)
- Stefan Calder
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Alimetry Ltd., Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher N Andrews
- Alimetry Ltd., Auckland, New Zealand.,Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | - Jonathan C Erickson
- Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia
| | - Armen Gharibans
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Alimetry Ltd., Auckland, New Zealand
| | - Gregory O'Grady
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Alimetry Ltd., Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Alimetry Ltd., Auckland, New Zealand
| |
Collapse
|
5
|
Nagahawatte ND, Zhang H, Paskaranandavadivel N, Patton HN, Garrett AS, Angeli-Gordon TR, Nisbet L, Rogers JM, Cheng LK. Gastric pacing response evaluated with simultaneous electrical and optical mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2224-2227. [PMID: 36086523 DOI: 10.1109/embc48229.2022.9871138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gastric pacing is an attractive therapeutic approach for correcting abnormal bioelectrical activity. While high-resolution (HR) electrical mapping techniques have largely contributed to the current understanding of the effect of pacing on the electrophysiological function, these mapping techniques are restricted to surface contact electrodes and the signal quality can be corrupted by pacing artifacts. Optical mapping of voltage sensitive dyes is an alternative approach used in cardiac research, and the signal quality is not affected by pacing artifacts. In this study, we simultaneously applied HR optical and electrical mapping techniques to evaluate the bioelectrical slow wave response to gastric pacing. The studies were conducted in vivo on porcine stomachs ( n=3) where the gastric electrical activity was entrained using high-energy pacing. The pacing response was optically tracked using voltage-sensitive fluorescent dyes and electrically tracked using surface contact electrodes positioned on adjacent regions. Slow waves were captured optically and electrically and were concordant in time and direction of propagation with comparable mean velocities ([Formula: see text]) and periods ([Formula: see text]). Importantly, the optical signals were free from pacing artifacts otherwise induced in electrical recordings highlighting an advantage of optical mapping. Clinical Relevance- Entrainment mapping of gastric pacing using optical techniques is a major advance for improving the preclinical understanding of the therapy. The findings can thereby inform the efficacy of gastric pacing in treating functional motility disorders.
Collapse
|
6
|
Elmasry M, Hassan H, Mathur P, Stocker A, Atassi H, Saleem S, McElmurray L, Cooper K, Hughes MG, Starkebaum W, Pinkston C, Abell T. Baseline predictive factors for foregut and hindgut response to long-term gastric electrical stimulation using augmented energy. Neurogastroenterol Motil 2022; 34:e14274. [PMID: 34697860 DOI: 10.1111/nmo.14274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Gastric electrical stimulation (GES) has been recommended for drug refractory patients with gastroparesis, but no clear baseline predictors of symptom response exist. We hypothesized that long-term predictors to GES for foregut and hindgut symptoms exist, particularly when using augmented energies. PATIENTS We evaluated 307 patients at baseline, 1 week post temporary GES, and one year after permanent GES. Baseline measures included upper and lower symptoms by patient-reported outcomes (PRO), solid and liquid gastric emptying (GET), cutaneous, mucosal, and serosal electrophysiology (EGG, m/s EG), BMI, and response to temporary stimulation. METHODS Foregut and hindgut PRO symptoms were analyzed for 12-month patient outcomes. All patients utilized a standardized energy algorithm with the majority of patients receiving medium energy at 12 months. Patients were categorized based on change in average GI symptom scores at the time of permanent GES compared to baseline using a 10% decrease over time as the cutoff between improvers versus non-improvers. RESULTS By permanent GES implant, average foregut and hindgut GI symptom scores reduced 42% in improved patients (n = 199) and increased 27% in non-improved patients (n = 108). Low BMI, baseline infrequent urination score, mucosal EG ratio, and proximal mucosal EG low-resolution amplitude remained significant factors for improvement status. CONCLUSIONS GES, for patients responding positively, improved both upper/foregut and lower/hindgut symptoms with most patients utilizing higher than nominal energies. Low baseline BMI and the presence of infrequent urination along with baseline gastric electrophysiology may help identify those patients with the best response to GES/bio-electric neuromodulation.
Collapse
Affiliation(s)
- Mohamed Elmasry
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Hamza Hassan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Prateek Mathur
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Abigail Stocker
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Hadi Atassi
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Saad Saleem
- Sunrise Hospital and Medical Center, Las Vegas, Nevada, USA
| | | | - Kelly Cooper
- University of Louisville Health, Louisville, Kentucky, USA
| | | | | | - Christina Pinkston
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Thomas Abell
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Ruenruaysab K, Calder S, Hayes T, Andrews C, OaGrady G, Gharibans A, Du P. Effects of anatomical variations of the stomach on body-surface gastric mapping investigated using a large population-based multiscale simulation approach. IEEE Trans Biomed Eng 2021; 69:1369-1377. [PMID: 34587001 DOI: 10.1109/tbme.2021.3116287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contractions of the stomach are governed by bioelectrical slow waves that can be detected non-invasively from the body-surface. Diagnosis of gastric motility disorders remains challenging due to the limited information provided by symptoms and tests, including standard electrogastrography (EGG). Body-surface gastric mapping (BSGM) is a novel technique that measures the resultant body-surface potentials using an array of multiple cutaneous electrodes. However, there is no established protocol to guide the placement of the mapping array and to account for the effects of biodiversity on the interpretation of gastric BSGM data. This study aims to quantify the effect of anatomical variation of the stomach on body surface potentials. To this end, 93 subject specific models of the stomach and torso were developed. Anatomical models were developed based on data obtained from the Cancer Imaging Archive. For each subject a set of points were created to model general anatomy the stomach and the torso, using a finite element mesh. A bidomain model was used to simulate the gastric slow waves in the antegrade wave (AW) direction and formation of colliding waves (CW). The resultant dipole was calculated, and a forward modeling approach was employed to simulate body-surface potentials. Simulated data were sampled from a 55 array of electrodes from the body-surface and compared between AW and CW cases. Anatomical parameters such as the Euclidean distance from the xiphoid process (8.6 2.2 cm), orientation relative to the axial plane (195 20.0) were quantified. Electrophysiological simulations of AW and CW were both correlated to specific metrics derived from BSGM signals. In general, the maximum amplitude () and orientation () of the signals provided consistent separation of AW and CW. The findings of this study will aid gastric BSGM electrode array design and placement protocol in clinical practices.
Collapse
|
8
|
Cheng LK, Nagahawatte ND, Avci R, Du P, Liu Z, Paskaranandavadivel N. Strategies to Refine Gastric Stimulation and Pacing Protocols: Experimental and Modeling Approaches. Front Neurosci 2021; 15:645472. [PMID: 33967679 PMCID: PMC8100207 DOI: 10.3389/fnins.2021.645472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pacing and stimulation strategies were first proposed in the 1960s to treat motility disorders. However, there has been relatively limited clinical translation of these techniques. Experimental investigations have been critical in advancing our understanding of the control mechanisms that innervate gut function. In this review, we will discuss the use of pacing to modulate the rhythmic slow wave conduction patterns generated by interstitial cells of Cajal in the gastric musculature. In addition, the use of gastric high-frequency stimulation methods that target nerves in the stomach to either inhibit or enhance stomach function will be discussed. Pacing and stimulation protocols to modulate gastric activity, effective parameters and limitations in the existing studies are summarized. Mathematical models are useful to understand complex and dynamic systems. A review of existing mathematical models and techniques that aim to help refine pacing and stimulation protocols are provided. Finally, some future directions and challenges that should be investigated are discussed.
Collapse
Affiliation(s)
- Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Riddet Institute, Palmerston North, New Zealand
| | - Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
9
|
Paulus GF, van Avesaat M, van Rijn S, Alleleyn AME, Swain JM, Abell TL, Williams DB, Bouvy ND, Masclee AAM. Multicenter, Phase 1, Open Prospective Trial of Gastric Electrical Stimulation for the Treatment of Obesity: First-in-Human Results with a Novel Implantable System. Obes Surg 2021; 30:1952-1960. [PMID: 32133590 PMCID: PMC7228902 DOI: 10.1007/s11695-020-04422-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background and Aims To assess safety of the Exilis™ gastric electrical stimulation (GES) system and to investigate whether the settings can be adjusted for comfortable chronic use in subjects with morbid obesity. Gastric emptying and motility and meal intake were evaluated. Method In a multicenter, phase 1, open prospective cohort study, 20 morbidly obese subjects (17 female, mean BMI of 40.8 ± 0.7 kg/m2) were implanted with the Exilis™ system. Amplitude of the Exilis™ system was individually set during titration visits. Subjects underwent two blinded baseline test days (GES ON vs. OFF), after which long-term, monthly follow-up continued for up to 52 weeks. Results The procedure was safe, and electrical stimulation was well tolerated and comfortable in all subjects. No significant differences in gastric emptying halftime (203 ± 16 vs. 212 ± 14 min, p > 0.05), food intake (713 ± 68 vs. 799 ± 69 kcal, p > 0.05), insulin AUC (2448 ± 347 vs. 2186 ± 204, p > 0.05), and glucose AUC (41 ± 2 vs.41 ± 2, p > 0.05) were found between GES ON and OFF. At week 4, 13, and 26, a significant (p < 0.01) reduction in weight loss was observed but not at week 52. At this time point, the mean excess weight loss (EWL) was 14.2 ± 4.5%. Conclusion Gastric electrical stimulation with the Exilis™ system can be considered as safe. No significant effect on food intake, gastric emptying, or gastric motility was observed. The reduction in weight loss with Exilis™ GES was significant but short lasting. Further electrophysiological research is needed to gain more insight in optimal stimulation parameters and lead localization.
Collapse
Affiliation(s)
- G F Paulus
- Department of General Surgery, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of General Surgery, Spaarne Gasthuis, Haarlem / Hoofddorp, Netherlands.
| | - M van Avesaat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S van Rijn
- Department of General Surgery, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A M E Alleleyn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J M Swain
- HonorHealth Bariatric Center, Scottsdale, AZ, USA
| | - T L Abell
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY, USA
| | - D B Williams
- Vanderbilt Center for Surgical Weight Loss, Vanderbilt University Medical Center, Nashville, TN, USA
| | - N D Bouvy
- Department of General Surgery, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
10
|
Alighaleh S, Cheng L, Angeli-Gordon TR, Aghababaie Z, O'Grady G, Paskaranandavadivel N. Design and Validation of a Surface-Contact Electrode for Gastric Pacing and Concurrent Slow-Wave Mapping. IEEE Trans Biomed Eng 2021; 68:2574-2581. [PMID: 33656985 DOI: 10.1109/tbme.2021.3063685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Gastric contractions are, in part, coordinated by slow-waves. Functional motility disorders are correlated with abnormal slow-wave patterns. Gastric pacing has been attempted in a limited number of studies to correct gastric dysmotility. Integrated electrode arrays capable of pacing and recording slow-wave responses are required. METHODS New flexible surface-contact pacing electrodes (SPE) that can be placed atraumatically to pace and simultaneously map the slow-wave activity in the surrounding area were developed. SPE were applied in pigs in-vivo for gastric pacing along with concurrent high-resolution slow wave mapping as validation. Histology was conducted to assess for tissue damage around the pacing site. SPE were compared against temporary cardiac pacing electrodes (CPE), and hook-shaped pacing electrodes (HPE), for entrainment rate, entrainment threshold, contact quality, and slow-wave propagation patterns. RESULTS Pacing with SPE (amplitude: 2 mA, pulse width: 100 ms) consistently achieved pacemaker initiation. Histological analysis illustrated no significant tissue damage. SPE resulted in a higher rate of entrainment (64%) than CPE (37%) and HPE (24%), with lower entrainment threshold (25% of CPE and 16% of HPE). High resolution mapping showed that there was no significant difference between the initiated slow-wave propagation speed for SPE and CPE (6.8 ± 0.1 vs 6.8 ± 0.2 mm/s, P>0.05). However, SPE had higher loss of tissue lead contact quality than CPE (42 ± 16 vs 13 ± 10% over 20 min). CONCLUSION Pacing with SPE induced a slow-wave pacemaker site without tissue damage. SIGNIFICANCE SPE offered an atraumatic pacing electrode with a significant reduction of power consumption and placement time compared to impaled electrodes.
Collapse
|
11
|
Carson DA, O'Grady G, Du P, Gharibans AA, Andrews CN. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol Motil 2021; 33:e14048. [PMID: 33274564 DOI: 10.1111/nmo.14048] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric motility disorders, which include both functional and organic etiologies, are highly prevalent. However, there remains a critical lack of objective biomarkers to guide efficient diagnostics and personalized therapies. Bioelectrical activity plays a fundamental role in coordinating gastric function and has been investigated as a contributing mechanism to gastric dysmotility and sensory dysfunction for a century. However, conventional electrogastrography (EGG) has not achieved common clinical adoption due to its perceived limited diagnostic capability and inability to impact clinical care. The last decade has seen the emergence of novel high-resolution methods for invasively mapping human gastric electrical activity in health and disease, providing important new insights into gastric physiology. The limitations of EGG have also now become clearer, including the finding that slow-wave frequency alone is not a reliable discriminator of gastric dysrhythmia, shifting focus instead toward altered spatial patterns. Recently, advances in bioinstrumentation, signal processing, and computational modeling have aligned to allow non-invasive body surface mapping of the stomach to detect spatiotemporal gastric dysrhythmias. The clinical relevance of this emerging strategy to improve diagnostics now awaits determination. PURPOSE This review evaluates these recent advances in clinical gastric electrophysiology, together with promising emerging data suggesting that novel gastric electrical signatures recorded at the body surface (termed "body surface mapping") may correlate with symptoms. Further technological progress and validation data are now awaited to determine whether these advances will deliver on the promise of clinical gastric electrophysiology diagnostics.
Collapse
Affiliation(s)
- Daniel A Carson
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
12
|
Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coordinated contractions and motility patterns unique to each gastrointestinal organ facilitate the digestive process. These motor activities are coordinated by bioelectrical events, sensory and motor nerves, and hormones. The motility problems in the gastrointestinal tract known as functional gastrointestinal disorders (FGIDs) are generally caused by impaired neuromuscular activity and are highly prevalent. Their diagnosis is challenging as symptoms are often vague and difficult to localize. Therefore, the underlying pathophysiological factors remain unknown. However, there is an increasing level of research and clinical evidence suggesting a link between FGIDs and altered bioelectrical activity. In addition, electroceuticals (bioelectrical therapies to treat diseases) have recently gained significant interest. This paper gives an overview of bioelectrical signatures of gastrointestinal organs with normal and/or impaired motility patterns and bioelectrical therapies that have been developed for treating FGIDs. The existing research evidence suggests that bioelectrical activities could potentially help to identify the diverse etiologies of FGIDs and overcome the drawbacks of the current clinically adapted methods. Moreover, electroceuticals could potentially be effective in the treatment of FGIDs and replace the limited existing conventional therapies which often attempt to treat the symptoms rather than the underlying condition.
Collapse
|
13
|
Sukasem A, Cakmak YO, Khwaounjoo P, Gharibans A, Du P. The effects of low-and high-frequency non-invasive transcutaneous auricular vagal nerve stimulation (taVNS) on gastric slow waves evaluated using in vivo high-resolution mapping in porcine. Neurogastroenterol Motil 2020; 32:e13852. [PMID: 32281229 DOI: 10.1111/nmo.13852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUNDS Gastric motility is regulated by an electrophysiological activity called slow-wave and neuronal innervations by the vagus nerve. Transcutaneous auricular vagal nerve stimulation (taVNS) has been demonstrated to have therapeutic potential for a wide range of medical conditions, including the management of gastric dysfunctions. The main objective of this study was to gain a better understanding of how non-invasive neuromodulation influences gastric slow wave under in vivo conditions. METHODS TaVNS protocols were applied in conjunction with 192-channel gastric bioelectrical mapping in porcine subjects under general anesthesia. The spatiotemporal profiles of gastric slow wave were assessed under two different taVNS protocols at 10 and 80 Hz. KEY RESULTS The taVNS protocols effectively altered the interval and amplitude of gastric slow waves, but not the velocity or the percentage of spatial dysrhythmias. In the subjects that responded to the protocols, the 10 Hz protocol was shown to normalize slow-wave propagation pattern in 90% of the subjects, whereas the 80 Hz protocol was shown to inhibit slow waves in 60% of the subjects. CONCLUSIONS AND INFERENCES Chronic responses of gastric motility and slow waves in response to taVNS should be investigated using non-invasive means in conscious subjects in future.
Collapse
Affiliation(s)
- Atchariya Sukasem
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Yusuf Ozgur Cakmak
- Department of Anatomy, The University of Otago, Dunedin, New Zealand.,Centre For Health Systems and Technology, The University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, The University of Otago, Dunedin, New Zealand
| | | | - Armen Gharibans
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Du P, Liu JYH, Sukasem A, Qian A, Calder S, Rudd JA. Recent progress in electrophysiology and motility mapping of the gastrointestinal tract using multi-channel devices. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1735455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Julia Y. H. Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Atchariya Sukasem
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Anna Qian
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - John A. Rudd
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
15
|
Alighaleh S, Cheng LK, Angeli TR, Amiri M, Sathar S, O'Grady G, Paskaranandavadivel N. A Novel Gastric Pacing Device to Modulate Slow Waves and Assessment by High-Resolution Mapping. IEEE Trans Biomed Eng 2019; 66:2823-2830. [DOI: 10.1109/tbme.2019.2896624] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Agrusa AS, Gharibans AA, Allegra AA, Kunkel DC, Coleman TP. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram. IEEE Trans Biomed Eng 2019; 67:854-867. [PMID: 31199249 DOI: 10.1109/tbme.2019.2922235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Gastric slow wave abnormalities have been associated with gastric motility disorders. Invasive studies in humans have described normal and abnormal propagation of the slow wave. This study aims to disambiguate the abnormally functioning wave from one of normalcy using multi-electrode abdominal waveforms of the electrogastrogram (EGG). METHODS Human stomach and abdominal models are extracted from computed tomography scans. Normal and abnormal slow waves are simulated along stomach surfaces. Current dipoles at the stomachs surface are propagated to virtual electrodes on the abdomen with a forward model. We establish a deep convolutional neural network (CNN) framework to classify normal and abnormal slow waves from the multi-electrode waveforms. We investigate the effects of non-idealized measurements on performance, including shifted electrode array positioning, smaller array sizes, high body mass index (BMI), and low signal-to-noise ratio (SNR). We compare the performance of our deep CNN to a linear discriminant classifier using wave propagation spatial features. RESULTS A deep CNN framework demonstrated robust classification, with accuracy above 90% for all SNR above 0 dB, horizontal shifts within 3 cm, vertical shifts within 6 cm, and abdominal tissue depth within 6 cm. The linear discriminant classifier was much more vulnerable to SNR, electrode placement, and BMI. CONCLUSION This is the first study to attempt and, moreover, succeed in using a deep CNN to disambiguate normal and abnormal gastric slow wave patterns from high-resolution EGG data. SIGNIFICANCE These findings suggest that multi-electrode cutaneous abdominal recordings have the potential to serve as widely deployable clinical screening tools for gastrointestinal foregut disorders.
Collapse
|
17
|
O'Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, Cheng LK, Du P. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev Biomed Eng 2018; 12:287-302. [PMID: 30176605 DOI: 10.1109/rbme.2018.2867555] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states. This review provides a comprehensive and critical analysis of current methodologies for HR electrical mapping in the GI tract, including extracellular measurement principles, electrode design and mapping devices, signal processing and visualization techniques, and translational research strategies. The scope of the review encompasses the broad application of GI HR methods from in vitro tissue studies to in vivo experimental studies, including in humans. Controversies and future directions for GI mapping methodologies are addressed, including emerging opportunities to better inform diagnostics and care in patients with functional gut disorders of diverse etiologies.
Collapse
|
18
|
Alighaleh S, Angeli TR, Sathar S, O'Grady G, Cheng LK, Paskaranandavadivel N. Design and application of a novel gastric pacemaker. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:2181-2184. [PMID: 29060329 DOI: 10.1109/embc.2017.8037287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Omnipresent bioelectrical events known as slow waves are responsible for coordinating motility in the gastrointestinal tract. Functional motility diseases, such as gastroparesis, are associated with slow wave dysrhythmias. Electrical stimulation is a potential therapy to correct abnormal slow wave patterns. We present the design and application of a new gastric pacemaker. Real-time changes to the stimulation parameters such as period, amplitude and pulse width were applied using a graphical user interface, which communicated with the microcontroller to deliver the stimulus. The new pacemaker allows the voltage, delivered current and resistance between pacing electrodes to be continuously monitored. The pacing device was applied experimentally and was able to modulate and entrain gastric slow wave activity. After the onset of pacing, the direction of slow wave propagation was altered. Furthermore, the mean velocity and amplitude of slow wave activity increased from 4.7±1.5 to 5.4±1.3 mm/s, and from 1.1±1.1 to 1.7±0.9 mV, respectively. A simplified bidomain electrical model was used to simulate the recorded stimulus artifact. The model illustrated a new approach to evaluate if the stimulus has been delivered to the gastric tissue. The new pacing device and model will be used to investigate the mechanisms that allow pacing to entrain slow wave activity.
Collapse
|
19
|
Wang R, Abukhalaf Z, Javan-Khoshkholgh A, Wang THH, Sathar S, Du P, Angeli TR, Cheng LK, O’Grady G, Paskaranandavadivel N, Farajidavar A. A Miniature Configurable Wireless System for Recording Gastric Electrophysiological Activity and Delivering High-Energy Electrical Stimulation. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 2018; 8:221-229. [PMID: 30687579 PMCID: PMC6345532 DOI: 10.1109/jetcas.2018.2812105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The purpose of this paper is to develop and validate a miniature system that can wirelessly acquire gastric electrical activity called slow waves, and deliver high energy electrical pulses to modulate its activity. The system is composed of a front-end unit, and an external stationary back-end unit that is connected to a computer. The front-end unit contains a recording module with three channels, and a single-channel stimulation module. Commercial off-the-shelf components were used to develop front- and back-end units. A graphical user interface was designed in LabVIEW to process and display the recorded data in real-time, and store the data for off-line analysis. The system was successfully validated on bench top and in vivo in porcine models. The bench-top studies showed an appropriate frequency response for analog conditioning and digitization resolution to acquire gastric slow waves. The system was able to deliver electrical pulses at amplitudes up to 10 mA to a load smaller than 880 Ω. Simultaneous acquisition of the slow waves from all three channels was demonstrated in vivo. The system was able to modulate –by either suppressing or entraining– the slow wave activity. This study reports the first high-energy stimulator that can be controlled wirelessly and integrated into a gastric bioelectrical activity monitoring system. The system can be used for treating functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Rui Wang
- Integrated Medical Systems (IMS) Laboratory at the School of Engineering and Computing Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Zaid Abukhalaf
- Integrated Medical Systems (IMS) Laboratory at the School of Engineering and Computing Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Amir Javan-Khoshkholgh
- Integrated Medical Systems (IMS) Laboratory at the School of Engineering and Computing Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Tim H.-H. Wang
- Department of Surgery, University of Auckland, New Zealand
| | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Timothy R. Angeli
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Greg O’Grady
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Surgery, University of Auckland, New Zealand
| | - Niranchan Paskaranandavadivel
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Surgery, University of Auckland, New Zealand
| | | |
Collapse
|
20
|
Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping. Obes Surg 2018; 27:1929-1937. [PMID: 28213666 DOI: 10.1007/s11695-017-2597-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Laparoscopic sleeve gastrectomy (LSG) is increasingly being applied to treat obesity. LSG includes excision of the normal gastric pacemaker, which could induce electrical dysrhythmias impacting on post-operative symptoms and recovery, but these implications have not been adequately investigated. This study aimed to define the effects of LSG on gastric slow-wave pacemaking using laparoscopic high-resolution (HR) electrical mapping. METHODS Laparoscopic HR mapping was performed before and after LSG using flexible printed circuit arrays (64-96 electrodes; 8-12 cm2; n = 8 patients) deployed through a 12 mm trocar and positioned on the gastric serosa. An additional patient with chronic reflux, nausea, and dysmotility 6 months after LSG also underwent gastric mapping while undergoing conversion to gastric bypass. Slow-wave activity was quantified by propagation pattern, frequency, velocity, and amplitude. RESULTS Baseline activity showed exclusively normal propagation. Acutely after LSG, all patients developed either a distal unifocal ectopic pacemaker with retrograde propagation (50%) or bioelectrical quiescence (50%). Propagation velocity was abnormally rapid after LSG (12.5 ± 0.8 vs baseline 3.8 ± 0.8 mm s-1; p = 0.01), whereas frequency and amplitude were unchanged (2.7 ± 0.3 vs 2.8 ± 0.3 cpm, p = 0.7; 1.7 ± 0.2 vs 1.6 ± 0.6 mV, p = 0.7). In the patient with chronic dysmotility after LSG, mapping also revealed a stable antral ectopic pacemaker with retrograde rapid propagation (12.6 ± 4.8 mm s-1). CONCLUSION Resection of the gastric pacemaker during LSG acutely resulted in aberrant distal ectopic pacemaking or bioelectrical quiescence. Ectopic pacemaking can persist long after LSG, inducing chronic dysmotility. The clinical and therapeutic significance of these findings now require further investigation.
Collapse
|
21
|
Du P, Calder S, Angeli TR, Sathar S, Paskaranandavadivel N, O'Grady G, Cheng LK. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities. Front Physiol 2018; 8:1136. [PMID: 29379448 PMCID: PMC5775268 DOI: 10.3389/fphys.2017.01136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Timothy R. Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
22
|
|
23
|
Wang THH, Du P, Angeli TR, Paskaranandavadivel N, Erickson JC, Abell TL, Cheng LK, O'Grady G. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach. Neurogastroenterol Motil 2018; 30. [PMID: 28695661 DOI: 10.1111/nmo.13152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric slow wave dysrhythmias are accompanied by deviations in frequency, velocity, and extracellular amplitude, but the inherent association between these parameters in normal activity still requires clarification. This study quantified these associations using a joint experimental-theoretical approach. METHODS Gastric pacing was conducted in pigs with simultaneous high-resolution slow wave mapping (32-256 electrodes; 4-7.6 mm spacing). Relationships between period, velocity, and amplitude were quantified and correlated for each wavefront. Human data from two existing mapping control cohorts were analyzed to extract and correlate these same parameters. A validated biophysically based ICC model was also applied in silico to quantify velocity-period relationships during entrainment simulations and velocity-amplitude relationships from membrane potential equations. KEY RESULTS Porcine pacing studies identified positive correlations for velocity-period (0.13 mm s-1 per 1 s, r2 =.63, P<.001) and amplitude-velocity (74 μV per 1 mm s-1 , r2 =.21, P=.002). In humans, positive correlations were also quantified for velocity-period (corpus: 0.11 mm s-1 per 1 s, r2 =.16, P<.001; antrum: 0.23 mm s-1 per 1 s, r2 =.55; P<.001), and amplitude-velocity (94 μV per 1 mm s-1 , r2 =.56; P<.001). Entrainment simulations matched the experimental velocity-period relationships and demonstrated dependence on the slow wave recovery phase. Simulated membrane potential relationships were close to these experimental results (100 μV per 1 mm s-1 ). CONCLUSIONS AND INFERENCES These data quantify the relationships between slow wave frequency, velocity, and extracellular amplitude. The results from both human and porcine studies were in keeping with biophysical models, demonstrating concordance with ICC biophysics. These relationships are important in the regulation of gastric motility and will help to guide interpretations of dysrhythmias.
Collapse
Affiliation(s)
- T H-H Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - P Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - T R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - N Paskaranandavadivel
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - J C Erickson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Physics-Engineering, Washington & Lee University, Lexington, VA, USA
| | - T L Abell
- Division of Gastroenterology, University of Louisville, Louisville, KY, USA
| | - L K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - G O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Paskaranandavadivel N, Cheng LK, Du P, Rogers JM, O'Grady G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol 2017; 313:G265-G276. [PMID: 28546283 DOI: 10.1152/ajpgi.00127.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
Slow waves play a central role in coordinating gastric motor activity. High-resolution mapping of extracellular potentials from the stomach provides spatiotemporal detail on normal and dysrhythmic slow-wave patterns. All mapping studies to date have focused exclusively on tissue activation; however, the recovery phase contains vital information on repolarization heterogeneity, the excitable gap, and refractory tail interactions but has not been investigated. Here, we report a method to identify the recovery phase in slow-wave mapping data. We first developed a mathematical model of unipolar extracellular potentials that result from slow-wave propagation. These simulations showed that tissue repolarization in such a signal is defined by the steepest upstroke beyond the activation phase (activation was defined by accepted convention as the steepest downstroke). Next, we mapped slow-wave propagation in anesthetized pigs by recording unipolar extracellular potentials from a high-resolution array of electrodes on the serosal surface. Following the simulation result, a wavelet transform technique was applied to detect repolarization in each signal by finding the maximum positive slope beyond activation. Activation-recovery (ARi) and recovery-activation (RAi) intervals were then computed. We hypothesized that these measurements of recovery profile would differ for slow waves recorded during normal and spatially dysrhythmic propagation. We found that the ARi of normal activity was greater than dysrhythmic activity (5.1 ± 0.8 vs. 3.8 ± 0.7 s; P < 0.05), whereas RAi was lower (9.7 ± 1.3 vs. 12.2 ± 2.5 s; P < 0.05). During normal propagation, RAi and ARi were linearly related with negative unit slope indicating entrainment of the entire mapped region. This relationship was weakened during dysrhythmia (slope: -0.96 ± 0.2 vs -0.71 ± 0.3; P < 0.05).NEW & NOTEWORTHY The theoretical basis of the extracellular gastric slow-wave recovery phase was defined using mathematical modeling. A novel technique utilizing the wavelet transform was developed and validated to detect the extracellular slow-wave recovery phase. In dysrhythmic wavefronts, the activation-to-recovery interval (ARi) was shorter and recovery-to-activation interval (RAi) was longer compared with normal wavefronts. During normal activation, RAi vs. ARi had a slope of -1, whereas the weakening of the slope indicated a dysrhythmic propagation.
Collapse
Affiliation(s)
- N Paskaranandavadivel
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; .,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - L K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee; and
| | - P Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - J M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - G O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Angeli TR, Du P, Midgley D, Paskaranandavadivel N, Sathar S, Lahr C, Abell TL, Cheng LK, O'Grady G. Acute Slow Wave Responses to High-Frequency Gastric Electrical Stimulation in Patients With Gastroparesis Defined by High-Resolution Mapping. Neuromodulation 2016; 19:864-871. [PMID: 27284964 DOI: 10.1111/ner.12454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS High-frequency gastric electrical stimulation (GES) has emerged as a therapy for gastroparesis, but the mechanism(s) of action remain unclear. There is a need to refine stimulation protocols for clinical benefit, but a lack of accurate techniques for assessing mechanisms in clinical trials, such as slow wave modulation, has hindered progress. We thereby aimed to assess acute slow wave responses to GES in gastroparesis patients using high-resolution (HR) (multi-electrode) mapping, across a range of stimulation doses achievable by the Enterra stimulation device (Medtronic Inc., MN, USA). MATERIALS AND METHODS Patients with medically refractory gastroparesis (n = 8) undergoing device implantation underwent intraoperative HR mapping (256 electrodes). Baseline recordings were followed by four protocols of increasing stimulation intensity, with washout periods. Slow wave patterns, frequency, velocity, amplitude, and dysrhythmia rates were quantified by investigators blinded to stimulation settings. RESULTS There was no difference in slow wave pattern, frequency, velocity, or amplitude between baseline, washout, and stimulation periods (all p > 0.5). Dysrhythmias included ectopic pacemakers, conduction blocks, retrograde propagation, and colliding wavefronts, and dysrhythmia rates were unchanged with stimulation off vs. on (31% vs. 36% duration dysrhythmic; p > 0.5). Symptom scores and gastric emptying were improved at 5.8 month follow-up (p < 0.05). CONCLUSIONS High-frequency GES protocols achievable from a current commercial device did not acutely modulate slow wave activity or dysrhythmias. This study advances clinical methods for identifying and assessing therapeutic GES parameters, and can be applied in future studies on higher-energy protocols and devices.
Collapse
Affiliation(s)
- Timothy R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David Midgley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christopher Lahr
- Department of Surgery, Mississippi Medical Center, Jackson, MS, USA
| | - Thomas L Abell
- Department of Gastroenterology, University of Louisville, Louisville, KY, USA
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surg Endosc 2016; 31:477-486. [PMID: 27129554 DOI: 10.1007/s00464-016-4936-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/09/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Gastric slow waves regulate peristalsis, and gastric dysrhythmias have been implicated in functional motility disorders. To accurately define slow wave patterns, it is currently necessary to collect high-resolution serosal recordings during open surgery. We therefore developed a novel gastric slow wave mapping device for use during laparoscopic procedures. METHODS The device consists of a retractable catheter constructed of a flexible nitinol core coated with Pebax. Once deployed through a 5-mm laparoscopic port, the spiral head is revealed with 32 electrodes at 5 mm intervals. Recordings were validated against a reference electrode array in pigs and tested in a human patient. RESULTS Recordings from the device and a reference array in pigs were identical in frequency (2.6 cycles per minute; p = 0.91), and activation patterns and velocities were consistent (8.9 ± 0.2 vs 8.7 ± 0.1 mm s-1; p = 0.2). Device and reference amplitudes were comparable (1.3 ± 0.1 vs 1.4 ± 0.1 mV; p = 0.4), though the device signal-to-noise ratio was higher (17.5 ± 0.6 vs 12.8 ± 0.6 dB; P < 0.0001). In the human patient, corpus slow waves were recorded and mapped (frequency 2.7 ± 0.03 cycles per minute, amplitude 0.8 ± 0.4 mV, velocity 2.3 ± 0.9 mm s-1). CONCLUSION In conclusion, the novel laparoscopic device achieves high-quality serosal slow wave recordings. It can be used for laparoscopic diagnostic studies to document slow wave patterns in patients with gastric motility disorders.
Collapse
|
27
|
Paskaranandavadivel N, OGrady G, Cheng LK. Time-Delay Mapping of High-Resolution Gastric Slow-Wave Activity. IEEE Trans Biomed Eng 2016; 64:166-172. [PMID: 27071158 DOI: 10.1109/tbme.2016.2548940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GOAL Analytic monitoring of electrophysiological data has become an essential component of efficient and accurate clinical care. In the gastrointestinal (GI) field, recent advances in high-resolution (HR) mapping are now providing critical information about spatiotemporal profiles of slow-wave activity in normal and disease (dysrhythmic) states. The current approach to analyze GI HR electrophysiology data involves the identification of individual slow-wave events in the electrode array, followed by tracking and clustering of events to create a spatiotemporal map. This method is labor and computationally intensive and is not well suited for real-time clinical use or chronic monitoring. METHODS In this study, an automated novel technique to assess propagation patterns was developed. The method utilized time delays of the slow-wave signals which was computed through cross correlations to calculate velocity. Validation was performed with both synthetic and human and porcine experimental data. RESULTS The slow-wave profiles computed via the time-delay method compared closely with those computed using the traditional method (speed difference: 7.2% ± 2.6%; amplitude difference: 8.6% ± 3.5%, and negligible angle difference). CONCLUSION This novel method provides rapid and intuitive analysis and visualization of slow-wave activity. SIGNIFICANCE This techniques will find major applications in the clinical translation of acute and chronic HR electrical mapping for motility disorders, and act as a screening tool for detailed detection and tracking of individual propagating wavefronts, without the need for comprehensive standard event-detection analysis.
Collapse
|
28
|
Chen JH, Yang Z, Yu Y, Huizinga JD. Haustral boundary contractions in the proximal 3-taeniated rabbit colon. Am J Physiol Gastrointest Liver Physiol 2016; 310:G181-92. [PMID: 26635318 DOI: 10.1152/ajpgi.00171.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
The rabbit proximal colon is similar in structure to the human colon. Our objective was to study interactions of different rhythmic motor patterns focusing on haustral boundary contractions, which create the haustra, using spatiotemporal mapping of video recordings. Haustral boundary contractions were seen as highly rhythmic circumferential ring contractions that propagated slowly across the proximal colon, preferentially but not exclusively in the anal direction, at ∼0.5 cycles per minute; they were abolished by nerve conduction blockers. When multiple haustral boundary contractions propagated in the opposite direction, they annihilated each other upon encounter. Ripples, myogenic propagating ring contractions at ∼9 cycles per min, induced folding and unfolding of haustral muscle folds, creating an anarchic appearance of contractile activity, with different patterns in the three intertaenial regions. Two features of ripple activity were prominent: frequent changes in propagation direction and the occurrence of dislocations showing a frequency gradient with the highest intrinsic frequency in the distal colon. The haustral boundary contractions showed an on/off/on/off pattern at the ripple frequency, and the contraction amplitude at any point of the colon showed waxing and waning. The haustral boundary contractions are therefore shaped by interaction of two pacemaker activities hypothesized to occur through phase-amplitude coupling of pacemaker activities from interstitial cells of Cajal of the myenteric plexus and of the submuscular plexus. Video evidence shows the unique role haustral folds play in shaping contractile activity within the haustra. Muscarinic agents not only enhance the force of contraction, they can eliminate one and at the same time induce another neurally dependent motor pattern.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and Farncombe Family Digestive Health Research Institute, McMaster University Department of Medicine, Hamilton, Ontario, Canada
| | - Zixian Yang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and
| | - Yuanjie Yu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and
| | - Jan D Huizinga
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and Farncombe Family Digestive Health Research Institute, McMaster University Department of Medicine, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Putney J, O'Grady G, Angeli TR, Paskaranandavadivel N, Cheng LK, Erickson JC. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1448-1451. [PMID: 26736542 DOI: 10.1109/embc.2015.7318642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Motility of the stomach is in part coordinated by an electrophysiological event called slow waves, which are generated by pacemaker cells called the interstitial cells of Cajal (ICC). In functional motility disorders, which can be associated with a reduction of ICC, dynamic slow wave dysrhythmias can occur. In recent years, high-resolution (HR) mapping techniques have been applied to describe both normal and dysrhythmic slow wave patterns. The main aim of this study was to inform gastric HR mapping array design by determining the efficient inter-electrode distance required to accurately capture normal and dysrhythmic gastric slow wave activity. A two-dimensional mathematical model was used to simulate normal activity and four types of reported slow wave dysrhythmias in human patients: ectopic activation, retrograde propagation, slow conduction, conduction block. For each case, the simulated data were re-sampled at 4, 6, 10, 12, 20 and 30mm inter-electrode distances. The accuracy of each distance was compared to a reference set sampled at 2mm inter-electrode distance, in terms of accuracy of velocity, using an ANOVA. Manual groupings were also conducted to test the ability of the human markers to distinguish separate cycles of slow waves as inter-electrode distance increases. The largest interelectrode distance for human gastric slow wave analysis, which produced both accurate grouping and velocity, was 10mm (CI [0.3 2.4]mms(-1); p<;0.05). Therefore an inter-electrode distance of less than 10mm was required to accurately describe the types of baseline and dysrhythmic activities reported in this study. However, it is likely that more spatially complex dysrhythmias, such as re-entry, may require finer inter-electrode distances.
Collapse
|
30
|
O'Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 2015; 41:854-62. [PMID: 25115692 DOI: 10.1111/1440-1681.12288] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Gastric arrhythmia continues to be of uncertain diagnostic and therapeutic significance. However, recent progress has been substantial, with technical advances, theoretical insights and experimental discoveries offering new translational opportunities. The discoveries that interstitial cells of Cajal (ICC) generate slow waves and that ICC defects are associated with dysmotility have reinvigorated gastric arrhythmia research. Increasing evidence now suggests that ICC depletion and damage, network disruption and channelopathies may lead to aberrant slow wave initiation and conduction. Histological and high-resolution (HR) electrical mapping studies have now redefined the human 'gastric conduction system', providing an improved baseline for arrhythmia research. The application of HR mapping to arrhythmia has also generated important new insights into the spatiotemporal dynamics of arrhythmia onset and maintenance, resulting in the emergence of new provisional classification schemes. Meanwhile, the strong associations between gastric functional disorders and electrogastrography (EGG) abnormalities (e.g. in gastroparesis, unexplained nausea and vomiting and functional dyspepsia) continue to motivate deeper inquiries into the nature and causes of gastrointestinal arrhythmias. In future, technical progress in EGG methods, new HR mapping devices and software, wireless slow wave acquisition systems and improved gastric pacing devices may achieve validated applications in clinical practice. Neurohormonal factors in arrhythmogenesis also continue to be elucidated and a deepening understanding of these mechanisms may open opportunities for drug design for treating arrhythmias. However, for all translational goals, it remains to be seen whether arrhythmia can be corrected in a way that meaningfully improves organ function and symptoms in patients.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Angeli TR, Cheng LK, Du P, Wang THH, Bernard CE, Vannucchi MG, Faussone-Pellegrini MS, Lahr C, Vather R, Windsor JA, Farrugia G, Abell TL, O'Grady G. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology 2015; 149:56-66.e5. [PMID: 25863217 PMCID: PMC4617790 DOI: 10.1053/j.gastro.2015.04.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Chronic unexplained nausea and vomiting (CUNV) is a debilitating disease of unknown cause. Symptoms of CUNV substantially overlap with those of gastroparesis, therefore the diseases may share pathophysiologic features. We investigated this hypothesis by quantifying densities of interstitial cells of Cajal (ICCs) and mapping slow-wave abnormalities in patients with CUNV vs controls. METHODS Clinical data and gastric biopsy specimens were collected from 9 consecutive patients with at least 6 months of continuous symptoms of CUNV but normal gastric emptying who were treated at the University of Mississippi Medical Center, and from 9 controls (individuals free of gastrointestinal disease or diabetes). ICCs were counted and ultrastructural analyses were performed on tissue samples. Slow-wave propagation profiles were defined by high-resolution electrical mapping (256 electrodes; 36 cm(2)). Results from patients with CUNV were compared with those of controls as well as patients with gastroparesis who were studied previously by identical methods. RESULTS Patients with CUNV had fewer ICCs than controls (mean, 3.5 vs 5.6 bodies/field, respectively; P < .05), with mild ultrastructural abnormalities in the remaining ICCs. Slow-wave dysrhythmias were identified in all 9 subjects with CUNV vs only 1 of 9 controls. Dysrhythmias included abnormalities of initiation (stable ectopic pacemakers, unstable focal activities) and conduction (retrograde propagation, wavefront collisions, conduction blocks, and re-entry), operating across bradygastric, normal (range, 2.4-3.7 cycles/min), and tachygastric frequencies; dysrhythmias showed velocity anisotropy (mean, 3.3 mm/s longitudinal vs 7.6 mm/s circumferential; P < .01). ICCs were less depleted in patients with CUNV than in those with gastroparesis (mean, 3.5 vs 2.3 bodies/field, respectively; P < .05), but slow-wave dysrhythmias were similar between groups. CONCLUSIONS This study defined cellular and bioelectrical abnormalities in patients with CUNV, including the identification of slow-wave re-entry. Pathophysiologic features of CUNV were observed to be similar to those of gastroparesis, indicating that they could be spectra of the same disorder. These findings offer new insights into the pathogenesis of CUNV and may help to inform future treatments.
Collapse
Affiliation(s)
- Timothy R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tim Hsu-Han Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Cheryl E Bernard
- Division of Gastroenterology and Hepatology, Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota
| | - Maria-Giuliana Vannucchi
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Christopher Lahr
- Department of Surgery, Mississippi Medical Center, Jackson, Mississippi
| | - Ryash Vather
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota
| | - Thomas L Abell
- Department of Gastroenterology, University of Louisville, Louisville, Kentucky
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
32
|
Sathar S, Trew ML, OGrady G, Cheng LK. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing. IEEE Trans Biomed Eng 2015; 62:2685-92. [PMID: 26080372 DOI: 10.1109/tbme.2015.2444384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
GOAL Gastric motility disorders have been associated with abnormal slow wave electrical activity (gastric dysrhythmias). Gastric pacing is a potential therapy for gastric dysrhythmias; however, new pacing protocols are required that can effectively modulate motility patterns, while being power efficient. This study presents a novel comprehensive 3-D multiscale modeling framework of the human stomach, including anisotropic conduction, capable of evaluating pacing strategies. METHODS A high-resolution anatomically realistic mesh was generated from CT images taken from a human stomach. Principal conduction axes were calculated and embedded within this model based on a modified Laplace-Dirichlet rule-based algorithm. A continuum-based tridomain formulation was implemented and evaluated for performance and used to model the slow-wave propagation, which takes into account the two main cell types present in gastric musculature. Model parameters were found by matching predicted normal slow-wave activity to experimental observation and data. These simulation parameters were applied while modeling an external pacing event to entrain slow-wave patterns. RESULTS The proposed formulation was found to be two times more efficient than a previous formulation for a normal slow-wave simulation. Convergence analysis showed that a mesh resolution of [Formula: see text] is required for an accurate solution process. CONCLUSION The effect of different pacing frequencies on entrainment demonstrated that the pacing protocols are limited by the frequency of the native propagation and the refractory period of the cellular activity. SIGNIFICANCE The model is expected to become an important tool in studying pacing protocols for both efficiency and effectiveness.
Collapse
|
33
|
Worth AA, Forrest AS, Peri LE, Ward SM, Hennig GW, Sanders KM. Regulation of gastric electrical and mechanical activity by cholinesterases in mice. J Neurogastroenterol Motil 2015; 21:200-16. [PMID: 25843073 PMCID: PMC4398240 DOI: 10.5056/jnm14120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 12/03/2022] Open
Abstract
Background/Aims Gastric peristalsis begins in the orad corpus and propagates to the pylorus. Directionality of peristalsis depends upon orderly generation and propagation of electrical slow waves and a frequency gradient between proximal and distal pacemakers. We sought to understand how chronotropic agonists affect coupling between corpus and antrum. Methods Electrophysiological and imaging techniques were used to investigate regulation of gastric slow wave frequency by muscarinic agonists in mice. We also investigated the expression and role of cholinesterases in regulating slow wave frequency and motor patterns in the stomach. Results Both acetycholinesterase (Ache) and butyrylcholine esterase (Bche) are expressed in gastric muscles and AChE is localized to varicose processes of motor neurons. Inhibition of AChE in the absence of stimulation increased slow wave frequency in corpus and throughout muscle strips containing corpus and antrum. CCh caused depolarization and increased slow wave frequency. Stimulation of cholinergic neurons increased slow wave frequency but did not cause depolarization. Neostigmine (1 μM) increased slow wave frequency, but uncoupling between corpus and antrum was not detected. Motility mapping of contractile activity in gastric muscles showed similar effects of enteric nerve stimulation on the frequency and propagation of slow waves, but neostigmine (> 1 μM) caused aberrant contractile frequency and propagation and ectopic pacemaking. Conclusions Our data show that slow wave uncoupling is difficult to assess with electrical recording from a single or double sites and suggest that efficient metabolism of ACh released from motor neurons is an extremely important regulator of slow wave frequency and propagation and gastric motility patterns.
Collapse
Affiliation(s)
- Amy A Worth
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
34
|
O'Grady G, Abell TL. Gastric arrhythmias in gastroparesis: low- and high-resolution mapping of gastric electrical activity. Gastroenterol Clin North Am 2015; 44:169-84. [PMID: 25667031 PMCID: PMC4323584 DOI: 10.1016/j.gtc.2014.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gastric arrhythmias occur in gastroparesis but their significance is debated. An improved understanding is currently emerging, including newly-defined histopathologic abnormalities in gastroparesis. In particular, the observation that interstitial cells of Cajal are depleted and injured provides mechanisms for arrhythmogenesis in gastroparesis. Electrogastrography has been the dominant clinical method of arrhythmia analysis, but is limited by summative nature, low signal quality, and incomplete sensitivity and specificity. Recently, high-resolution (HR; multi-electrode) mapping has emerged, providing superior spatial data on arrhythmic patterns and mechanisms. However, HR mapping is invasive, and low-resolution approaches are being assessed as bridging techniques until endoscopic mapping is achieved.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas L Abell
- Division of Gastroenterology, GI Motility Clinic, University of Louisville, 220 Abraham Flexner Way, Suite 300, Louisville, KY 40202, USA.
| |
Collapse
|
35
|
Cheng LK. Slow wave conduction patterns in the stomach: from Waller's foundations to current challenges. Acta Physiol (Oxf) 2015; 213:384-93. [PMID: 25313679 DOI: 10.1111/apha.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/13/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
Abstract
This review provides an overview of our understanding of motility and slow wave propagation in the stomach. It begins by reviewing seminal studies conducted by Walter Cannon and Augustus Waller on in vivo motility and slow wave patterns. Then our current understanding of slow wave patterns in common laboratory animals and humans is presented. The implications of slow wave arrhythmic patterns that have been recorded in animals and patients suffering from gastroparesis are discussed. Finally, current challenges in experimental methods and techniques, slow wave modulation and the use of mathematical models are discussed.
Collapse
Affiliation(s)
- L. K. Cheng
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
- Department of Surgery; Vanderbilt University; Nashville TN USA
| |
Collapse
|
36
|
Du P, Paskaranandavadivel N, O'Grady G, Tang SJ, Cheng LK. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2014; 32:405-23. [PMID: 25552487 DOI: 10.1093/imammb/dqu023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. MAIN FINDINGS (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Greg O'Grady
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Shou-Jiang Tang
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand and Department of Surgery, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Bull SH, O'Grady G, Du P, Cheng LK. A system and method for online high-resolution mapping of gastric slow-wave activity. IEEE Trans Biomed Eng 2014; 61:2679-87. [PMID: 24860024 DOI: 10.1109/tbme.2014.2325829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.
Collapse
|
38
|
Sathar S, Trew ML, Du P, O'Grady G, Cheng LK. A biophysically based finite-state machine model for analyzing gastric experimental entrainment and pacing recordings. Ann Biomed Eng 2013; 42:858-70. [PMID: 24276722 DOI: 10.1007/s10439-013-0949-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022]
Abstract
Gastrointestinal motility is coordinated by slow waves (SWs) generated by the interstitial cells of Cajal (ICC). Experimental studies have shown that SWs spontaneously activate at different intrinsic frequencies in isolated tissue, whereas in intact tissues they are entrained to a single frequency. Gastric pacing has been used in an attempt to improve motility in disorders such as gastroparesis by modulating entrainment, but the optimal methods of pacing are currently unknown. Computational models can aid in the interpretation of complex in vivo recordings and help to determine optimal pacing strategies. However, previous computational models of SW entrainment are limited to the intrinsic pacing frequency as the primary determinant of the conduction velocity, and are not able to accurately represent the effects of external stimuli and electrical anisotropies. In this paper, we present a novel computationally efficient method for modeling SW propagation through the ICC network while accounting for conductivity parameters and fiber orientations. The method successfully reproduced experimental recordings of entrainment following gastric transection and the effects of gastric pacing on SW activity. It provides a reliable new tool for investigating gastric electrophysiology in normal and diseased states, and to guide and focus future experimental studies.
Collapse
Affiliation(s)
- Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | | | | | |
Collapse
|
39
|
Cheng LK, Du P, O'Grady G. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda) 2013; 28:310-7. [PMID: 23997190 PMCID: PMC3768093 DOI: 10.1152/physiol.00022.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A key discovery in gastrointestinal motility has been the central role played by interstitial cells of Cajal (ICC) in generating electrical slow waves that coordinate contractions. Multielectrode mapping and multiscale modeling are two emerging interdisciplinary strategies now showing translational promise to investigate ICC function, electrophysiology, and contractions in the human gut.
Collapse
Affiliation(s)
- L K Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
40
|
The Principles and Practice of Gastrointestinal High-Resolution Electrical Mapping. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-6561-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Shin A, Camilleri M, Busciglio I, Burton D, Stoner E, Noonan P, Gottesdiener K, Smith SA, Vella A, Zinsmeister AR. Randomized controlled phase Ib study of ghrelin agonist, RM-131, in type 2 diabetic women with delayed gastric emptying: pharmacokinetics and pharmacodynamics. Diabetes Care 2013; 36:41-8. [PMID: 22961573 PMCID: PMC3526234 DOI: 10.2337/dc12-1128] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the pharmacokinetics (PK), pharmacodynamics, and safety of single-dose RM-131 in type 2 diabetic patients with gastrointestinal cardinal symptoms (GCSI) and previously documented delayed gastric emptying (DGE). RESEARCH DESIGN AND METHODS In a randomized crossover study, 10 female patients received RM-131 (100 μg s.c.) or placebo and underwent scintigraphic gastric emptying (GE) and colonic filling at 6 h (CF6) of a solid-liquid meal administered 30 min postdosing. Adverse events, plasma glucose, and hormonal levels were assessed. GCSI daily diary (GCSI-DD) was completed during treatments. PK was assessed in this cohort and healthy volunteers (HVs). RESULTS At screening, HbA(1c) was 7.2 ± 0.4% (SEM) and total GCSI-DD score was 1.32 ± 0.21. RM-131 accelerated GE t(1/2) of solids (P = 0.011); mean difference (Δ) in solid GE t(1/2) was 68.3 min (95% CI 20-117) or 66.1%. There were numerical differences in GE lag time, CF6 solids, and GE t(1/2) liquids (all P < 0.14). With a significant (P < 0.014) order effect, further analysis of the first treatment period (n = 5 per group) confirmed significant RM-131 effects on GE t(1/2) (solids, P = 0.016; liquids, P = 0.024; CF6, P = 0.013). PK was similar in DGE patients and HVs. There were increases in 120-min blood glucose (P = 0.07) as well as 30-90-min area under the curve (AUC) levels of growth hormone, cortisol, and prolactin (all P < 0.02) with single-dose RM-131. Only light-headedness was reported more on RM-131. CONCLUSIONS RM-131 greatly accelerates the GE of solids in patients with type 2 diabetes and documented DGE. PK is similar in diabetic patients and HVs.
Collapse
Affiliation(s)
- Andrea Shin
- 1Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
FGF2 deficit during development leads to specific neuronal cell loss in the enteric nervous system. Histochem Cell Biol 2012; 139:47-57. [PMID: 22955838 DOI: 10.1007/s00418-012-1023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 10/27/2022]
Abstract
The largest part of the peripheral nervous system is the enteric nervous system (ENS). It consists of an intricate network of several enteric neuronal subclasses with distinct phenotypes and functions within the gut wall. The generation of these enteric phenotypes is dependent upon appropriate neurotrophic support during development. Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor-2 (FGF2) play an important role in the differentiation and function of the ENS. A lack of GDNF or its receptor (Ret) causes intestinal aganglionosis in mice, while fibroblast growth factor receptor signaling antagonist is identified as regulating proteins in the GDNF/Ret signaling in the developing ENS. Primary myenteric plexus cultures and wholemount preparations of wild type (WT) and FGF2-knockout mice were used to analyze distinct enteric subpopulations. Fractal dimension (D) as a measure of self-similarity is an excellent tool to analyze complex geometric shape and was applied to classify the subclasses of enteric neurons concerning their individual morphology. As a consequence of a detailed analysis of subpopulation variations, wholemount preparations were stained for the calcium binding proteins calbindin and calretinin. The fractal analysis showed a reliable consistence of subgroups with different fractal dimensions (D) in each culture investigated. Seven different neuronal subtypes could be differentiated according to a rising D. Within the same D, the neurite length revealed significant differences between wild type and FGF2-knockout cultures, while the subclass distribution was also altered. Depending on the morphological characteristics, the reduced subgroup was supposed to be a secretomotor neuronal type, which could be confirmed by calbindin and calretinin staining of the wholemount preparations. These revealed a reduction up to 40 % of calbindin-positive neurons in the FGF2-knockout mouse. We therefore consider FGF2 playing a more important role in the fine-tuning of the ENS during development as previously assumed.
Collapse
|
43
|
O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 2012; 143:589-598.e3. [PMID: 22643349 PMCID: PMC3429650 DOI: 10.1053/j.gastro.2012.05.036] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/12/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal (ICC) generate slow waves. Disrupted ICC networks and gastric dysrhythmias are each associated with gastroparesis. However, there are no data on the initiation and propagation of slow waves in gastroparesis because research tools have lacked spatial resolution. We applied high-resolution electrical mapping to quantify and classify gastroparesis slow-wave abnormalities in spatiotemporal detail. METHODS Serosal high-resolution mapping was performed using flexible arrays (256 electrodes; 36 cm(2)) at stimulator implantation in 12 patients with diabetic or idiopathic gastroparesis. Data were analyzed by isochronal mapping, velocity and amplitude field mapping, and propagation animation. ICC numbers were determined from gastric biopsy specimens. RESULTS Mean ICC counts were reduced in patients with gastroparesis (2.3 vs 5.4 bodies/field; P < .001). Slow-wave abnormalities were detected by high-resolution mapping in 11 of 12 patients. Several new patterns were observed and classified as abnormal initiation (10/12; stable ectopic pacemakers or diffuse focal events; median, 3.3 cycles/min; range, 2.1-5.7 cycles/min) or abnormal conduction (7/10; reduced velocities or conduction blocks; median, 2.9 cycles/min; range, 2.1-3.6 cycles/min). Circumferential conduction emerged during aberrant initiation or incomplete block and was associated with velocity elevation (7.3 vs 2.9 mm s(-1); P = .002) and increased amplitudes beyond a low base value (415 vs 170 μV; P = .002). CONCLUSIONS High-resolution mapping revealed new categories of abnormal human slow-wave activity. Abnormalities of slow-wave initiation and conduction occur in gastroparesis, often at normal frequency, which could be missed by tests that lack spatial resolution. Irregular initiation, aberrant conduction, and low amplitude activity could contribute to the pathogenesis of gastroparesis.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Timothy R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Chris Lahr
- Division of Gastroenterology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wim J E P Lammers
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Physiology, UAE University, United Arab Emirates
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Thomas L Abell
- Division of Gastroenterology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gianrico Farrugia
- Division of Enteric Neurosciences, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Pullan
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
44
|
O'Grady G, Du P, Paskaranandavadivel N, Angeli TR, Lammers WJEP, Asirvatham SJ, Windsor JA, Farrugia G, Pullan AJ, Cheng LK. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol Motil 2012; 24:e299-312. [PMID: 22709238 PMCID: PMC3383091 DOI: 10.1111/j.1365-2982.2012.01932.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric slow waves propagate aborally as rings of excitation. Circumferential propagation does not normally occur, except at the pacemaker region. We hypothesized that (i) the unexplained high-velocity, high-amplitude activity associated with the pacemaker region is a consequence of circumferential propagation; (ii) rapid, high-amplitude circumferential propagation emerges during gastric dysrhythmias; (iii) the driving network conductance might switch between interstitial cells of Cajal myenteric plexus (ICC-MP) and circular interstitial cells of Cajal intramuscular (ICC-IM) during circumferential propagation; and (iv) extracellular amplitudes and velocities are correlated. METHODS An experimental-theoretical study was performed. High-resolution gastric mapping was performed in pigs during normal activation, pacing, and dysrhythmia. Activation profiles, velocities, and amplitudes were quantified. ICC pathways were theoretically evaluated in a bidomain model. Extracellular potentials were modeled as a function of membrane potentials. KEY RESULTS High-velocity, high-amplitude activation was only recorded in the pacemaker region when circumferential conduction occurred. Circumferential propagation accompanied dysrhythmia in 8/8 experiments was faster than longitudinal propagation (8.9 vs 6.9 mm s(-1) ; P = 0.004) and of higher amplitude (739 vs 528 μV; P = 0.007). Simulations predicted that ICC-MP could be the driving network during longitudinal propagation, whereas during ectopic pacemaking, ICC-IM could outpace and activate ICC-MP in the circumferential axis. Experimental and modeling data demonstrated a linear relationship between velocities and amplitudes (P < 0.001). CONCLUSIONS & INFERENCES The high-velocity and high-amplitude profile of the normal pacemaker region is due to localized circumferential propagation. Rapid circumferential propagation also emerges during a range of gastric dysrhythmias, elevating extracellular amplitudes and organizing transverse wavefronts. One possible explanation for these findings is bidirectional coupling between ICC-MP and circular ICC-IM networks.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, New Zealand,Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | | | - Timothy R. Angeli
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Wim JEP Lammers
- Auckland Bioengineering Institute, The University of Auckland, New Zealand,Dept of Physiology, United Arab Emirates University, Al Ain, UAE
| | | | - John A. Windsor
- Department of Surgery, The University of Auckland, New Zealand
| | | | - Andrew J. Pullan
- Auckland Bioengineering Institute, The University of Auckland, New Zealand,Department of Engineering Science, The University of Auckland, New Zealand,Department of Surgery, Vanderbilt University, TN, USA
| | - Leo K. Cheng
- Auckland Bioengineering Institute, The University of Auckland, New Zealand,Department of Surgery, Vanderbilt University, TN, USA
| |
Collapse
|
45
|
Paskaranandavadivel N, Cheng LK, Du P, O'Grady G, Pullan AJ. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1737-40. [PMID: 22254662 DOI: 10.1109/iembs.2011.6090497] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High resolution electrical mapping of slow waves on the stomach serosa has improved our understanding of gastric electrical activity in normal and diseased states. In order to assess the signals acquired from high resolution mapping, a robust framework is required. Our framework is semi-automated and allows for rapid processing, analysis and interpretation of slow waves via qualitative and quantitative measures including isochronal activation time mapping, and velocity and amplitude mapping. Noise removal techniques were validated for raw recorded signals, where three filters were evaluated for baseline drift removal and three filters for removal of high frequency interference. For baseline drift removal, the Gaussian moving median filter was most effective, while for eliminating high frequency interference the Savitzky Golay filter was the most effective. Methods for assessing slow wave velocity and amplitude were investigated. To estimate slow wave velocity, a finite difference approach with interpolation and smoothing was used. To evaluate the slow wave amplitude and width, a peak and trough method based on Savitzky Golay derivative filters was used. Together, these methods constitute a significantly improved framework for analyzing gastric high resolution mapping data.
Collapse
|
46
|
Yassi R, O'Grady G, Paskaranandavadivel N, Du P, Angeli TR, Pullan AJ, Cheng LK, Erickson JC. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterol 2012; 12:60. [PMID: 22672254 PMCID: PMC3464652 DOI: 10.1186/1471-230x-12-60] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 06/06/2012] [Indexed: 11/25/2022] Open
Abstract
Background Gastrointestinal contractions are controlled by an underlying bioelectrical activity. High-resolution spatiotemporal electrical mapping has become an important advance for investigating gastrointestinal electrical behaviors in health and motility disorders. However, research progress has been constrained by the low efficiency of the data analysis tasks. This work introduces a new efficient software package: GEMS (Gastrointestinal Electrical Mapping Suite), for analyzing and visualizing high-resolution multi-electrode gastrointestinal mapping data in spatiotemporal detail. Results GEMS incorporates a number of new and previously validated automated analytical and visualization methods into a coherent framework coupled to an intuitive and user-friendly graphical user interface. GEMS is implemented using MATLAB®, which combines sophisticated mathematical operations and GUI compatibility. Recorded slow wave data can be filtered via a range of inbuilt techniques, efficiently analyzed via automated event-detection and cycle clustering algorithms, and high quality isochronal activation maps, velocity field maps, amplitude maps, frequency (time interval) maps and data animations can be rapidly generated. Normal and dysrhythmic activities can be analyzed, including initiation and conduction abnormalities. The software is distributed free to academics via a community user website and forum (http://sites.google.com/site/gimappingsuite). Conclusions This software allows for the rapid analysis and generation of critical results from gastrointestinal high-resolution electrical mapping data, including quantitative analysis and graphical outputs for qualitative analysis. The software is designed to be used by non-experts in data and signal processing, and is intended to be used by clinical researchers as well as physiologists and bioengineers. The use and distribution of this software package will greatly accelerate efforts to improve the understanding of the causes and clinical consequences of gastrointestinal electrical disorders, through high-resolution electrical mapping.
Collapse
Affiliation(s)
- Rita Yassi
- Auckland Bioengineering Institute, Department of Surgery, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Extracellular electrical recordings underpin an important literature of basic and clinical motility science. In the November 2011 edition of Neurogastroenterology and Motility, Sanders and colleagues reported that contraction artifacts could be recorded from in vitro murine gastric tissues using extracellular electrodes, and that true extracellular bioelectrical activity could not be detected when the contractions were suppressed. The authors interpret their findings to mean that previous extracellular studies have generally assayed contraction artifacts, rather than bioelectrical activity, and suggest that movement suppression is an obligatory control for extracellular experiments. If their interpretation is correct, these claims would be significant, requiring a reinterpretation of many studies, and posing major challenges for future in vivo and especially clinical work. However, a demonstration that motion artifacts can be recorded from murine in vitro tissue does not necessarily mean that other extracellular studies also represented artifacts. This viewpoint evaluates a recently published by Sanders and colleagues in light of the competing literature, and finds a considerable volume of evidence to support the veracity of GI extracellular electrical recordings. It is reasoned from biophysical principles, technical considerations, and experimental studies that motion artifacts cannot explain GI extracellular electrical recordings in general, and that bioelectrical fact and artifact can be readily and reliably distinguished in most contexts. Calls for obligatory motion suppression for extracellular studies are therefore not supported. However, the artifacts recorded by Sanders and colleagues nevertheless serve as a reminder that educated caution is needed when recording, filtering and interpreting extracellular data.
Collapse
Affiliation(s)
- Gregory O’Grady
- Dept of Surgery, The University of Auckland, Auckland New Zealand,Auckland Bioengineering Institute, The University of Auckland, New Zealand
| |
Collapse
|
48
|
Paskaranandavadivel N, O'Grady G, Du P, Pullan AJ, Cheng LK. An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping. IEEE Trans Biomed Eng 2011; 59:882-9. [PMID: 22207635 DOI: 10.1109/tbme.2011.2181845] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
Collapse
|
49
|
O'Grady G, Egbuji JU, Du P, Lammers WJEP, Cheng LK, Windsor JA, Pullan AJ. High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. Neurogastroenterol Motil 2011; 23:e345-55. [PMID: 21714831 PMCID: PMC3156377 DOI: 10.1111/j.1365-2982.2011.01739.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The significance of gastric dysrhythmias remains uncertain. Progress requires a better understanding of dysrhythmic behaviors, including the slow wave patterns that accompany or promote them. The aim of this study was to use high-resolution spatiotemporal mapping to characterize and quantify the initiation and conduction of porcine gastric dysrhythmias. METHODS High-resolution mapping was performed on healthy fasted weaner pigs under general anesthesia. Recordings were made from the gastric serosa using flexible arrays (160-192 electrodes; 7.6mm spacing). Dysrhythmias were observed to occur in 14 of 97 individual recordings (from 8 of 16 pigs), and these events were characterized, quantified and classified using isochronal mapping and animation. KEY RESULTS All observed dysrhythmias originated in the corpus and fundus. The range of dysrhythmias included incomplete conduction block (n=3 pigs; 3.9±0.5cpm; normal range: 3.2±0.2cpm) complete conduction block (n=3; 3.7±0.4cpm), escape rhythm (n=5; 2.0±0.3cpm), competing ectopic pacemakers (n=5, 3.7±0.1cpm) and functional re-entry (n=3, 4.1±0.4cpm). Incomplete conduction block was observed to self-perpetuate due to retrograde propagation of wave fragments. Functional re-entry occurred in the corpus around a line of unidirectional block. 'Double potentials' were observed in electrograms at sites of re-entry and at wave collisions. CONCLUSIONS & INFERENCES Intraoperative multi-electrode mapping of fasted weaner healthy pigs detected dysrhythmias in 15% of recordings (from 50% of animals), including patterns not previously reported. The techniques and findings described here offer new opportunities to understand the nature of human gastric dysrhythmias.
Collapse
Affiliation(s)
- G O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
50
|
O'Grady G, Paskaranandavadivel N, Angeli TR, Du P, Windsor JA, Cheng LK, Pullan AJ. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiol Meas 2011; 32:N13-22. [PMID: 21252419 PMCID: PMC4127313 DOI: 10.1088/0967-3334/32/3/n02] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stomach contractions are initiated and coordinated by electrical events termed slow waves, and slow wave abnormalities contribute to gastric motility disorders. Recently, flexible printed circuit board (PCB) multi-electrode arrays were introduced, facilitating high-resolution mapping of slow wave activity in humans. However PCBs with gold contacts have shown a moderately inferior signal quality to previous custom-built silver-wire platforms, potentially limiting analyses. This study determined if using silver instead of gold contacts improved flexible PCB performance. In a salt-bath test, modestly higher stimulus amplitudes were recorded from silver PCBs (mean 312, s.d. 89 µV) than those from gold (mean 281, s.d. 85 µV) (p < 0.001); however, the signal-to-noise ratio (SNR) was similar (p = 0.26). In eight in vivo experimental studies, involving gastric serosal recordings from five pigs, no silver versus gold differences were found in terms of slow wave amplitudes (mean 677 versus 682 µV; p = 0.91), SNR (mean 8.8 versus 8.8 dB; p = 0.94) or baseline drift (NRMS; mean 12.0 versus 12.1; p = 0.97). Under the prescribed conditions, flexible PCBs with silver or gold contacts provide comparable results in vivo, and contact material difference does not explain the performance difference between current-generation slow wave mapping platforms. Alternative explanations for this difference and the implications for electrode design are discussed.
Collapse
Affiliation(s)
- G O'Grady
- Department of Surgery, University of Auckland, New Zealand. Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|