1
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
2
|
Eicher AK, Kechele DO, Sundaram N, Berns HM, Poling HM, Haines LE, Sanchez JG, Kishimoto K, Krishnamurthy M, Han L, Zorn AM, Helmrath MA, Wells JM. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 2022; 29:36-51.e6. [PMID: 34856121 PMCID: PMC8741755 DOI: 10.1016/j.stem.2021.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Human organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue. Using this experimental system, we show that human enteric neural crest cells (ENCCs) promote mesenchyme development and glandular morphogenesis of antral stomach organoids. Moreover, ENCCs can act directly on the foregut to promote a posterior fate, resulting in organoids with a Brunner's gland phenotype. Thus, germ layer components that are derived separately from PSCs can be used for tissue engineering to generate complex human organoids.
Collapse
Affiliation(s)
- Alexandra K. Eicher
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Daniel O. Kechele
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - H. Matthew Berns
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Holly M. Poling
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lauren E. Haines
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - J. Guillermo Sanchez
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Keishi Kishimoto
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,CuSTOM-RIKEN BDR Collaborative Laboratory, CCHMC, Cincinnati, OH, 45229, USA,Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Mansa Krishnamurthy
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Michael A. Helmrath
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - James M. Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Lead Contact and Corresponding Author,Corresponding Author’s:
| |
Collapse
|
3
|
Stages of Gut Development as a Useful Tool to Prevent Gut Alterations in Piglets. Animals (Basel) 2021; 11:ani11051412. [PMID: 34069190 PMCID: PMC8155857 DOI: 10.3390/ani11051412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
During the prenatal, neonatal, and weaning periods, the porcine gastrointestinal tract undergoes several morpho-functional, changes together with substantial modification of the microbial ecosystem. Modifications of the overall structure of the small intestine also occur, as well as a rapid increase of the volume, mainly in the last period of gestation: intestinal villi, starting from jejunum, appears shortly before the sixth week of gestation, and towards the end of the third month, epithelial cells diversify into enterocytes, goblet cells, endocrine, and Paneth cells. Moreover, in the neonatal period, colostrum induces an increase in intestinal weight, absorptive area, and brush border enzyme activities: intestine doubles its weight and increases the length by 30% within three days of birth. During weaning, intestinal environment modifies drastically due to a replacement of highly digestible sow milk by solid feed: profound changes in histological parameters and enzymatic activity are associated with the weaning period, such as the atrophy of the villi and consequent restorative hypertrophy of the crypts. All these modifications are the result of a delicate and precise balance between the proliferation and the death of the cells that form the intestinal mucosa (i.e., mitosis and apoptosis) and the health conditions of the piglet. An in-depth knowledge of these phenomena and of how they can interfere with the correct intestinal function can represent a valid support to predict strategies to improve gut health in the long-term and to prevent weaning gut alterations; thus, reducing antimicrobial use.
Collapse
|
4
|
Laurila S, Rebelos E, Honka MJ, Nuutila P. Pleiotropic Effects of Secretin: A Potential Drug Candidate in the Treatment of Obesity? Front Endocrinol (Lausanne) 2021; 12:737686. [PMID: 34671320 PMCID: PMC8522834 DOI: 10.3389/fendo.2021.737686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
Secretin is the first hormone that has been discovered, inaugurating the era and the field of endocrinology. Despite the initial focus, the interest in its actions faded away over the decades. However, there is mounting evidence regarding the pleiotropic beneficial effects of secretin on whole-body homeostasis. In this review, we discuss the evidence from preclinical and clinical studies based on which secretin may have a role in the treatment of obesity.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Department of Cardiology, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- *Correspondence: Pirjo Nuutila,
| |
Collapse
|
5
|
Mastrodonato M, Calamita G, Mentino D, Scillitani G. High-fat Diet Alters the Glycosylation Patterns of Duodenal Mucins in a Murine Model. J Histochem Cytochem 2020; 68:279-294. [PMID: 32141795 DOI: 10.1369/0022155420911930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) alters the glycosylation patterns of intestinal mucins leading to several health problems. We studied by histochemical and lectin-binding methods mucin alterations in the duodenum of mice fed a HFD for 25 weeks. Histochemical methods included periodic acid-Schiff, alcian blue pH 2.5, and high-iron diamine. Lectin-binding experiments were performed with SBA, PNA, WGA, MAA-II, SNA, ConA, UEA-I, LTA, and AAA. SBA, PNA, WGA, MAA-II, and SNA were tested also after desulfation and ConA after periodate-sodium borohydrate treatments (paradoxical ConA). Duodenal mucins are secreted by Brunner's glands and goblet cells in the villi. Brunner's glands of HFD mice showed increased secreting activity and a general reduction of glycosylated residuals, such as fucose and terminal α1,4-linked GlcNAc. Moreover, a general reduction of glycosylated residuals in the goblet cells of villi such as the fucosylated and sulfated ones was observed. Since the cited residuals are involved in cytoprotective and cytostatic functions, as well as in interactions with the intestinal microbiota and protection against parasites and inflammatory disorders, we conclude that HFD can predispose duodenum to several possible health disorders.
Collapse
Affiliation(s)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | | | | |
Collapse
|
6
|
Pelagalli A, Squillacioti C, Mirabella N, Meli R. Aquaporins in Health and Disease: An Overview Focusing on the Gut of Different Species. Int J Mol Sci 2016; 17:1213. [PMID: 27472320 PMCID: PMC5000611 DOI: 10.3390/ijms17081213] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields.
Collapse
Affiliation(s)
- Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy.
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
7
|
Collaco AM, Jakab RL, Hoekstra NE, Mitchell KA, Brooks A, Ameen NA. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport. Am J Physiol Gastrointest Liver Physiol 2013; 305:G258-75. [PMID: 23744739 PMCID: PMC3742856 DOI: 10.1152/ajpgi.00485.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Anne M. Collaco
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Robert L. Jakab
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Nadia E. Hoekstra
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Kisha A. Mitchell
- 2Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Amos Brooks
- 2Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Nadia A. Ameen
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; ,3Department Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Boonzaier J, Van der Merwe EL, Bennett NC, Kotzé SH. A comparative histochemical study of the distribution of mucins in the gastrointestinal tracts of three insectivorous mammals. Acta Histochem 2013; 115:549-56. [PMID: 23313440 DOI: 10.1016/j.acthis.2012.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/27/2012] [Accepted: 12/02/2012] [Indexed: 11/25/2022]
Abstract
The distribution of mucous secreting goblet cells was examined in the gastrointestinal tracts of three insectivores namely: Acomys spinosissimus (Southern African spiny mouse), Crocidura cyanea (Reddish gray musk shrew) and Amblysomus hottentotus (Hottentot golden mole) in order to improve our understanding of the quality and composition of the protective intestinal biofilm. Intestinal tracts were fixed and processed to wax for histology. Serial transverse sections were stained using alcian blue-periodic acid Schiff, alcian blue-aldehyde fuchsin and alcian blue-high iron diamine techniques. Photomicrographs of the stained sections were analyzed by quantifying the number of goblet cells containing mucins per mm(2) in the surface epithelial or crypt areas. Neutral mucins predominated in the gastric epithelium of all three insectivores, while sialomucins were absent in the stomach of C. cyanea. In all three species, goblet cells producing a mixture of neutral and acid mucins were most abundant throughout the intestinal tract as were cells secreting a mixture of sulfomucins and sialomucins. However, differences between the insectivore species were observed in the qualitative expression and distribution of mucins throughout the intestinal tract. Similarities between the insectivores of this study and other distantly related species suggest that mixed mucin goblet cells are essential for the formation of the biofilm, irrespective of their diet or taxonomy.
Collapse
|
9
|
Cosen-Binker LI, Morris GP, Vanner S, Gaisano HY. Munc18/SNARE proteins’ regulation of exocytosis in guinea pig duodenal Brunner’s gland acini. World J Gastroenterol 2008; 14:2314-22. [PMID: 18416456 PMCID: PMC2705084 DOI: 10.3748/wjg.14.2314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the molecular mechanism of exocytosis in the Brunner’s gland acinar cell.
METHODS: We used a submucosal preparation of guinea pig duodenal Brunner’s gland acini to visualize the dilation of the ductal lumen in response to cholinergic stimulus. We correlated this to electron microscopy to determine the extent of exocytosis of the mucin-filled vesicles. We then examined the behavior of SNARE and interacting Munc18 proteins by confocal microscopy.
RESULTS: One and 6 &mgr;mol/L carbachol evoked a dose-dependent dilation of Brunner’s gland acini lumen, which correlated to the massive exocytosis of mucin. Munc18c and its cognate SNARE proteins Syntaxin-4 and SNAP-23 were localized to the apical plasma membrane, and upon cholinergic stimulation, Munc18c was displaced into the cytosol leaving Syntaxin-4 and SNAP-23 intact.
CONCLUSION: Physiologic cholinergic stimulation induces Munc18c displacement from the Brunner’s gland acinar apical plasma membrane, which enables apical membrane Syntaxin-4 and SNAP-23 to form a SNARE complex with mucin-filled vesicle SNARE proteins to affect exocytosis.
Collapse
|
10
|
Lam IPY, Siu FKY, Chu JYS, Chow BKC. Multiple actions of secretin in the human body. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:159-90. [PMID: 18275888 DOI: 10.1016/s0074-7696(07)65004-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of secretin initiated the field of endocrinology. Over the past century, multiple gastrointestinal functions of secretin have been extensively studied, and it was discovered that the principal function of this peptide in the gastrointestinal system is to facilitate digestion and to provide protection. In view of the late identification of secretin and the secretin receptor in various tissues, including the central nervous system, the pleiotropic functions of secretin have more recently been an area of intense focus. Secretin is a classical hormone, and recent studies clearly showed secretin's involvement in neural and neuroendocrine pathways, although the neuroactivity and neural regulation of its release are yet to be elucidated. This chapter reviews our current understanding of the pleiotropic actions of secretin with a special focus on the hormonal and neural interdependent pathways that mediate these actions.
Collapse
Affiliation(s)
- Ian P Y Lam
- Department of Zoology, University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
11
|
Montrose MH, Akiba Y, Takeuchi K, Kaunitz JD. Gastroduodenal Mucosal Defense. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2006:1259-1291. [DOI: 10.1016/b978-012088394-3/50053-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Just PA, Hoang C, Cadi M, Menegaux F, Capron F. Invagination intestinale aiguë de cause inhabituelle. ACTA ACUST UNITED AC 2005; 29:1160-3. [PMID: 16505763 DOI: 10.1016/s0399-8320(05)82182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the first case of small-bowel intussusception caused by a tumour-like Brunner's gland hyperplasia in a 26 year old woman. The patient presented with intense abdominal pain. Abdominal and pelvic contrast enhanced CT-scan suggested small bowel intussusception involving the first jejunal loop. A 15 cm long polypoid mass was found in the jejunumectomy specimen (2nd and 3rd loops). Histological examination revealed Brunner's gland hyperplasia in the jejunal mucosa and submucosa. Considering the jejunal location of the lesion, it must be considered malformative and heterotopic Brunner's gland hyperplasia.
Collapse
Affiliation(s)
- Pierre-Alexandre Just
- Service d'Anatomie et de Cytologie Pathologiques, Digestive et Endocrinienne, Groupe Hospitalier Pitié-Salpêtrière, 47-83 boulevard de l'Hôpital, 75651 Paris Cedex 13
| | | | | | | | | |
Collapse
|
13
|
Parvin MN, Kurabuchi S, Murdiastuti K, Yao C, Kosugi-Tanaka C, Akamatsu T, Kanamori N, Hosoi K. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner's gland of the rat duodenum. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1283-91. [PMID: 15650134 DOI: 10.1152/ajpgi.00030.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aquaporin (AQP)5, an exocrine-type water channel, was detected in the rat duodenum by Western blot analysis, and was localized by immunohistochemistry in the secretory granule membranes as well as in the apical and lateral aspects of the plasma membrane of Brunner's gland cells. Incubation of duodenal slices with vasoactive intestinal polypeptide (VIP) in vitro significantly increased the amount of AQP5 in the apical membrane fraction in a dose- and time-dependent manner with the amount reaching a plateau at 100 nM VIP and becoming near maximal after a 30-s incubation. Protein kinase inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7, 50 muM), and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89; PKA-specific, 1 muM) blocked this increase, but PKC-specific inhibitor calphostin C did not, implying the involvement of PKA but not PKC in this cellular event. Intravenous injection with VIP (40 mug/kg body wt) provoked dilation of the lumen of the Brunner's gland at 2 and 7 min and increased the staining intensity of AQP5 in the apical and lateral membranes. AQP1 (both nonglycosylated and glycosylated forms) was also found to localize in the apical and basolateral membranes of cells of Brunner's gland. VIP, however, did not provoke any significant change in the AQP1 level in the apical membrane, as judged from the results of the above in vitro and in vivo experiments. These results suggest that VIP induced the exocytosis of granule contents and simultaneously caused translocation of AQP5 but not of AQP1 to the apical membrane in Brunner's gland cells.
Collapse
Affiliation(s)
- Most Nahid Parvin
- Dept. of Molecular Oral Physiology, Institute of Health Biosciences, The Univ. of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kovac J, Moore B, Vanner S. Potassium currents regulating secretion from Brunner's glands in guinea pig duodenum. Am J Physiol Gastrointest Liver Physiol 2004; 286:G377-84. [PMID: 14604859 DOI: 10.1152/ajpgi.00153.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined the role of outward K(+) currents in the acinar cells underlying secretion from Brunner's glands in guinea pig duodenum. Intracellular recordings were made from single acinar cells in intact acini in in vitro submucosal preparations, and videomicroscopy was employed in the same preparation to correlate these measures with secretion. Mean resting membrane potential was -74 mV and was depolarized by high external K(+) (20 mM) and the K(+) channel blockers 4-aminopyridine (4-AP), quinine, and clotrimazole. The cholinergic agonist carbachol (60-2,000 nM; EC(50) = 200 nM) caused a concentration-dependent initial hyperpolarization of the membrane and an associated decrease in input resistance. This hyperpolarization was significantly decreased by 20 mM external K(+) or membrane hyperpolarization and increased by 1 mM external K(+) or membrane depolarization. It was blocked by the K(+) channel blockers tetraethylammonium (TEA), 4-AP, quinine, and clotrimazole but not iberiotoxin. When videomicroscopy was employed to measure dilation of acinar lumen in the same preparation, carbachol-evoked dilations were altered in a parallel fashion when external K(+) was altered. The dilations were also blocked by the K(+) channel blockers TEA, 4-AP, quinine, and clotrimazole but not iberiotoxin. These findings suggest that activation of outward K(+) currents is fundamental to the initiation of secretion from these glands, consistent with the model of K(+) efflux from the basolateral membrane providing the driving force for secretion. The pharmacological profile suggests that these K(+) channels belong to the intermediate conductance group.
Collapse
Affiliation(s)
- Jason Kovac
- Gastrointestinal Diseases Research Unit, Queen's University Hospital, Kingston, Ontario, Canada
| | | | | |
Collapse
|
15
|
Moore BA, Kim D, Vanner S. Neural pathways regulating Brunner's gland secretion in guinea pig duodenum in vitro. Am J Physiol Gastrointest Liver Physiol 2000; 279:G910-7. [PMID: 11052987 DOI: 10.1152/ajpgi.2000.279.5.g910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined the neural pathways innervating Brunner's glands using a novel in vitro model of acinar secretion from Brunner's glands in submucosal preparations from the guinea pig duodenum. Neural pathways were activated by focal electrical stimulation and excitatory agonists, and videomicroscopy was used to monitor dilation of acinar lumen. Electrical stimulation of perivascular nerves evoked large dilations that were blocked by TTX (1 microM) or the muscarinic receptor antagonist 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride (1 microM). The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium iodide (100 microM) had no effect, and the nerve-evoked responses were not inhibited by hexamethonium (200 microM). Dilations were abolished in preparations from chronically vagotomized animals. Activation of submucosal ganglia significantly dilated submucosal arterioles but not Brunner's glands. Effects of electrical stimulation of perivascular and submucosal nerves were not altered by guanethidine. Capsaicin and substance P also dilated arterioles but had no effect on Brunner's glands. Cholinergic (choline acetyltransferase-immunoreactive) nerve fibers were found in Brunner's glands. These findings demonstrate that Brunner's glands are innervated by cholinergic vagal fibers but not by capsaicin-sensitive or intrinsic enteric nerves.
Collapse
Affiliation(s)
- B A Moore
- Gastrointestinal Diseases Research Unit, Departments of Medicine and Physiology, Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | | | |
Collapse
|