1
|
Duan Z, Chen K, Yang T, You R, Chen B, Li J, Liu L. Mechanisms of Endoplasmic Reticulum Protein Homeostasis in Plants. Int J Mol Sci 2023; 24:17599. [PMID: 38139432 PMCID: PMC10743519 DOI: 10.3390/ijms242417599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of proteome integrity is essential for cell function and survival in changing cellular and environmental conditions. The endoplasmic reticulum (ER) is the major site for the synthesis of secretory and membrane proteins. However, the accumulation of unfolded or misfolded proteins can perturb ER protein homeostasis, leading to ER stress and compromising cellular function. Eukaryotic organisms have evolved sophisticated and conserved protein quality control systems to ensure protein folding fidelity via the unfolded protein response (UPR) and to eliminate potentially harmful proteins via ER-associated degradation (ERAD) and ER-phagy. In this review, we summarize recent advances in our understanding of the mechanisms of ER protein homeostasis in plants and discuss the crosstalk between different quality control systems. Finally, we will address unanswered questions in this field.
Collapse
Affiliation(s)
- Zhihao Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Kai Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ronghui You
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Binzhao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Fung C, Wilding B, Schittenhelm RB, Bryson-Richardson RJ, Bird PI. Expression of the Z Variant of α1-Antitrypsin Suppresses Hepatic Cholesterol Biosynthesis in Transgenic Zebrafish. Int J Mol Sci 2023; 24:ijms24032475. [PMID: 36768797 PMCID: PMC9917206 DOI: 10.3390/ijms24032475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Individuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.
Collapse
Affiliation(s)
- Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne 3800, Australia
| | | | - Phillip I. Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| |
Collapse
|
3
|
Feng L, Zhang J, Zhu N, Ding Q, Zhang X, Yu J, Qiang W, Zhang Z, Ma Y, Huang D, Shen Y, Fang S, Yu Y, Wang H, Shen Y. Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/α-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy 2017; 13:686-702. [PMID: 28121484 PMCID: PMC5388218 DOI: 10.1080/15548627.2017.1280207] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SERPINA1/AAT/α-1-antitrypsin (serpin family A member 1) deficiency (SERPINA1/ AAT-D) is an autosomal recessive disorder characterized by the retention of misfolded SERPINA1/AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant reduction of serum SERPINA1/AAT level. The Z variant of SERPINA1/AAT, containing a Glu342Lys (E342K) mutation (SERPINA1E342K/ATZ), the most common form of SERPINA1/AAT-D, is prone to misfolding and polymerization, which retains it in the ER of hepatocytes and leads to liver injury. Both proteasome and macroautophagy/autophagy pathways are responsible for disposal of SERPINA1E342K/ATZ after it accumulates in the ER. However, the mechanisms by which SERPINA1E342K/ATZ is selectively degraded by autophagy remain unknown. Here, we showed that ER membrane-spanning ubiquitin ligase (E3) SYVN1/HRD1 enhances the degradation of SERPINA1E342K/ATZ through the autophagy-lysosome pathway. We found that SYVN1 promoted SERPINA1E342K/ATZ, especially Triton X 100-insoluble SERPINA1E342K/ATZ clearance. However, the effect of SYVN1 in SERPINA1E342K/ATZ clearance was impaired after autophagy inhibition, as well as in autophagy-related 5 (atg5) knockout cells. On the contrary, autophagy induction enhanced SYVN1-mediated SERPINA1E342K/ATZ degradation. Further study showed that SYVN1 mediated SERPINA1E342K/ATZ ubiquitination, which is required for autophagic degradation of SERPINA1E342K/ATZ by promoting the interaction between SERPINA1E342K/ATZ and SQSTM1/p62 for formation of the autophagy complex. Interestingly, SYVN1-mediated lysine 48 (K48)-linked polyubiquitin chains that conjugated onto SERPINA1E342K/ATZ might predominantly bind to the ubiquitin-associated (UBA) domain of SQSTM1 and couple the ubiquitinated SERPINA1E342K/ATZ to the lysosome for degradation. In addition, autophagy inhibition attenuated the suppressive effect of SYVN1 on SERPINA1E342K/ATZ cytotoxicity, and the autophagy inducer rapamycin enhanced the suppressive effect of SYVN1 on SERPINA1E342K/ATZ-induced cell apoptosis. Therefore, this study proved that SYVN1 enhances SERPINA1E342K/ATZ degradation through SQSTM1-dependent autophagy and attenuates SERPINA1E342K/ATZ cytotoxicity.
Collapse
Affiliation(s)
- Lijie Feng
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Jin Zhang
- b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Na Zhu
- b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China.,c The 4th Affiliated Hospital, Anhui Medical University , Hefei, Anhui , China
| | - Qian Ding
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Xiaojie Zhang
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Jishuang Yu
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Weimin Qiang
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Zhetao Zhang
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Yuyang Ma
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Dake Huang
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China
| | - Yujun Shen
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Shengyun Fang
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China.,d Center for Biomedical Engineering and Technology , University of Maryland , Baltimore , MD , USA
| | - Yifan Yu
- e Actuarial Science, School of Continuing Education , Columbia University , New York , NY , USA
| | - Haiping Wang
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| | - Yuxian Shen
- a School of Basic Medical Sciences , Anhui Medical University , Hefei, Anhui , China.,b Institute of Biopharmaceuticals, Anhui Medical University , Hefei, Anhui , China
| |
Collapse
|
4
|
Abstract
Classical alpha-1 antitrypsin (a1AT) deficiency is an autosomal recessive disease associated with an increased risk of liver disease in adults and children, and with lung disease in adults (Teckman and Jain, Curr Gastroenterol Rep 16(1):367, 2014). The vast majority of the liver disease is associated with homozygosity for the Z mutant allele, the so-called PIZZ. These homozygous individuals synthesize large quantities of a1AT mutant Z protein in the liver, but the mutant protein folds improperly during biogenesis and approximately 85% of the molecules are retained within the hepatocytes rather than appropriately secreted. The resulting low, or "deficient," serum level leaves the lungs vulnerable to inflammatory injury from uninhibited neutrophil proteases. Most of the mutant Z protein molecules retained within hepatocytes are directed into intracellular proteolysis pathways, but some molecules remain in the endoplasmic reticulum for long periods of time. Some of these molecules adopt an unusual aggregated or "polymerized" conformation (Duvoix et al., Rev Mal Respir 31(10):992-1002, 2014). It is thought that these intracellular polymers trigger a cascade of intracellular injury which can lead to end-organ liver injury including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (Lindblad et al., Hepatology 46(4):1228-1235, 2007). The hepatocytes with the largest accumulations of mutant Z polymers undergo apoptotic death and possibly other death mechanisms. This intracellular death cascade appears to involve ER stress, mitochondrial depolarization, and caspase cleavage, and is possibly linked to autophagy and redox injury. Cells with lesser burdens of mutant Z protein proliferate to maintain the liver cell mass. This chronic cycle of cell death and regeneration activates hepatic stellate cells and initiates the process of hepatic fibrosis. Cirrhosis and hepatocellular carcinoma then result in some patients. Since not all patients with the same homozygous PIZZ genotype develop end-stage disease, it is hypothesized that there is likely to be a strong influence of genetic and environmental modifiers of the injury cascade and of the fibrotic response.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- Department of Pediatrics, Saint Louis University School of Medicine, 1465 S. Grand Blvd., Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1465 S. Grand Blvd., Saint Louis, MO, USA.
- Department of Pediatric Gastroenterology and Hepatology, Cardinal Glennon's Medical Center, Saint Louis, MO, USA.
| | | |
Collapse
|
5
|
Tang Y, Fickert P, Trauner M, Marcus N, Blomenkamp K, Teckman J. Autophagy induced by exogenous bile acids is therapeutic in a model of α-1-AT deficiency liver disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G156-65. [PMID: 27102560 DOI: 10.1152/ajpgi.00143.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
The bile acid nor-ursodeoxycholic acid (norUDCA) has many biological actions, including antiapoptotic effects. Homozygous PIZZ α-1-antitrypsin (A1AT)-deficient humans are known to be at risk for liver disease, cirrhosis, and liver cancer as a result of the accumulation of the toxic, A1AT mutant Z protein within hepatocytes. This accumulation triggers cell death in the hepatocytes with the largest mutant Z-protein burdens, followed by compensatory proliferation. Proteolysis pathways within the hepatocyte, including autophagy, act to reduce the intracellular burden of A1AT Z protein. We hypothesized that norUDCA would reduce liver cell death and injury in A1AT deficiency. We treated groups of PiZ transgenic mice and wild-type mice with norUDCA or vehicle, orally, and examined the effects on the liver. The PiZ mouse is the best model of A1AT liver injury and recapitulates many features of the human liver disease. Mice treated with norUDCA demonstrated reduced hepatocellular death by compensatory hepatocellular proliferation as determined by bromodeoxyuridine incorporation (3.8% control, 0.88% treated, P < 0.04). Ki-67 staining as a marker for hepatocellular senescence and death was also reduced (P < 0.02). Reduced apoptotic signaling was associated with norUDCA, including reduced cleavage of caspases-3, -7, and -8 (all P < 0.05). We determined that norUDCA was associated with a >70% reduction in intrahepatic mutant Z protein (P < 0.01). A 32% increase in hepatic autophagy associated with norUDCA was the likely mechanism. norUDCA administration is associated with increased autophagy, reduced A1AT protein accumulation, and reduced liver injury in a model of A1AT deficiency.
Collapse
Affiliation(s)
- Youcai Tang
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - Peter Fickert
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; and
| | - Michael Trauner
- Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Nancy Marcus
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - Keith Blomenkamp
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - Jeffrey Teckman
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri;
| |
Collapse
|
6
|
Abstract
Alpha-1 antitrypsin deficiency is the leading cause of childhood liver failure and one of the most common lethal genetic diseases. The disease-causing mutant A1AT-Z fails to fold correctly and accumulates in the endoplasmic reticulum (ER) of the liver, resulting in hepatic fibrosis and hepatocellular carcinoma in a subset of patients. Furthermore, A1AT-Z sequestration in hepatocytes leads to a reduction in A1AT secretion into the serum, causing panacinar emphysema in adults. The purpose of this work was to elucidate the details by which A1AT-Z is degraded in hepatic cell lines. We identified the ubiquitin ligase FBG1, which has been previously shown to degrade proteins by both the ubiquitin proteasome pathway and autophagy, as being key to A1AT-Z degradation. Using chemical and genetic approaches we show that FBG1 degrades A1AT-Z through both the ubiquitin proteasome system and autophagy. Overexpression of FBG1 decreases the half-life of A1AT-Z and knocking down FBG1 in a hepatic cell line, and in mice results in an increase in ATAT. Finally, we show that FBG1 degrades A1AT-Z through a Beclin1-dependent arm of autophagy. In our model, FBG1 acts as a safety ubiquitin ligase, whose function is to re-ubiquitinate ER proteins that have previously undergone de-ubiquitination to ensure they are degraded.
Collapse
|
7
|
Jang BY, Ryoo HD, Son J, Choi KC, Shin DM, Kang SW, Kang MJ. Role of Drosophila EDEMs in the degradation of the alpha-1-antitrypsin Z variant. Int J Mol Med 2015; 35:870-6. [PMID: 25716426 PMCID: PMC4356437 DOI: 10.3892/ijmm.2015.2109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/18/2015] [Indexed: 02/05/2023] Open
Abstract
The synthesis of proteins in the endoplasmic reticulum (ER) that exceeds the protein folding capacity of this organelle is a frequent cause of cellular dysfunction and disease. An example of such a disease is alpha-1-antitrypsin (A1AT) deficiency, caused by destabilizing mutations in this glycoprotein. It is considered that the mutant proteins are recognized in the ER by lectins and are subsequently degraded through the proteasome, leading to a deficiency in this enzyme in the afflicted patients. We previously established a Drosophila model of this disease by overexpressing the null Hong Kong (NHK) allele of this gene and found that the Drosophila lectin, ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2), can accelerate the degradation of A1AT when overexpressed. NHK is a rare allele, and in this study, we investigated in depth the mechanisms through which Drosophila EDEMs affect the degradation of the Z variant, which is the predominant disease allele. Specifically, we report that the Z allele does not activate ER stress signaling as prominently as the NHK allele, but similarly requires both Drosophila EDEM1 and EDEM2 for the degradation of the protein. We demonstrate that EDEMs are required for their ubiquitination, and without EDEMs, glycosylated A1AT mutants accumulate in cells. These results support the role of the EDEM-mediated ubiquitination of the alpha-1-antitrypsin Z (ATZ) allele, and establish a Drosophila model for the study of this protein and disease.
Collapse
Affiliation(s)
- Bo-Yun Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Jaekyoung Son
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Dong-Myoung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| |
Collapse
|
8
|
Teckman JH, Mangalat N. Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert Rev Gastroenterol Hepatol 2015; 9:261-8. [PMID: 25066184 DOI: 10.1586/17474124.2014.943187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α-1-Antitrypsin (α1AT) is a serum glycoprotein synthesized in the liver. The majority of patients with α1AT deficiency liver disease are homozygous for the Z mutant of α1AT (called ZZ or 'PIZZ'). This mutant gene directs the synthesis of an abnormal protein which folds improperly during biogenesis. Most of these mutant Z protein molecules undergo proteolysis; however, some of the mutant protein accumulates in hepatocytes. Hepatocytes with the largest mutant protein burdens undergo apoptosis, causing compensatory hepatic proliferation. Cycles of hepatocyte injury, cell death and compensatory proliferation results in liver disease ranging from mild asymptomatic enzyme elevations to hepatic fibrosis, cirrhosis and hepatocellular carcinoma. There is a high variability in clinical disease presentation suggesting that environmental and genetic modifiers are important. Management of α1AT liver disease is based on standard supportive care and liver transplant. However, increased understanding of the cellular mechanisms of liver injury has led to new clinical trials.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, 1465 South Grand Blvd, St. Louis, MO 63104, USA
| | | |
Collapse
|
9
|
Haddock CJ, Blomenkamp K, Gautam M, James J, Mielcarska J, Gogol E, Teckman J, Skowyra D. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes. PLoS One 2014; 9:e106371. [PMID: 25210780 PMCID: PMC4161314 DOI: 10.1371/journal.pone.0106371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome, possibly by inducing oxidative stress-mediated modifications that compromise substrate delivery to proteolytic core.
Collapse
Affiliation(s)
- Christopher J. Haddock
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Keith Blomenkamp
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Madhav Gautam
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jared James
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joanna Mielcarska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Edward Gogol
- School of Biological Sciences, University of Missouri – Kansas City, Kansas City, Missouri, United States of America
| | - Jeffrey Teckman
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
10
|
Abstract
Alpha-1-antitrypsin (a1AT) deficiency is a common, but under-diagnosed, genetic disease. In the classical form, patients are homozygous for the Z mutant of the a1AT gene (called ZZ or PIZZ), which occurs in 1 in 2,000-3,500 births. The mutant Z gene directs the synthesis of large quantities of the mutant Z protein in the liver, which folds abnormally during biogenesis and accumulates intracellularly, rather than being efficiently secreted. The accumulation mutant Z protein within hepatocytes causes liver injury, cirrhosis, and hepatocellular carcinoma via a cascade of chronic hepatocellular apoptosis, regeneration, and end organ injury. There is no specific treatment for a1AT-associated liver disease, other than standard supportive care and transplantation. There is high variability in the clinical manifestations among ZZ homozygous patients, suggesting a strong influence of genetic and environmental modifiers. New insights into the biological mechanisms of intracellular injury have led to new, rational therapeutic approaches.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, 1465 South Grand Blvd., St. Louis, MO, 63104, USA,
| | | |
Collapse
|
11
|
El Khouri E, Le Pavec G, Toledano MB, Delaunay-Moisan A. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2013; 288:31177-91. [PMID: 24019521 DOI: 10.1074/jbc.m113.470500] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.
Collapse
Affiliation(s)
- Elma El Khouri
- From the Laboratoire Stress Oxydant et Cancers, Service de Biologie Intégrative et Génétique Moléculaire (SBiGeM), Institut de Biologie et de Technologies de Saclay (IBiTec-S), Commissariat à l'Energie Atomique-Saclay, 91191 Gif-sur-Yvette, Cedex, France
| | | | | | | |
Collapse
|
12
|
Marques PI, Ferreira Z, Martins M, Figueiredo J, Silva DI, Castro P, Morales-Hojas R, Simões-Correia J, Seixas S. SERPINA2 is a novel gene with a divergent function from SERPINA1. PLoS One 2013; 8:e66889. [PMID: 23826168 PMCID: PMC3691238 DOI: 10.1371/journal.pone.0066889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/11/2013] [Indexed: 11/23/2022] Open
Abstract
Serine protease inhibitors (SERPINs) are a superfamily of highly conserved proteins that play a key role in controlling the activity of proteases in diverse biological processes. The SERPIN cluster located at the 14q32.1 region includes the gene coding for SERPINA1, and a highly homologous sequence, SERPINA2, which was originally thought to be a pseudogene. We have previously shown that SERPINA2 is expressed in different tissues, namely leukocytes and testes, suggesting that it is a functional SERPIN. To investigate the function of SERPINA2, we used HeLa cells stably transduced with the different variants of SERPINA2 and SERPINA1 (M1, S and Z) and leukocytes as the in vivo model. We identified SERPINA2 as a 52 kDa intracellular glycoprotein, which is localized at the endoplasmic reticulum (ER), independently of the variant analyzed. SERPINA2 is not significantly regulated by proteasome, proposing that ER localization is not due to misfolding. Specific features of SERPINA2 include the absence of insoluble aggregates and the insignificant response to cell stress, suggesting that it is a non-polymerogenic protein with divergent activity of SERPINA1. Using phylogenetic analysis, we propose an origin of SERPINA2 in the crown of primates, and we unveiled the overall conservation of SERPINA2 and A1. Nonetheless, few SERPINA2 residues seem to have evolved faster, contributing to the emergence of a new advantageous function, possibly as a chymotrypsin-like SERPIN. Herein, we present evidences that SERPINA2 is an active gene, coding for an ER-resident protein, which may act as substrate or adjuvant of ER-chaperones.
Collapse
Affiliation(s)
- Patrícia Isabel Marques
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Zélia Ferreira
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuella Martins
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Diana Isabel Silva
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Patrícia Castro
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Molecular Evolution, Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Joana Simões-Correia
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Institute of Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Susana Seixas
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- * E-mail: (SS)
| |
Collapse
|
13
|
Teckman JH. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Understanding and Future Therapy. COPD 2013; 10 Suppl 1:35-43. [DOI: 10.3109/15412555.2013.765839] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
15
|
Maurice N, Perlmutter DH. Novel treatment strategies for liver disease due to α1-antitrypsin deficiency. Clin Transl Sci 2012; 5:289-94. [PMID: 22686209 DOI: 10.1111/j.1752-8062.2011.00363.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alpha1-antitrypsin (AT) deficiency is the most common genetic cause of liver disease in children and is also a cause of chronic hepatic fibrosis, cirrhosis, and hepatocellular carcinoma in adults. Recent advances in understanding how mutant AT molecules accumulate within hepatocytes and cause liver cell injury have led to a novel strategy for chemoprophylaxis of this liver disease. This strategy involves a class of drugs, which enhance the intracellular degradation of mutant AT and, because several of these drugs have been used safely in humans for other indications, the strategy can be moved immediately into clinical trials. In this review, we will also report on advances that provide a basis for several other strategies that could be used in the future for treatment of the liver disease associated with AT deficiency.
Collapse
Affiliation(s)
- Nicholas Maurice
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Smith SE, Granell S, Salcedo-Sicilia L, Baldini G, Egea G, Teckman JH, Baldini G. Activating transcription factor 6 limits intracellular accumulation of mutant α(1)-antitrypsin Z and mitochondrial damage in hepatoma cells. J Biol Chem 2011; 286:41563-41577. [PMID: 21976666 DOI: 10.1074/jbc.m111.280073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α(1)-Antitrypsin is a serine protease inhibitor secreted by hepatocytes. A variant of α(1)-antitrypsin with an E342K (Z) mutation (ATZ) has propensity to form polymers, is retained in the endoplasmic reticulum (ER), is degraded by both ER-associated degradation and autophagy, and causes hepatocyte loss. Constant features in hepatocytes of PiZZ individuals and in PiZ transgenic mice expressing ATZ are the formation of membrane-limited globular inclusions containing ATZ and mitochondrial damage. Expression of ATZ in the liver does not induce the unfolded protein response (UPR), a protective mechanism aimed to maintain ER homeostasis in the face of an increased load of proteins. Here we found that in hepatoma cells the ER E3 ligase HRD1 functioned to degrade most of the ATZ before globular inclusions are formed. Activation of the activating transcription factor 6 (ATF6) branch of the UPR by expression of spliced ATF6(1-373) decreased intracellular accumulation of ATZ and the formation of globular inclusions by a pathway that required HRD1 and the proteasome. Expression of ATF6(1-373) in ATZ-expressing hepatoma cells did not induce autophagy and increased the level of the proapoptotic factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) but did not lead to apoptotic DNA fragmentation. Expression of ATF6(1-373) did not cause inhibition of protein synthesis and prevented mitochondrial damage induced by ATZ expression. It was concluded that activation of the ATF6 pathway of the UPR limits ATZ-dependent cell toxicity by selectively promoting ER-associated degradation of ATZ and is thereby a potential target to prevent hepatocyte loss in addition to autophagy-enhancing drugs.
Collapse
Affiliation(s)
- Steven E Smith
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Susana Granell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Laia Salcedo-Sicilia
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiquens August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona E-08036, Spain
| | - Giovanna Baldini
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste I-34138, Italy
| | - Gustavo Egea
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiquens August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona E-08036, Spain
| | - Jeff H Teckman
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
17
|
Perlmutter DH. Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu Rev Med 2011; 62:333-45. [PMID: 20707674 DOI: 10.1146/annurev-med-042409-151920] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alpha-1-antitrypsin (AT) deficiency is the most common genetic cause of liver disease in children. The primary pathological issue is a point mutation that renders an abundant hepatic secretory glycoprotein prone to altered folding and a tendency to polymerize and aggregate. However, the expression of serious liver damage among homozygotes is dependent on genetic and/or environmental modifiers. Several studies have validated the concept that endogenous hepatic pathways for disposal of aggregation-prone proteins, including the proteasomal and autophagic degradative pathways, could play a key role in the variation in hepatic damage and be the target of the modifiers. Exciting recent results have shown that a drug that enhances autophagy can reduce the hepatic load of aggregated protein and reverse fibrosis in a mouse model of this disease.
Collapse
Affiliation(s)
- David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15217, USA.
| |
Collapse
|
18
|
Perlmutter DH, Silverman GA. Hepatic fibrosis and carcinogenesis in α1-antitrypsin deficiency: a prototype for chronic tissue damage in gain-of-function disorders. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005801. [PMID: 21421920 DOI: 10.1101/cshperspect.a005801] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In α1-antitrypsin (AT) deficiency, a point mutation renders a hepatic secretory glycoprotein prone to misfolding and polymerization. The mutant protein accumulates in the endoplasmic reticulum of liver cells and causes hepatic fibrosis and hepatocellular carcinoma by a gain-of-function mechanism. Genetic and/or environmental modifiers determine whether an affected homozygote is susceptible to hepatic fibrosis/carcinoma. Two types of proteostasis mechanisms for such modifiers have been postulated: variation in the function of intracellular degradative mechanisms and/or variation in the signal transduction pathways that are activated to protect the cell from protein mislocalization and/or aggregation. In recent studies we found that carbamazepine, a drug that has been used safely as an anticonvulsant and mood stabilizer, reduces the hepatic load of mutant AT and hepatic fibrosis in a mouse model by enhancing autophagic disposal of this mutant protein. These results provide evidence that pharmacological manipulation of endogenous proteostasis mechanisms is an appealing strategy for chemoprophylaxis in disorders involving gain-of-function mechanisms.
Collapse
Affiliation(s)
- David H Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh and Magee-Womens Hospital of UPMC, Pennsylvania 15224, USA.
| | | |
Collapse
|
19
|
The ubiquitin ligase Hrd1 promotes degradation of the Z variant alpha 1-antitrypsin and increases its solubility. Mol Cell Biochem 2010; 346:137-45. [PMID: 20886262 DOI: 10.1007/s11010-010-0600-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
Alpha 1-antitrypsin (AAT) deficiency is an autosomal recessive disorder that is characterized by the retention of misfolded AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant decrease in the serum levels of AAT. Previous studies have demonstrated that the ubiquitin-proteasome pathway is involved in the degradation of the Z variant of AAT (ATZ). However, the detailed mechanisms of ATZ degradation are not fully understood. We investigated whether the ER membrane-embedded ubiquitin ligase (E3) Hrd1 promotes the removal of ATZ through ER-associated degradation (ERAD). Our results indicate that Hrd1 decreases intracellular levels of ATZ, especially the detergent-insoluble fraction, in cells transfected with a plasmid-encoding ATZ. The degradation of ATZ was also found to be dependent on the functional E3 activity of Hrd1. In addition, we demonstrated that Hrd1 increases the solubility of ATZ. Cycloheximide (CHX) chase and proteasome inhibition experiments showed that the ubiquitin-proteasome pathway is involved in Hrd1-mediated ATZ degradation. Furthermore, we found that Hrd1 helped to maintain normal morphology of ATZ expressing cells. These data indicate that Hrd1 enhances the removal of ATZ through ERAD and attenuates intracellular ATZ accumulation and toxicity, which implies a potential value for Hrd1 in the treatment of AAT deficiency diseases.
Collapse
|
20
|
Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt EM, Teckman JH. Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood) 2010; 235:700-9. [PMID: 20511674 DOI: 10.1258/ebm.2010.009297] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alpha-1-antitrypsin (a1AT) deficiency is caused by homozygosity for the a1AT mutant Z gene and occurs in one in 2000 Americans. The Z mutation confers an abnormal conformation on the a1AT mutant Z protein, resulting in accumulation within the endoplasmic reticulum of hepatocytes and chronic liver injury. Autophagy is one of several proteolytic mechanisms activated to cope with this hepatocellular protein burden, and is likely important in disposal of the unique polymerized conformation of the a1AT mutant Z protein, which is thought to be especially injurious to the cell. Recent data indicate that rapamycin may more efficiently upregulate autophagy when given in weekly dose pulses, as compared with a daily regimen. Therefore, we evaluated the effect of rapamycin on PiZ mice, a well-characterized model which recapitulates human a1AT liver disease. Daily dosing had no effect on autophagy, on accumulation of a1AT mutant Z protein or on liver injury. Weekly dosing of rapamycin did increase autophagic activity, as shown by increased numbers of autophagic vacuoles. This was associated with reduction in the intrahepatic accumulation of a1AT mutant Z protein in the polymerized conformation. Markers of hepatocellular injury, including cleavage of caspase 12 and hepatic fibrosis, were also decreased. In conclusion, this is the first report of a successful in vivo method for reduction of intrahepatic a1AT mutant Z polymerized protein. Application of this finding may be therapeutic in patients with a1AT deficiency by reducing the intracellular burden of the polymerized, mutant Z protein and by reducing the progression of liver injury.
Collapse
Affiliation(s)
- Shalesh Kaushal
- Department of Ophthalmology, University of Massachusetts, Worcester, MA 63104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ding WX. Role of autophagy in liver physiology and pathophysiology. World J Biol Chem 2010; 1:3-12. [PMID: 21540988 PMCID: PMC3083930 DOI: 10.4331/wjbc.v1.i1.3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which bulk cytoplasm and superfluous or damaged organelles are enveloped by double membrane structures termed autophagosomes. The autophagosomes then fuse with lysosomes for degradation of their contents, and the resulting amino acids can then recycle back to the cytosol. Autophagy is normally activated in response to nutrient deprivation and other stressors and occurs in all eukaryotes. In addition to maintaining energy and nutrient balance in the liver, it is now clear that autophagy plays a role in liver protein aggregates related diseases, hepatocyte cell death, steatohepatitis, hepatitis virus infection and hepatocellular carcinoma. In this review, I discuss the recent findings of autophagy with a focus on its role in liver pathophysiology.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Wen-Xing Ding, Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, MS 1018, 3901 Rainbow Blvd, Kansas City, Kansas, KS 66160, United States
| |
Collapse
|
22
|
Francalanci P, Santorelli FM, Saccani S, Bonetti MF, Medicina D, Coni P, Faa G, Callea F. Z and Mmalton-1-antitrypsin deficiency-associated hepatocellular carcinoma: a genetic study. Liver Int 2009; 29:1593-6. [PMID: 19744266 DOI: 10.1111/j.1478-3231.2009.02091.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND The histological hallmark of alpha-1-antitrypsin deficiency (AATD) is the presence of periodic acid-Schiff diastase (PASD)-resistant positive globules in hepatocytes, with a heterogeneous distribution. It is noteworthy that hepatocellular carcinoma (HCC) arises specifically from the AAT-negative areas but the reason for this remains unclear. AIM To determine whether the different distribution of AAT globules within neoplastic and non-neoplastic hepatocytes is the result of a self-induced correction of the genetic defect. PATIENTS AND METHODS Two HCV-positive patients with AATD-associated HCC were studied. One patient harboured a compound heterozygous PiSZ genotype whereas the other showed the rarer PiMMmalton in heterozygosity. In both cases, neoplastic hepatocytes appeared globule devoid, while non-neoplastic hepatocytes showed intracytoplasmic accumulation of PASD-positive globules. Laser-assisted microdissection was used to assess a genotype/phenotype correlation in single liver cells from HCC and from non-neoplastic hepatocytes. RESULTS Direct sequencing of DNA purified from globule-devoid and globule-filled hepatocytes demonstrated that all liver cells carried the same mutant genetic background. CONCLUSION Our findings indicate that (i) both variants of HCC arising in AAT deficiency (Z and Mmalton) do not accumulate the mutant protein and (ii) the different phenotypic appearance of hepatocytes is not the result of a retromutation during neoplastic transformation, but other mechanisms should be investigated.
Collapse
Affiliation(s)
- Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
α1-Antitrypsin deficiency, chronic obstructive pulmonary disease and the serpinopathies. Clin Sci (Lond) 2009; 116:837-50. [DOI: 10.1042/cs20080484] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
α1-Antitrypsin is the prototypical member of the serine proteinase inhibitor or serpin superfamily of proteins. The family includes α1-antichymotrypsin, C1 inhibitor, antithrombin and neuroserpin, which are all linked by a common molecular structure and the same suicidal mechanism for inhibiting their target enzymes. Point mutations result in an aberrant conformational transition and the formation of polymers that are retained within the cell of synthesis. The intracellular accumulation of polymers of mutant α1-antitrypsin and neuroserpin results in a toxic gain-of-function phenotype associated with cirrhosis and dementia respectively. The lack of important inhibitors results in overactivity of proteolytic cascades and diseases such as COPD (chronic obstructive pulmonary disease) (α1-antitrypsin and α1-antichymotrypsin), thrombosis (antithrombin) and angio-oedema (C1 inhibitor). We have grouped these conditions that share the same underlying disease mechanism together as the serpinopathies. In the present review, the molecular and pathophysiological basis of α1-antitrypsin deficiency and other serpinopathies are considered, and we show how understanding this unusual mechanism of disease has resulted in the development of novel therapeutic strategies.
Collapse
|
24
|
Abstract
Alpha 1-antitrypsin deficiency is an inherited metabolic disorder that predisposes the affected individual to chronic pulmonary disease, in addition to chronic liver disease, cirrhosis, and hepatocellular carcinoma. Just over one-third of genetically susceptible adult patients with the most severe phenotype, PiZZ, develop clinically significant liver injury. The clinical presentation of liver disease is variable, and the genetic and environmental factors that predispose some individuals to liver disease while sparing others are unknown. The mechanisms of liver and lung disease are distinct and unique. This article reviews the liver disease associated with alpha 1-antitrypsin deficiency, emphasizing the genetic defect, molecular pathogenesis, natural history, and promising therapies.
Collapse
Affiliation(s)
- Kyrsten D Fairbanks
- Department of Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
25
|
Granell S, Baldini G, Mohammad S, Nicolin V, Narducci P, Storrie B, Baldini G. Sequestration of mutated alpha1-antitrypsin into inclusion bodies is a cell-protective mechanism to maintain endoplasmic reticulum function. Mol Biol Cell 2008; 19:572-86. [PMID: 18045994 PMCID: PMC2230602 DOI: 10.1091/mbc.e07-06-0587] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/18/2007] [Accepted: 11/16/2007] [Indexed: 12/21/2022] Open
Abstract
A variant alpha1-antitrypsin with E342K mutation has a high tendency to form intracellular polymers, and it is associated with liver disease. In the hepatocytes of individuals carrying the mutation, alpha1-antitrypsin localizes both to the endoplasmic reticulum (ER) and to membrane-surrounded inclusion bodies (IBs). It is unclear whether the IBs contribute to cell toxicity or whether they are protective to the cell. We found that in hepatoma cells, mutated alpha1-antitrypsin exited the ER and accumulated in IBs that were negative for autophagosomal and lysosomal markers, and contained several ER components, but not calnexin. Mutated alpha1-antitrypsin induced IBs also in neuroendocrine cells, showing that formation of these organelles is not cell type specific. In the presence of IBs, ER function was largely maintained. Increased levels of calnexin, but not of protein disulfide isomerase, inhibited formation of IBs and lead to retention of mutated alpha1-antitrypsin in the ER. In hepatoma cells, shift of mutated alpha1-antitrypsin localization to the ER by calnexin overexpression lead to cell shrinkage, ER stress, and impairment of the secretory pathway at the ER level. We conclude that segregation of mutated alpha1-antitrypsin from the ER to the IBs is a protective cell response to maintain a functional secretory pathway.
Collapse
Affiliation(s)
| | - Giovanna Baldini
- Dipartimento Universitario Clinico di Biomedicina, Universita' degli Studi di Trieste, Trieste I-34138, Italy
| | | | - Vanessa Nicolin
- Dipartimento Universitario Clinico di Biomedicina, Universita' degli Studi di Trieste, Trieste I-34138, Italy
| | - Paola Narducci
- Dipartimento Universitario Clinico di Biomedicina, Universita' degli Studi di Trieste, Trieste I-34138, Italy
| | - Brian Storrie
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | | |
Collapse
|
26
|
Greene CM, Miller SDW, Carroll T, McLean C, O'Mahony M, Lawless MW, O'Neill SJ, Taggart CC, McElvaney NG. Alpha-1 antitrypsin deficiency: a conformational disease associated with lung and liver manifestations. J Inherit Metab Dis 2008; 31:21-34. [PMID: 18193338 DOI: 10.1007/s10545-007-0748-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/30/2007] [Accepted: 12/07/2007] [Indexed: 12/20/2022]
Abstract
Alpha-1 antitrypsin (A1AT) is a serine anti-protease produced chiefly by the liver. A1AT deficiency is a genetic disorder characterized by serum levels of less than 11 mumol/L and is associated with liver and lung manifestations. The liver disease, which occurs in up to 15% of A1AT-deficient individuals, is a result of toxic gain-of-function mutations in the A1AT gene, which cause the A1AT protein to fold aberrantly and accumulate in the endoplasmic reticulum of hepatocytes. The lung disease is associated with loss-of-function, specifically decreased anti-protease protection on the airway epithelial surface. The so-called 'Z' mutation in A1AT deficiency encodes a glutamic acid-to-lysine substitution at position 342 in A1AT and is the most common A1AT allele associated with disease. Here we review the current understanding of the molecular pathogenesis of A1AT deficiency and the best clinical management protocols.
Collapse
Affiliation(s)
- C M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shen Y, Ballar P, Apostolou A, Doong H, Fang S. ER stress differentially regulates the stabilities of ERAD ubiquitin ligases and their substrates. Biochem Biophys Res Commun 2007; 352:919-24. [PMID: 17157811 DOI: 10.1016/j.bbrc.2006.11.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/24/2006] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum (ER) stress-induced accumulation of misfolded proteins in the ER stimulates the ER-associated degradation (ERAD) process. ERAD in turn eliminates those misfolded proteins. Upregulation of ubiquitination enzymes is an essential mechanism by which ER stress enhances ERAD. However, ectopic overexpression of ubiquitination enzymes often fails to increase, and sometimes, inhibits ERAD. To further understand how ER stress regulates ERAD, we studied the effects of ER stress on ubiquitin ligase (E3) gp78-mediated ERAD and on the stabilities of gp78 and another ERAD E3 Hrd1. The results showed that ER stress-inducing agent tunicamycin significantly enhanced ERAD in cells that either express endogenous or overexpress gp78. Importantly, ER stress could increase ERAD even when new protein synthesis was inhibited by cycloheximide. Surprisingly, tunicamycin treatment stabilized gp78, an established ERAD E3 and an ERAD substrate as well, for up to 8h. By contrast, ER stress had little effects on the stability of another E3 Hrd1 except that it reduced the total ubiquitination level of Hrd1. Our data suggest that ER stress differentially regulates the stabilities of ERAD E3s and their substrates, which may represent a novel mechanism by which ER stress increases ERAD.
Collapse
Affiliation(s)
- Yuxian Shen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | | | | | | | | |
Collapse
|
28
|
Staszczak M. An in vitro method for selective detection of free monomeric ubiquitin by using a C-terminally biotinylated form of ubiquitin. Int J Biochem Cell Biol 2007; 39:319-26. [PMID: 17030000 DOI: 10.1016/j.biocel.2006.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
In an effort to design a selective assay allowing detection of free monomeric ubiquitin, an approach based on a C-terminally biotinylated form of ubiquitin is proposed. In the form of a polyubiquitin chain, ubiquitin marks proteins for degradation by the 26S proteasome. This covalently attached signal is assembled from multiple ubiquitins linked to each other via the C-terminus of one ubiquitin and the epsilon-amine of Lys48 of another ubiquitin. In the present study, a form of ubiquitin having the C-terminus modified with the addition of a biotinylation peptide tag was prepared. After expression, this modified ubiquitin was biotinylated in vitro using recombinant biotin ligase. Biotinylated ubiquitin was further purified using affinity chromatography on immobilized monovalent avidin. This tagged form of ubiquitin is blocked at the C-terminus and therefore can only act as an acceptor (Lys-48 donor) in polyubiquitin chain synthesis. In vitro enzymatic assembly of multiubiquitin chains from biotinylated monoubiquitin and natural monoubiquitin is demonstrated by Western blot analysis using horseradish peroxidase-conjugated streptavidin. Data obtained with this assay indicate potential uses of the C-terminally biotinylated form of ubiquitin for selective detection of monoubiquitin contamination in a cell extract experimentally depleted of ubiquitin, i.e. lysate Fraction II. Cell-free systems established for in vitro examination of ubiquitin involvement in proteolytic processes usually employ Fraction II, which should be essentially ubiquitin-free. It is suggested that the assay using biotinylated monoubiquitin can be useful to exclude the possibility that ubiquitin contamination of laboratory prepared lysate Fraction II accounts for protein degradation in this fraction.
Collapse
Affiliation(s)
- Magdalena Staszczak
- Department of Biochemistry, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
29
|
Shen Y, Ballar P, Fang S. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of α-1-antitrypsin. Biochem Biophys Res Commun 2006; 349:1285-93. [PMID: 16979136 DOI: 10.1016/j.bbrc.2006.08.173] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 08/29/2006] [Indexed: 11/22/2022]
Abstract
Deficiency of circulating alpha-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutant AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.
Collapse
Affiliation(s)
- Yuxian Shen
- Institute of Clinical Pharmacology, Anhui Medical University, Anhui, PR China
| | | | | |
Collapse
|
30
|
Abstract
Alpha-1-antitrypsin (AT) deficiency is the most common genetic cause of liver disease in children. In addition to chronic liver inflammation and injury, it has a predilection to cause hepatocellular carcinoma later in life. The deficiency is caused by a mutant protein, ATZ, which is retained in the endoplasmic reticulum (ER) in a polymerized form rather than secreted into the blood in its monomeric form. The histologic hallmark of the disease is ATZ-containing globules in some, but not all, hepatocytes. Liver injury results from a gain-of-toxic function mechanism in which mutant ATZ retained in the ER initiates a series of pathologic events, but little is known about the mechanism by which this leads to carcinogenesis. Several recent observations from my laboratory have led to a novel hypothetical paradigm for carcinogenesis in AT deficiency in which globule-containing hepatocytes are "sick," relatively growth suppressed, but also elaborating trans-acting regenerative signals. These signals are received and transduced by globule-devoid hepatocytes, which, because they are younger and have a lesser load of accumulated ATZ, have a selective proliferative advantage. Chronic regeneration in the presence of tissue injury leads to adenomas and ultimately carcinomas. Aspects of this hypothetical paradigm may also explain the proclivity for hepatocarcinogenesis in other chronic liver diseases, including other genetic diseases, viral hepatitis, and nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- David H Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Teckman JH, Lindblad D. Alpha-1-antitrypsin deficiency: diagnosis, pathophysiology, and management. Curr Gastroenterol Rep 2006; 8:14-20. [PMID: 16510030 DOI: 10.1007/s11894-006-0059-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alpha-1-antitrypsin deficiency is a relatively common but under-recognized genetic disease in which individuals homozygous for the mutant Z disease-associated allele are at risk for the development of liver disease and emphysema. The protein product of the mutant Z gene is synthesized in hepatocytes but accumulates intracellularly rather than being appropriately secreted. The downstream effects of the intracellular accumulation of the mutant Z protein include the formation of unique protein polymers, activation of autophagy, mitochondrial injury, endoplasmic reticulum stress, and caspase activation, which subsequently progress in a cascade, causing chronic hepatocellular injury. The variable clinical presentations among affected individuals suggest an important contribution of genetic and environmental disease modifiers, which are only now being identified. The heterozygous carrier state for the mutant Z gene, found in 1.5% to 3% of the population, is not itself a common cause of liver injury but may be a modifier gene for other liver diseases.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- Gastroenterology and Hepatology, Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Hospital, 1465 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | |
Collapse
|
32
|
McCracken AA, Brodsky JL. Recognition and delivery of ERAD substrates to the proteasome and alternative paths for cell survival. Curr Top Microbiol Immunol 2006; 300:17-40. [PMID: 16573235 DOI: 10.1007/3-540-28007-3_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a protein quality control mechanism that minimizes the detrimental effects of protein misfolding in the secretory pathway. Molecular chaperones and ER lumenal lectins are essential components of this process because they maintain the solubility of unfolded proteins and can target ERAD substrates to the cytoplasmic proteasome. Other factors are likely required to aid in the selection of ERAD substrates, and distinct proteinaceous machineries are required for substrate retrotranslocation/dislocation from the ER and proteasome targeting. When the capacity of the ERAD machinery is exceeded or compromised, multiple degradative routes can be enlisted to prevent the detrimental consequences of ERAD substrate accumulation, which include cell death and disease.
Collapse
Affiliation(s)
- A A McCracken
- Biology Department, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
33
|
Kruse KB, Brodsky JL, McCracken AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 2006; 17:203-12. [PMID: 16267277 PMCID: PMC1345659 DOI: 10.1091/mbc.e04-09-0779] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/19/2005] [Accepted: 10/24/2005] [Indexed: 12/25/2022] Open
Abstract
The Z variant of human alpha-1 proteinase inhibitor (A1PiZ) is a substrate for endoplasmic reticulum-associated protein degradation (ERAD). To identify genes required for the degradation of this protein, A1PiZ degradation-deficient (add) yeast mutants were isolated. The defect in one of these mutants, add3, was complemented by VPS30/ATG6, a gene that encodes a component of two phosphatidylinositol 3-kinase (PtdIns 3-kinase) complexes: complex I is required for autophagy, whereas complex II is required for the carboxypeptidase Y (CPY)-to-vacuole pathway. We found that upon overexpression of A1PiZ, both PtdIns 3-kinase complexes were required for delivery of the excess A1PiZ to the vacuole. When the CPY-to-vacuole pathway was compromised, A1PiZ was secreted; however, disruption of autophagy led to an increase in aggregated A1PiZ rather than secretion. These results suggest that excess soluble A1PiZ transits the secretion pathway to the trans-Golgi network and is selectively targeted to the vacuole via the CPY-to-vacuole sorting pathway, but excess A1PiZ that forms aggregates in the endoplasmic reticulum is targeted to the vacuole via autophagy. These findings illustrate the complex nature of protein quality control in the secretion pathway and reveal multiple sites that recognize and sort both soluble and aggregated forms of aberrant or misfolded proteins.
Collapse
Affiliation(s)
- Kristina B Kruse
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | | | |
Collapse
|
34
|
Schmidt BZ, Perlmutter DH. Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 2005; 289:G444-55. [PMID: 15845869 DOI: 10.1152/ajpgi.00237.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In alpha1-antitrypsin (alpha1-AT) deficiency, a mutant form of alpha1-AT polymerizes in the endoplasmic reticulum (ER) of liver cells resulting in chronic hepatitis and hepatocellular carcinoma by a gain of toxic function mechanism. Although some aspects of the cellular response to mutant alpha1-AT Z have been partially characterized, including the involvement of several proteasomal and nonproteasomal mechanisms for disposal, other parts of the cellular response pathways, particularly the chaperones with which it interacts and the signal transduction pathways that are activated, are still not completely elucidated. The alpha1-AT Z molecule is known to interact with calnexin, but, according to one study, it does not interact with Grp78. To carry out a systematic search for the chaperones with which alpha1-AT Z interacts in the ER, we used chemical cross-linking of several different genetically engineered cell systems. Mutant alpha1-AT Z was cross-linked with Grp78, Grp94, calnexin, Grp170, UDP-glucose glycoprotein:glucosyltransferase, and two unknown proteins of approximately 110-130 kDa. Sequential immunoprecipitation/immunoblot analysis and coimmunoprecipitation techniques demonstrated each of these interactions without chemical cross-linking. The same chaperones were found to interact with two nonpolymerogenic alpha1-AT mutants that are retained in the ER, indicating that these interactions are not specific for the alpha1-AT Z mutant. Moreover, sucrose density gradient centrifugation studies suggest that approximately 85% of alpha1-AT Z exists in heterogeneous soluble complexes with multiple chaperones and approximately 15% in extremely large polymers/aggregates devoid of chaperones. Agents that perturb the synthesis and/or activity of ER chaperones such as tunicamycin and calcium ionophore A23187, have different effects on the solubility and degradation of alpha1-AT Z as well as on its residual secretion.
Collapse
Affiliation(s)
- Bela Z Schmidt
- Department of Pediatrics, Univ. of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 3705 Fifth Ave., Pittsburgh, PA 15213-2583, USA
| | | |
Collapse
|
35
|
An JK, Blomenkamp K, Lindblad D, Teckman JH. Quantitative isolation of alphalAT mutant Z protein polymers from human and mouse livers and the effect of heat. Hepatology 2005; 41:160-7. [PMID: 15619240 DOI: 10.1002/hep.20508] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Alpha-1-antitrypsin (alpha1AT) deficiency in its most common form is caused by homozygosity for the alpha1AT mutant Z gene. This gene encodes a mutant Z secretory protein, primarily synthesized in the liver, that assumes an abnormal conformation and accumulates within hepatocytes causing liver cell injury. Studies have shown that mutant alpha1ATZ protein molecules form unique protein polymers. These Z protein polymers have been hypothesized to play a critical role in the pathophysiology of liver injury in this disease, although a lack of quantitative methods to isolate the polymers from whole liver has hampered further analysis. In this study, we demonstrate a quantitative alpha1ATZ polymer isolation technique from whole liver and show that the hepatocellular periodic acid-Schiff-positive globular inclusions that are the histopathological hallmark of this disease are composed almost entirely of the polymerized alpha1ATZ protein. Furthermore, we examine the previously proposed but untested hypothesis that induction of alpha1ATZ polymerization by the heat of physiological fever is part of the mechanism of hepatic alpha1ATZ protein accumulation. The results, however, show that fever-range temperature elevations have no detectable effect on steady-state levels of intrahepatic Z protein polymer in a model in vivo system. In conclusion, methods to separate insoluble protein aggregates from liver can be used for quantitative isolation of alpha1ATZ protein polymers, and the effect of heat from physiological fever may be different in vivo compared with in vitro systems.
Collapse
Affiliation(s)
- Jae-Koo An
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | | | | | | |
Collapse
|
36
|
Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2004; 286:G851-62. [PMID: 14684378 DOI: 10.1152/ajpgi.00175.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Homozygous, PIZZ alpha(1)-antitrypsin (alpha(1)-AT) deficiency is associated with chronic liver disease and hepatocellular carcinoma resulting from the toxic effects of mutant alpha(1)-anti-trypsin Z (alpha(1)-ATZ) protein retained in the endoplasmic reticulum (ER) of hepatocytes. However, the exact mechanism(s) by which retention of this aggregated mutant protein leads to cellular injury are still unknown. Previous studies have shown that retention of mutant alpha(1)-ATZ in the ER induces an intense autophagic response in hepatocytes. In this study, we present evidence that the autophagic response induced by ER retention of alpha(1)-ATZ also involves the mitochondria, with specific patterns of both mitochondrial autophagy and mitochondrial injury seen in cell culture models of alpha(1)-AT deficiency, in PiZ transgenic mouse liver, and in liver from alpha(1)-AT-deficient patients. Evidence for a unique pattern of caspase activation was also detected. Administration of cyclosporin A, an inhibitor of mitochondrial permeability transition, to PiZ mice was associated with a reduction in mitochondrial autophagy and injury and reduced mortality during experimental stress. These results provide evidence for the novel concept that mitochondrial damage and caspase activation play a role in the mechanism of liver cell injury in alpha(1)-AT deficiency and suggest the possibility of mechanism-based therapeutic interventions.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- Dept. of Pediatrics, Washington Univ. School of Medicine, 660 South Euclid Ave., Box 8208, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
37
|
McCracken AA, Brodsky JL. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 2003; 25:868-77. [PMID: 12938176 DOI: 10.1002/bies.10320] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ER-associated degradation (ERAD) is a component of the protein quality control system, ensuring that aberrant polypeptides cannot transit through the secretory pathway. This is accomplished by a complex sequence of events in which unwanted proteins are selected in the ER and exported to the cytosol for degradation by the proteasome. Given that protein quality control can be essential for cell survival, it is not surprising that ERAD is linked to numerous disease states. Here we review the molecular mechanisms of ERAD, its role in metabolic regulation and biomedical implications, and the unanswered questions regarding this process.
Collapse
|
38
|
Perlmutter DH. Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J Clin Invest 2003. [PMID: 12464659 DOI: 10.1172/jci0216787] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- David H Perlmutter
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
39
|
Perlmutter DH. Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J Clin Invest 2002; 110:1579-83. [PMID: 12464659 PMCID: PMC151639 DOI: 10.1172/jci16787] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David H Perlmutter
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
40
|
Teter K, Holmes RK. Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun 2002; 70:6172-9. [PMID: 12379695 PMCID: PMC130429 DOI: 10.1128/iai.70.11.6172-6179.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 08/06/2002] [Accepted: 08/15/2002] [Indexed: 11/20/2022] Open
Abstract
Many plant and bacterial toxins act upon cytosolic targets and must therefore penetrate a membrane barrier to function. One such class of toxins enters the cytosol after delivery to the endoplasmic reticulum (ER). These proteins, which include cholera toxin (CT), Pseudomonas aeruginosa exotoxin A (ETA), and ricin, move from the plasma membrane to the endosomes, pass through the Golgi apparatus, and travel to the ER. Translocation from the ER to the cytosol is hypothesized to involve the ER-associated degradation (ERAD) pathway. We developed a genetic strategy to assess the role of mammalian ERAD in toxin translocation. Populations of CHO cells were mutagenized and grown in the presence of two lethal toxins, ETA and ricin. Since these toxins bind to different surface receptors and attack distinct cytoplasmic targets, simultaneous acquisition of resistance to both would likely result from the disruption of a shared trafficking or translocation mechanism. Ten ETA- and ricin-resistant cell lines that displayed unselected resistance to CT and continued sensitivity to diphtheria toxin, which enters the cytosol directly from acidified endosomes, were screened for abnormalities in the processing of a known ERAD substrate, the Z form of alpha1-antitrypsin (alpha1AT-Z). Compared to the parental CHO cells, the rate of alpha1AT-Z degradation was decreased in two independent mutant cell lines. Both of these cell lines also exhibited, in comparison to the parental cells, decreased translocation and degradation of a recombinant CTA1 polypeptide. These findings demonstrated that decreased ERAD function was associated with increased cellular resistance to ER-translocating protein toxins in two independently derived mutant CHO cell lines.
Collapse
Affiliation(s)
- Ken Teter
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
41
|
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:255-63. [PMID: 11786419 PMCID: PMC1867135 DOI: 10.1016/s0002-9440(10)64369-6] [Citation(s) in RCA: 494] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure of cells to stress, particularly oxidative stress, leads to misfolding of proteins and, if they are not refolded or degraded, to cytoplasmic protein aggregates. Protein aggregates are characteristic features of a variety of chronic toxic and degenerative diseases, such as Mallory bodies (MBs) in hepatocytes in alcoholic and non-alcoholic steatohepatitis, neurofibrillary tangles in neurons in Alzheimer's, and Lewy bodies in Parkinson's disease. Using 2D gel electrophoresis and mass spectrometry, we identified p62 as a novel MB component. p62 and cytokeratins (CKs) are major MB constituents; HSP 70, HSP 25, and ubiquitinated CKs are also present. These proteins characterize MBs as a prototype of disease-associated cytoplasmic inclusions generated by stress-induced protein misfolding. As revealed by transfection of tissue culture cells overexpressed p62 did not induce aggregation of regular CK filaments but selectively bound to misfolded and ubiquitinated CKs. The general role of p62 in the cellular response to misfolded proteins was substantiated by detection of p62 in other cytoplasmic inclusions, such as neurofibrillary tangles, Lewy bodies, Rosenthal fibers, intracytoplasmic hyaline bodies in hepatocellular carcinoma, and alpha1-antitrypsin aggregates. The presence of p62 along with other stress proteins and ubiquitin in cytoplasmic inclusions indicates deposition as aggregates as a third line of defense against misfolded proteins in addition to refolding and degradation.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Department of Pathology, Karl-Franzens University, Graz, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Teckman JH, Perlmutter DH. Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 2000; 279:G961-74. [PMID: 11052993 DOI: 10.1152/ajpgi.2000.279.5.g961] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although there is evidence for specific subcellular morphological alterations in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), it is not clear whether these morphological changes are stereotypical or if they depend on the specific misfolded protein retained. This issue may be particularly important for mutant secretory protein alpha(1)-antitrypsin (alpha(1)AT) Z because retention of this mutant protein in the ER can cause severe target organ injury, the chronic hepatitis/hepatocellular carcinoma associated with alpha(1)AT deficiency. Here we examined the morphological changes that occur in human fibroblasts engineered for expression and ER retention of mutant alpha(1)ATZ and in human liver from three alpha(1)AT-deficient patients. In addition to marked expansion and dilatation of ER, there was an intense autophagic response. Mutant alpha(1)ATZ molecules were detected in autophagosomes by immune electron microscopy, and intracellular degradation of alpha(1)ATZ was partially reduced by chemical inhibitors of autophagy. In contrast to mutant CFTRDeltaF508, expression of mutant alpha(1)ATZ in heterologous cells did not result in the formation of aggresomes. These results show that ER retention of mutant alpha(1)ATZ is associated with a marked autophagic response and raise the possibility that autophagy represents a mechanism by which liver of alpha(1)AT-deficient patients attempts to protect itself from injury and carcinogenesis.
Collapse
Affiliation(s)
- J H Teckman
- Department of Pediatrics, Washington University School of Medicine, Division of Gastroenterology and Nutrition, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|