1
|
Guo Y, Li L, Yan S, Shi B. Plant Extracts to Alleviating Heat Stress in Dairy Cows. Animals (Basel) 2023; 13:2831. [PMID: 37760231 PMCID: PMC10525364 DOI: 10.3390/ani13182831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Heat stress (HS) in cows is a critical issue in the dairy industry. Dairy cows accumulate heat from body metabolism, along with that imposed by air temperature, humidity, air flow and solar radiation. HS in animals can occur during hot and humid summers when the ambient temperature is extremely high. Dairy cows have relatively high feed intakes and metabolic heat production and are thus susceptible to HS, leading to reductions in feed intake, lower milk yield, affected milk quality, reduced animal health and even shortening the productive lifespan of cows. Therefore, alleviating HS is a top priority for the dairy industry. Suitable plant extracts have advantages in safety, efficiency and few toxic side effects or residues for applications to alleviate HS in dairy cows. This paper reviews the effects of some plant extract products on alleviating HS in dairy cows and briefly discusses their possible mechanisms of action.
Collapse
Affiliation(s)
| | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science at University of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | | |
Collapse
|
2
|
Nguyen TNM, Sha S, Chen LJ, Holleczek B, Brenner H, Schöttker B. Strongly increased risk of gastric and duodenal ulcers among new users of low-dose aspirin: results from two large cohorts with new-user design. Aliment Pharmacol Ther 2022; 56:251-262. [PMID: 35621052 DOI: 10.1111/apt.17050] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Low-dose aspirin is a risk factor for peptic ulcer disease but previous, population-based cohort studies may have underestimated the low-dose aspirin risk because they did not use a new-user design. Gastrointestinal bleeding occurs more frequently early after initiation of low-dose aspirin therapy than in later years. AIM To assess the associations of low-dose aspirin with gastric and duodenal ulcer incidence in prevalent- and new-user design. METHODS Multivariate Cox regression models in the German ESTHER study (N = 7737) and the UK Biobank (N = 213,598) with more than 10 years of follow-up. RESULTS In the prevalent-user design, there was no significant association between low-dose aspirin and gastric ulcer observed in both cohorts. Furthermore, low-dose aspirin was weakly, statistically significantly associated with prevalent duodenal ulcer in the UK Biobank (hazard ratio [95% confidence interval]: 1.27 [1.07-1.51]) but not in the ESTHER study (1.33 [0.54-3.29]). When restricting the exposure to only new users, the hazard ratios for incident gastric and duodenal ulcer disease were 1.82 [1.58-2.11] and 1.66 [1.36-2.04] in the UK Biobank, respectively, and 2.83 [1.40-5.71] and 3.89 [1.46-10.42] in the ESTHER study, respectively. CONCLUSIONS This study shows that low-dose aspirin is an independent risk factor for both gastric and duodenal ulcers. The associations were not significant or weak in the prevalent-user design and strong and statistically significant in the new-user design in both cohorts. Thus, it is important to weigh risks against benefits when low-dose aspirin treatment shall be initiated and to monitor adverse gastrointestinal symptoms after the start of low-dose aspirin therapy.
Collapse
Affiliation(s)
- Thi Ngoc Mai Nguyen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Sha Sha
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li-Ju Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Bastaki SMA, Padol IT, Amir N, Hunt RH. Effect of Aspirin and ibuprofen either alone or in combination on gastric mucosa and bleeding time and on serum prostaglandin E 2 and thromboxane A 2 levels in the anaesthetized rats in vivo. Mol Cell Biochem 2017; 438:25-34. [PMID: 28766164 DOI: 10.1007/s11010-017-3110-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/01/2017] [Indexed: 12/28/2022]
Abstract
There is much evidence that a combination of ibuprofen (IBU) and Aspirin (ASA) can antagonize the irreversible inhibition of platelet function. This study was designed to investigate the degree of gastric damage, bleeding time (BT) and fluctuations in the serum levels of prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) after oral administration of ASA (200 mg/kg) and IBU (50 mg/kg) either alone or in combination in rats in vivo. The stomach was assessed for any damage either after 6 h, 18 h or 6 days and carboxymethylcellulose (1% CMC) served as a vehicle and control. ELISA was used to measure TXA2 and PGE2 in serum. Bleeding time was assessed using tail blood. The results show that ASA and IBU either alone or in combination can cause gastric ulceration in 25-100% of the rats at 6 and 18 h. In contrast, gastric ulceration was seen in 50% of rats with a combination of ASA given before IBU only after 6 days of oral administration. BT was unaffected either by ASA or IBU when administered alone except after 18 h for IBU. In contrast, BT was significantly reduced when IBU was administered before ASA after 18 h and 6 days (P < 0.001). Serum PGE2 levels decreased significantly after ASA administered either alone or in combination with IBU for 6 h, 18 h and 6 days (P < 0.05). Serum TXA2 levels were significantly reduced after 6 h, 18 h and 6 days following ASA and IBU administration except for IBU alone which caused a significant increase in serum TXA2 6 days after its administration (P < 0.01). It can be concluded that ASA and IBU administered either alone or in combination can cause gastric ulcers in the rat stomach after 6 h and 18 h, but less severe after 6 days. IBU either alone or in combination with ASA reduced BT only after 18 h and 6 days of administration. Together, the results show that gastric ulceration correlated well with the inhibition of serum PGE2 and TXA2 levels.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Twam Street, P.O. Box 17666, Al Ain, UAE.
| | - Ireneusz T Padol
- Division of Gastroenterology, McMaster University, Hamilton, ON, Canada
| | - Naheed Amir
- Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Twam Street, P.O. Box 17666, Al Ain, UAE
| | - Richard H Hunt
- Division of Gastroenterology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Lee BH, Kim N, Nam RH, Lee JY, Lee HS, Lee CH, Park JH, Lee DH. Difficult establishment of a chronic nonsteroidal anti-inflammatory drugs induced gastric inflammation rat model due to gastric adaptation and small bowel damage. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 63:341-7. [PMID: 24953610 DOI: 10.4166/kjg.2014.63.6.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS The prevalence of peptic ulcer disease has not decreased mainly due to an increase in the use of NSAIDs. This study was conducted in order to determine whether a chronic NSAID-induced gastric inflammation model could be established by repeated administration of NSAID. METHODS Indomethacin (10 mg/kg) was administered once per week for six weeks in 8- and 26-week rats and animals were sacrificed every week after administration. Gross ulcer index, histologic damage index, myeloperoxidase (MPO) activity, and mucus (glucosamine) levels were measured. Small bowel damage was also evaluated. RESULTS Gross gastric damage index showed a peak level at three weeks and then decreased slowly in the 26-week indomethacin group. Gastric mucosal glucosamine level increased in both the 8-week (p=0.038) and 26-week groups (p=0.007). In addition, gastric mucosal MPO level decreased in the 8-week group (p=0.018) but did not show a decrease in the 26-week group. Small bowel damage began to occur at three weeks during the schedule and eight of 36 rats (22.2%) died due to perforation or peritonitis of the small bowel in the 8- and 26-week indomethacin groups, respectively. CONCLUSIONS Due to gastric adaptation and small bowel damage, repeated administration of NSAID to experimental animals may not be an adequate method for establishment of the chronic gastric inflammation model.
Collapse
Affiliation(s)
- Byoung Hwan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 463-707, Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang XH, Zhu HS, Qian Z, Tang S, Wu D, Kemper N, Hartung J, Bao ED. The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells. J Vet Sci 2016; 17:35-44. [PMID: 27051338 PMCID: PMC4808642 DOI: 10.4142/jvs.2016.17.1.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/08/2023] Open
Abstract
The protective effect of aspirin during exposure to heat stress in broiler chickens was investigated. We assayed pathological damage, expression and distribution of Hsp90 protein and hsp90 mRNA expression in chicken heart tissues after oral administration of aspirin following exposure to high temperature for varying times. Heat stress induced increases in plasma aspartate aminotransferase, creatine kinase and lactate dehydrogenase activities while causing severe heart damage, which was characterized by granular and vacuolar degeneration, nuclear shrinkage and even myocardium fragmentation in cardiac muscle fibers. After aspirin administration, myocardial cells showed fewer pathological lesions than broilers treated with heat alone. A high positive Hsp90 signal was always detected in the nuclei of myocardial cells from broilers treated with aspirin, while in myocardial cells treated with heat alone, Hsp90 in the nuclei decreased, as did that in the cytoplasm. Aspirin induced rapid and significant synthesis of Hsp90 before and at the initial phase of heat stress, and significant expression of hsp90 mRNA was stimulated throughout the experiment when compared with cells exposed to heat stress alone. Thus, specific pre-induction of Hsp90 in cardiovascular tissue was useful for resisting heat stress damage because it produced stable damage-related enzymes and fewer pathologic changes.
Collapse
Affiliation(s)
- Xiao-hui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huai-sen Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - Joerg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - En-dong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Yeomans ND, Hawkey CJ, Brailsford W, Naesdal J. Gastroduodenal toxicity of low-dose acetylsalicylic acid: a comparison with non-steroidal anti-inflammatory drugs. Curr Med Res Opin 2009; 25:2785-93. [PMID: 19788350 DOI: 10.1185/03007990903212682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Low-dose acetylsalicylic acid (ASA; aspirin; 75-325 mg/day) is effective for the prevention of cardiovascular events, and its use in this indication is rapidly increasing. However, the use of ASA and, indeed, other non-steroidal anti-inflammatory drugs (NSAIDs) is limited by the incidence of adverse gastroduodenal events. OBJECTIVES AND SCOPE: To review the clinical evidence for, and the pharmacodynamic basis of, ASA-induced gastroduodenal toxicity in comparison with NSAIDs, and address the question of whether low-dose ASA is 'safe' from a gastroduodenal perspective. This was a narrative, descriptive review, rather than a formal systematic review. FINDINGS Adverse gastroduodenal effects, which are well known to occur with NSAIDs, are also prevalent in patients receiving low-dose ASA for cardiovascular protection even at doses as low as 75 mg/day. The risk of gastroduodenal toxicity is particularly high among 'at-risk' low-dose ASA patients (aged >70 years, previous ulcer or upper gastrointestinal bleeding and users of antiplatelets or NSAIDs). There are important differences in the mechanism of ASA-induced gastroduodenal toxicity, relative to NSAIDs. These differences include the effects on the cyclooxygenase (COX)-1 isoenzyme, local effects on the gastroduodenal mucosa specific to ASA and a reduction in platelet aggregation. CONCLUSION Data suggest that ASA causes significant gastroduodenal damage even at the low doses used for cardiovascular protection. These effects (both systemic and possibly local) may be pharmacodynamically distinct from the gastroduodenal toxicity seen with NSAIDs. Studies are required to establish strategies for improving the tolerability of low-dose ASA, allowing patients to continue to benefit from the cardiovascular protection associated with such therapy.
Collapse
Affiliation(s)
- Neville D Yeomans
- School of Medicine, University of Western Sydney, Penrith South DC, NSW 1797, Australia.
| | | | | | | |
Collapse
|
7
|
Sivalingam N, Basivireddy J, Pulimood AB, Balasubramanian K, Jacob M. Activation of phospholipase A2 is involved in indomethacin-induced damage in Caco-2 cells. Toxicol In Vitro 2009; 23:887-96. [DOI: 10.1016/j.tiv.2009.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/07/2009] [Accepted: 05/15/2009] [Indexed: 12/26/2022]
|
8
|
Tominaga M, Ohta M, Kai S, Iwaki K, Shibata K, Kitano S. Increased heat-shock protein 90 expression contributes to impaired adaptive cytoprotection in the gastric mucosa of portal hypertensive rats. J Gastroenterol Hepatol 2009; 24:1136-41. [PMID: 19383083 DOI: 10.1111/j.1440-1746.2008.05763.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Portal hypertensive (PHT) gastropathy results in an increased susceptibility to damage. Adaptive cytoprotection against ethanol-induced damage is impaired in the gastric mucosa of rats with portal hypertension. Excessive nitric oxide (NO) production occurs in portal hypertension and is mediated in part via heat-shock protein (Hsp)90 production. The aim of this study was to investigate the relation between adaptive cytoprotection after exposure to ethanol and gastric expression of Hsp90 in PHT rats. METHODS Portal hypertension was induced in rats by staged portal vein occlusion. Adaptive cytoprotection to 70% ethanol was evaluated by assessing the injury index of the gastric mucosa with or without pretreatment with 10% ethanol. Expression of Hsp90 mRNA was evaluated by real-time polymerase chain reaction, and expression of Hsp90 protein was evaluated by western blotting. The effect of Hsp90 inhibition in PHT rats was evaluated by administration of geldanamycin. RESULTS Gastric Hsp90 mRNA expression in PHT rats was significantly less than that in sham-operated (SO) controls. However, after 10% ethanol pretreatment, Hsp90 mRNA expression was significantly greater in PHT rats than in SO controls. In PHT rats, gastric Hsp90 protein expression after 10% ethanol pretreatment was significantly greater than that without the pretreatment. However, the pretreatment had no effect on the injury index compared to SO rats. Administration of geldanamycin prior to 10% ethanol pretreatment significantly decreased the injury index in response to 70% ethanol in the PHT rats. CONCLUSIONS These results show that 10% ethanol pretreatment markedly increases gastric Hsp90 expression in PHT rats. Excessive production of Hsp90 may contribute impaired adaptive cytoprotection.
Collapse
Affiliation(s)
- Masayuki Tominaga
- Department of Surgery I, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Song HJ, Shin CY, Oh TY, Sohn UD. The protective effect of eupatilin on indomethacin-induced cell damage in cultured feline ileal smooth muscle cells: involvement of HO-1 and ERK. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:94-101. [PMID: 18440740 DOI: 10.1016/j.jep.2008.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 02/17/2008] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
Chronic users of non-steroidal anti-inflammatory drugs frequently develop ulcerative lesions in their intestines. The purpose of the present study was to investigate whether eupatilin, an active ingredient derived from Artemisia plants, prevents this side effect in vitro. Extracts of the whole herb of Artemisia asiatica Nakai have been used in oriental medicine for the treatment of inflammation. As measured by the MTT assay, the treatment of cultured feline ileal smooth muscle cells (ISMCs) with 2.5mM indomethacin for 2h decreased the cell viability to 43%. Pretreatment with eupatilin resulted in dose-dependent inhibition on indomethacin-induced cell damage. This cytoprotective effect of eupatilin required concentrations of more than 150 microM and incubation periods of longer than 16 h. Pretreatment of ISMC with cycloheximide, an inhibitor of protein synthesis, attenuated the cytoprotective effect of eupatilin, suggesting that eupatilin induces proteins that are responsible for the cytoprotection. Heme oxygenase-1 (HO-1), which is known as a cytoprotective enzyme due to its anti-inflammatory actions, is a candidate protein since ZnPP, an HO-1 inhibitor, repressed the protective effect of eupatilin on indomethacin-induced cell damage in a concentration-dependent manner. Western blot analysis revealed that eupatilin-mediated HO-1 induction occurred in a concentration- and time-dependent manner. We also found that PD98059, a MEK (MAPK/ERK kinase) inhibitor, attenuated the eupatilin-induced HO-1 expression and nuclear translocation of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Taken together, the data imply that eupatilin protects ISMC from cell damage caused by indomethacin, and that its cytoprotective action could be attributed to eupatilin-mediated HO-1 induction via ERK and Nrf2 signaling in ISMC.
Collapse
Affiliation(s)
- Hyun Ju Song
- Department of Pharmacology, College of Pharmacy, Chung Ang University, DongJak-Gu, Seoul, South Korea
| | | | | | | |
Collapse
|
10
|
Higami Y, Tsuchiya T, Chiba T, Yamaza H, Muraoka I, Hirose M, Komatsu T, Shimokawa I. Hepatic gene expression profile of lipid metabolism in rats: Impact of caloric restriction and growth hormone/insulin-like growth factor-1 suppression. J Gerontol A Biol Sci Med Sci 2007; 61:1099-110. [PMID: 17167150 DOI: 10.1093/gerona/61.11.1099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We investigated the role of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis on caloric restriction (CR) using male wild-type and transgenic homozygous dwarf rats bearing an antisense GH transgene and their F1 heterozygous progeny fed either ad libitum or subjected to 30% CR. CR predominantly altered expression of hepatic genes involved in the stress response, xenobiotic metabolism, and lipid metabolism. Most gene expressions involved in stress response and xenobiotic metabolism were regulated in a GH/IGF-1-dependent manner, and those involved in lipid metabolism were regulated in a GH/IGF-1-independent manner. Moreover, CR enhanced the gene expression involved in fatty acid synthesis after feeding and those encoding mitochondrial beta-oxidation enzymes during food shortage, probably via transcriptional regulation by peroxisome proliferator-activated receptor alpha. These results, taken together with serum biochemical measures and hepatic triglyceride content, suggest that CR promotes lipid utilization through hepatic transcriptional alteration and prevents hepatic steatosis in a GH/IGF-1-independent manner.
Collapse
Affiliation(s)
- Yoshikazu Higami
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Starnes JW, Choilawala AM, Taylor RP, Nelson MJ, Delp MD. Myocardial Heat Shock Protein 70 Expression in Young and Old Rats After Identical Exercise Programs. J Gerontol A Biol Sci Med Sci 2005; 60:963-9. [PMID: 16127097 DOI: 10.1093/gerona/60.8.963] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthesis of inducible heat shock protein 70 (HSP70) is impaired in aged animals following acute stresses including exercise. In this study we determined whether aging affects expression of this cytoprotective protein following chronic exercise participation. Male Fischer 344 rats, final ages 6 and 24 months, exercised identically for 10 weeks on a treadmill (15 degrees incline, 15 m/min for up to 60 minutes, 5 days/week). In 6-month-old animals, exercise increased HSP70 in heart (44%), liver (216%), and skeletal muscle (126%) (p <.05 vs sedentary). In 24-month-old animals, exercise increased HSP70 in muscle (69%), but not in heart or liver. In heart, antioxidant enzyme activities and HSP70 messenger RNA were measured and found to be unaffected by exercise at both ages. Our results indicate an age-related decrease in HSP70 production in heart and liver following chronic exercise. Furthermore, the aged heart does not increase its antioxidant enzyme defenses to compensate for the HSP70 deficit.
Collapse
Affiliation(s)
- Joseph W Starnes
- Department of Kinesiology and Health Education, University of Texas, Austin, TX, USA.
| | | | | | | | | |
Collapse
|
12
|
Amir M, Kumar S. Anti-inflammatory and gastro sparing activity of some new indomethacin derivatives. Arch Pharm (Weinheim) 2005; 338:24-31. [PMID: 15674801 DOI: 10.1002/ardp.200400891] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Indomethacin is a non-steroidal anti-inflammatory drug but its use is associated with high degree of gastric toxicity therefore it is prescribed only in severe conditions. In order to reduce the gastric toxicity of indomethacin, various oxadiazole, triazole, thiadiazole and triazine derivatives have been synthesized. Out of thirteen cyclized derivatives, eleven were screened for anti-inflammatory activity by Winter et al. method. Four compounds showed highly significant activity and were further tested for analgesic, ulcerogenic and lipid peroxidation activities. The tested compounds showed anti-inflammatory activities in the range from about 32% to 85% as compared to that of indomethacin of about 96%. The compounds showing high anti-inflammatory activity also exhibited reduction in severity index. These compounds also produced less malondialdehyde content in gastric mucosa than the standard drug indomethacin. The study showed that the compounds inhibited the induction of gastric mucosal lesions and it can be suggested from our results that their protective effects may be related to inhibition of lipid peroxidation in the gastric mucosa.
Collapse
Affiliation(s)
- Mohd Amir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi 110 062, India.
| | | |
Collapse
|
13
|
Narayan S, Devi RS, Srinivasan P, Shyamala Devi CS. Pterocarpus santalinus: a traditional herbal drug as a protectant against ibuprofen induced gastric ulcers. Phytother Res 2005; 19:958-62. [PMID: 16317653 DOI: 10.1002/ptr.1764] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ethanol extract of Pterocarpus santalinus (PS) was evaluated for gastroprotection in rats using ibuprofen as the induction model. Rats treated with PS (100-400 mg/kg) showed a significant reduction in gastric lesions. PS at a dose of 200 mg/kg was found to be the minimum effective dose and hence further studies with that dose were carried out. PS treatment increased the LDH activity and decreased the lipid peroxidation levels. The extract had the ability to increase the antioxidant enzymes SOD, CAT and GPx when compared with the untreated but induced rats. The membrane bound ATPases - H(+)K(+)ATPase, Na(+)K(+)ATPase and Ca(2+)ATPases were increased upon the induction with ulcerogen. The treated group showed a decrease in the activities of these enzymes and also had the ability to restore the sodium and potassium ion concentrations to near normal levels, which were altered by ibuprofen mediated acid stimulation. The results suggest that the antiulcer properties of PS could traced to its acid inhibiting potential, antioxidant activity and the ability to maintain functional integrity of the cell membranes.
Collapse
Affiliation(s)
- Shoba Narayan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India 600 025
| | | | | | | |
Collapse
|
14
|
Lamarque D. Physiopathologie des lésions gastro-duodénales induites par les anti-inflammatoires non stéroïdiens. ACTA ACUST UNITED AC 2004; 28 Spec No 3:C18-26. [PMID: 15366671 DOI: 10.1016/s0399-8320(04)95275-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pathogenesis of the gastroduodenal lesions induced by non-steroidal anti-inflammatory drugs and aspirin is primarily caused by a reduction in mucosal blood flow, which is the consequence of inhibition of cyclooxygenase-producing vasodilator prostaglandins. The subsequent phase is adherence of leukocytes to the endothelium, which may depend on cyclooxygenase-2. Endothelial lesions accentuate the fall of mucosal blood flow and promote the inflammatory process in the gastric mucosa. The inflammatory process is amplified by expression of TNFalpha in polymorphonuclears induced by non-steroidal anti-inflammatory drugs. A few days after starting treatment, epithelial proliferation and increased mucosal blood flow, partly dependent on cyclooxygenase-2 and nitric oxide expression, compensates for the damaging process. Selective inhibitors of inducible cyclooxygenase-2 have reduced gastrointestinal toxicity, which could partially be explained by the protection effect of cyclooxygenase-2 on the gastrointestinal mucosa during inflammation or epithelial repair. Selective inhibitors may worsen inflammatory bowel disease. Non-steroidal inflammatory drugs and aspirin, but perhaps not selective inhibitors, increase the mucosal lesions associated with Helicobacter pylori-induced gastritis. Co-administration of selective inhibitors and aspirin leads to gastrointestinal toxicity equivalent to that of non-specific anti-inflammatory drugs.
Collapse
|
15
|
Alderman BM, Ulaganathan M, Judd LM, Howlett M, Parker LM, Yeomans ND, Giraud AS. Insights into the mechanisms of gastric adaptation to aspirin-induced injury: a role for regenerating protein but not trefoil peptides. J Transl Med 2003; 83:1415-25. [PMID: 14563943 DOI: 10.1097/01.lab.0000092231.54761.cd] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phenomenon of reduced gastric mucosal injury despite repeated doses of a damaging agent is termed adaptation. Adaptation to nonsteroidal anti-inflammatory drug-induced injury has been clearly demonstrated in both humans and experimental animals; however, the precise mechanisms remain unclear. We hypothesized that mediators of adaptation might be the regenerating protein (RegI) and the trefoil peptides TFF1 and TFF2, because these proteins play pivotal roles in gastric mucosal protection and repair. The gene expression and the protein levels of these proteins were measured and compared in normal, aspirin-injured, and aspirin-adapted rat stomachs. TFF gene and protein expression levels were similar in all three groups, whereas RegI gene expression and protein levels in adapted stomach were increased. A time course analysis of RegI expression during the onset and offset of adaptation showed that mucosal RegI increased during the development of adaptation, was maintained during subsequent aspirin dosing, and returned to baseline levels once dosing had ceased and adaptation was lost-indicative of a causal role in the adaptation process. Colocalization of increased RegI with gastric epithelial areas showing increased proliferation also suggests that RegI may be an important mediator of the resolution of mucosal injury that is characteristic of gastric adaptation to aspirin.
Collapse
Affiliation(s)
- Barbara M Alderman
- University of Melbourne, Department of Medicine, Western Hospital, Footscray, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Harada T, Koyama I, Kasahara T, Alpers DH, Komoda T. Heat shock induces intestinal-type alkaline phosphatase in rat IEC-18 cells. Am J Physiol Gastrointest Liver Physiol 2003; 284:G255-62. [PMID: 12388181 DOI: 10.1152/ajpgi.00244.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We demonstrate a previously unknown regulation for intestinal-type alkaline phosphatase (IAP) as a heat shock protein (HSP). Heat shock to rat intestinal epithelial cells (IEC)-18 at 43 degrees C induced the expression of IAP-I and HSP72 mRNAs time dependently (<60 min) but did not induce expression of IAP-II, tissue nonspecific-type alkaline phosphatase (TNAP), or HSP90 as determined by the RT-PCR method. To confirm the identity of the IAP-I gene, we sequenced the amplification product of IAP-I and found the gene to have 99% homology with the sequence of the IAP-I gene in rat intestine. Under the subculture conditions used, no IAP protein was detected in IEC-18 cells, but it became detectable as a 62-kDa band on a Western blot after heat shock. IAP-I was also induced by sodium arsenite, which generates reactive oxygen species and is an inducer of members of the HSP family. Glutathione suppressed activating protein-1 and cAMP response element-binding protein activation caused by heat shock but did not suppress the expression of IAP-I. These results suggest that cellular stress induces the elevation of IAP-I mRNA and protein synthesis. IAP-I may play an important role as a dephosphorylating enzyme under stress conditions.
Collapse
Affiliation(s)
- Tsuyoshi Harada
- Department of Biochemistry, Saitama Medical School, Iruma-gun, Japan
| | | | | | | | | |
Collapse
|
17
|
Tomisato W, Tsutsumi S, Rokutan K, Tsuchiya T, Mizushima T. NSAIDs induce both necrosis and apoptosis in guinea pig gastric mucosal cells in primary culture. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1092-100. [PMID: 11557530 DOI: 10.1152/ajpgi.2001.281.4.g1092] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A major clinical problem encountered with the use of nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin is gastropathy. In this study, we examined, using guinea pig gastric mucosal cells in primary culture, how NSAIDs damage gastric mucosal cells. The short-term treatment of cells with high concentrations of indomethacin decreased cell viability in the absence of apoptotic DNA fragmentation, chromatin condensation, or caspase activation. Cells lost membrane integrity with this short-term indomethacin treatment, suggesting that indomethacin induced necrosis under these conditions. In contrast, the long-term treatment of cells with low concentrations of indomethacin decreased cell viability and was accompanied by apoptotic DNA fragmentation, chromatin condensation, and caspase activation. Pretreatment of cells with inhibitors of caspases or protein synthesis suppressed cell death caused by long-term indomethacin treatment, suggesting that apoptosis was induced when the inhibitors were not present. These results imply that NSAIDs cause gastric mucosal damage through both necrosis and apoptosis of gastric mucosal cells.
Collapse
Affiliation(s)
- W Tomisato
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
18
|
Fudaba Y, Ohdan H, Tashiro H, Ito H, Fukuda Y, Dohi K, Asahara T. Geranylgeranylacetone, a heat shock protein inducer, prevents primary graft nonfunction in rat liver transplantation. Transplantation 2001; 72:184-9. [PMID: 11477336 DOI: 10.1097/00007890-200107270-00003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) are well known as cytoprotective proteins. Geranylgeranylacetone (GGA), a nontoxic anti-ulcer drug, was recently shown to have HSP-inducing capacity. In the present study, the activity of GGA was tested in a rat orthotopic liver transplantation (OLT) model to determine whether the compound has beneficial effects in warm ischemia-reperfusion injury. METHODS Either GGA or a control vehicle was orally administered to donor rats before graft harvest. Harvested livers were subjected to 45-min warm ischemia (37 degrees C) followed by OLT. HSP mRNA expressions and HSP syntheses in the graft livers were evaluated by reverse transcriptase polymerase chain reaction and Western blot analysis, respectively. RESULTS When the donors were treated with a vehicle, all recipients died of primary nonfunction within 2 days after OLT. In contrast, when the donors were treated with GGA (200 mg/kg per day) for 4 weeks, the 7-day survival rate of recipients was dramatically improved (90%). By giving a high dose of GGA (600 mg/kg per day) for 1 week, a similar improvement in recipient survival was seen (83.3%). GGA administration accumulated mRNA for both HSP72 and HSP90 in the livers even before warm ischemia and facilitated the syntheses of HSP72 and HSP90 after warm ischemia. In addition, GGA pretreatment also significantly reduced the serum levels of tumor necrosis factor-alpha (TNF-alpha) after reperfusion. CONCLUSIONS These findings indicate that both the enhanced induction of HSPs and the suppression of a cytotoxic mediator (TNF-alpha) might be involved in the beneficial effects of GGA on ischemia-reperfusion injury. Thus, oral administration of GGA would be a useful tool for preventing primary nonfunction in liver transplantation.
Collapse
Affiliation(s)
- Y Fudaba
- Second Department of Surgery, Hiroshima University, Faculty of Medicine, 1-2-3 Kasumi Minami-ku Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Alderman BM, Giraud AS, Yeomans ND. Adaptation of the stomach to injury from nonsteroidal anti-inflammatory drugs. Curr Gastroenterol Rep 2001; 3:1-2. [PMID: 11177687 DOI: 10.1007/s11894-001-0032-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B M Alderman
- Department of Medicine, University of Melbourne, Western Hospital, Footscray, VIC 3011, Australia
| | | | | |
Collapse
|
20
|
Rainsford KD. The ever-emerging anti-inflammatories. Have there been any real advances? JOURNAL OF PHYSIOLOGY, PARIS 2001; 95:11-9. [PMID: 11595413 DOI: 10.1016/s0928-4257(01)00004-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gastrointestinal (GI) Adverse Drug Reactions (ADRs) from the NSAIDs are a major cause of morbidity and mortality in arthritic patients taking these drugs. The recent much heralded development of COX-2 selective drugs (celecoxib, rofecoxib), the objective of which has been to spare inhibition of the production of COX-1 derived mucosal protective prostaglandins, may have represented an advance in reducing the risk of serious ADRs--ulcers and bleeding--but does not appear to have reduced the incidence of symptomatic side-effects (nausea, vomiting, epigastric pain/heartburn, abdominal discomfort) which are a major reason for withdrawal from NSAID therapy, especially in the long term. The rationale of COX-2 selectivity from these newer drugs is controversial since there may be pharmacokinetic differences from established carboxylate-NSAIDs that accounts for their apparent lower ulcerogenicity. Moreover, concerns have been recently expressed that as COX-2 is important in ulcer healing, control of prostacyclin production and renal function that they may have adverse reactions from these effects. Indeed, recent reports of enhanced risk of congestive heart failure with rofecoxib are of importance and may relate to impaired prostacyclin production. Moreover, there are other therapeutic strategies that have yielded equally low ulcerogenic NSAIDs (e.g. the prodrug, nabumetone; the established COX-2 inhibitory drug, nimesulide) and even the well-established NSAIDs ibuprofen and diclofenac have relatively low upper GI ulcerogenicity and have been used as benchmark standards in comparative trials of the newer "Oxib" drugs (celecoxib, rofecoxib). Much research interest has centred on the nitric oxide-donating NSAIDs (NO-NSAIDs). The rationale for donating NSAIDs being to counteract the vasoconstriction effects of NSAIDs but this has yet to be fully evaluated. It is not certain that this "antidote" approach will be acceptable as there may also be systemic effects of the nitrobutoxyl--or other NO-donors that may have toxicological consequences. Another strategy is the development of mixed COX-5 lipoxygenase (LOX) inhibitors--the progenitors of which were benoxaprofen and BW-755C. The rationale of reducing the potential for lipoxygenase mediated actions in the stomach (e.g. vasoconstriction, leucocyte accumulation). Clearly, the need to develop newer NSAIDs with lower risks of ulcers and bleeding as well as symptomatic ADRs is still representing a major challenge.
Collapse
Affiliation(s)
- K D Rainsford
- Biomedical Research Centre and Division of Biomedical Sciences, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|