1
|
Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:97-108. [PMID: 36114820 PMCID: PMC9829394 DOI: 10.1111/pbi.13927] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 05/31/2023]
Abstract
The sodium cation (Na+ ) is the predominant cation with deleterious effects on crops in salt-affected agricultural areas. Salt tolerance of crop can be improved by increasing shoot Na+ exclusion. Therefore, it is crucial to identify and use genetic variants of various crops that promote shoot Na+ exclusion. Here, we show that a HKT1 family gene ZmNC3 (Zea mays L. Na+ Content 3; designated ZmHKT1;2) confers natural variability in shoot-Na+ accumulation and salt tolerance in maize. ZmHKT1;2 encodes a Na+ -preferential transporter localized in the plasma membrane, which mediates shoot Na+ exclusion, likely by withdrawing Na+ from the root xylem flow. A naturally occurring nonsynonymous SNP (SNP947-G) increases the Na+ transport activity of ZmHKT1;2, promoting shoot Na+ exclusion and salt tolerance in maize. SNP947-G first occurred in the wild grass teosinte (at a allele frequency of 43%) and has become a minor allele in the maize population (allele frequency 6.1%), suggesting that SNP947-G is derived from teosinte and that the genomic region flanking SNP947 likely has undergone selection during domestication or post-domestication dispersal of maize. Moreover, we demonstrate that introgression of the SNP947-G ZmHKT1;2 allele into elite maize germplasms reduces shoot Na+ content by up to 80% and promotes salt tolerance. Taken together, ZmNC3/ZmHKT1;2 was identified as an important QTL promoting shoot Na+ exclusion, and its favourable allele provides an effective tool for developing salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yidan Li
- Agro‐Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchunChina
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Weibin Song
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
2
|
Cao Y, Liang X, Yin P, Zhang M, Jiang C. A domestication-associated reduction in K + -preferring HKT transporter activity underlies maize shoot K + accumulation and salt tolerance. THE NEW PHYTOLOGIST 2019; 222:301-317. [PMID: 30461018 DOI: 10.1111/nph.15605] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/10/2018] [Indexed: 05/26/2023]
Abstract
Maize was domesticated from Balsas teosinte c. 10 000 yr ago. Previous studies have suggested that increased tolerance to environmental stress occurred during maize domestication. However, the underlying genetic basis remains largely unknown. We used a maize (W22)-teosinte recombinant inbred line (RIL) to investigate the salt wild-type tolerance aspects of maize domestication. We revealed that ZmHKT2 is a major QTL that regulates K+ homeostasis in saline soils. ZmHKT2 encodes a K+ -preferring HKT family transporter and probably reduces shoot K+ content by removing K+ ions from root-to-shoot flowing xylem sap, ZmHKT2 deficiency increases xylem sap and shoot K+ concentrations, and increases salt tolerance. A coding sequence polymorphism in the ZmHKT2W22 allele (SNP389-G) confers an amino acid variant ZmHKT2 that increases xylem sap K+ concentration, thereby increasing shoot K+ content and salt tolerance. Additional analyses showed that SNP389-G first existed in teosinte (allele frequency 56% in assayed accessions), then swept through the maize population (allele frequency 98%), and that SNP389-G probably underwent positive selection during maize domestication. We conclude that a domestication-associated reduction in K+ transport activity in ZmHKT2 underlies maize shoot K+ content and salt tolerance, and propose that CRISPR-based editing of ZmHKT2 might provide a feasible strategy for improving maize salt tolerance.
Collapse
Affiliation(s)
- Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Pan Yin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
3
|
Abstract
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C. The vitamins are mandatory for the function of numerous enzymes and lack of one or more of the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in microgram to milligram quantities and in addition some of the vitamins are synthesized by the intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins differs in depth and focus and is influenced by the prevalence of conditions and diseases related to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects for the individual vitamins. For each of the vitamins, we summarize the physiological role, the steps involved in the absorption, and the factors influencing the absorption. In addition, for some of the vitamins, the molecular base for absorption is described in details, while for others new aspects of relevance for human deficiency are included. © 2018 American Physiological Society. Compr Physiol 8:1291-1311, 2018.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.,VA Medical Center, Long Beach, California, USA
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proc Natl Acad Sci U S A 2014; 111:13087-92. [PMID: 25157141 DOI: 10.1073/pnas.1407004111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca(2+) homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.
Collapse
|
5
|
Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects. PLoS One 2013; 8:e73503. [PMID: 24023687 PMCID: PMC3758298 DOI: 10.1371/journal.pone.0073503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 01/19/2023] Open
Abstract
Mammalian cells obtain vitamin B1 (thiamin) from their surrounding environment and convert it to thiamin pyrophosphate (TPP) in the cytoplasm. Most of TPP is then transported into the mitochondria via a carrier-mediated process that involves the mitochondrial thiamin pyrophosphate transporter (MTPPT). Knowledge about the physiological parameters of the MTPP-mediated uptake process, MTPPT targeting and the impact of clinical mutations in MTPPT in patients with Amish lethal microcephaly and neuropathy and bilateral striatal necrosis are not fully elucidated, and thus, were addressed in this study using custom-made 3H-TPP as a substrate and mitochondria isolated from mouse liver and human-derived liver HepG2 cells. Results showed 3H-TPP uptake by mouse liver mitochondria to be pH-independent, saturable (Km = 6.79±0.53 µM), and specific for TPP. MTPPT protein was expressed in mouse liver and HepG2 cells, and confocal images showed a human (h)MTPPT-GFP construct to be targeted to mitochondria of HepG2 cells. A serial truncation analysis revealed that all three modules of hMTPPT protein cooperated (although at different levels of efficiency) in mitochondrial targeting rather than acting autonomously as independent targeting module. Finally, the hMTPPT clinical mutants (G125S and G177A) showed proper mitochondrial targeting but displayed significant inhibition in 3H-TPP uptake and a decrease in level of expression of the MTPPT protein. These findings advance our knowledge of the physiology and cell biology of the mitochondrial TPP uptake process. The results also show that clinical mutations in the hMTPPT system impair its functionality via affecting its level of expression with no effect on its targeting to mitochondria.
Collapse
|
6
|
Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes. Nat Commun 2013; 4:1415. [PMID: 23361006 PMCID: PMC3562467 DOI: 10.1038/ncomms2449] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/04/2013] [Indexed: 11/23/2022] Open
Abstract
Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex. During red blood cell infection, malaria parasites export hundreds of proteins that remodel the host cell surface. Cowman and colleagues identify a putative protein translocator complex spatially associated with exported proteins, revealing the cellular domains involved in protein export.
Collapse
|
7
|
Mohanty BK, Gupta BL. A marked animal-vegetal polarity in the localization of Na(+),K(+) -ATPase activity and its down-regulation following progesterone-induced maturation. Mol Reprod Dev 2011; 79:138-60. [PMID: 22213374 DOI: 10.1002/mrd.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
The stage-VI Xenopus oocyte has a very distinct animal-vegetal polarity with structural and functional asymmetry. In this study, we show the expression and distribution pattern of Na(+),K(+) -ATPase in stage-VI oocytes, and its changes following progesterone-induced maturation. Using enzyme-specific electron microscopy phosphatase histochemistry, [(3) H]-ouabain autoradiography, and immunofluorescence cytochemistry at light microscopic level, we find that Na(+),K(+) -ATPase activity is mainly confined to the animal hemisphere. Electron microscopy histochemical results also suggest that polarized distribution of Na(+),K(+) -ATPase activity persists following progesterone-induced maturation, and it becomes gradually more polarized towards the animal pole. The time course following progesterone-induced maturation suggests that there is an initial up-regulation and then gradual down-regulation of Na(+),K(+) -ATPase activity leading to germinal vesicle breakdown (GVBD). By GVBD, the Na(+),K(+) -ATPase activity is completely down-regulated due to endocytotic removal of pump molecules from the plasma membrane into the sub-cortical region of the oocyte. This study provides the first direct evidence for a marked asymmetric localization of Na(+),K(+) -ATPase activity in any vertebrate oocyte. Here, we propose that such asymmetry in Na(+),K(+) -ATPase activity in stage-VI oocytes, and their down-regulation following progesterone-induced maturation, is likely to have a role in the active state of the germinal vesicle in stage-VI oocytes and chromosomal condensation after GVBD.
Collapse
|
8
|
Salcedo-Sora JE, Ochong E, Beveridge S, Johnson D, Nzila A, Biagini GA, Stocks PA, O'Neill PM, Krishna S, Bray PG, Ward SA. The molecular basis of folate salvage in Plasmodium falciparum: characterization of two folate transporters. J Biol Chem 2011; 286:44659-68. [PMID: 21998306 PMCID: PMC3247980 DOI: 10.1074/jbc.m111.286054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetrahydrofolates are essential cofactors for DNA synthesis and methionine metabolism. Malaria parasites are capable both of synthesizing tetrahydrofolates and precursors de novo and of salvaging them from the environment. The biosynthetic route has been studied in some detail over decades, whereas the molecular mechanisms that underpin the salvage pathway lag behind. Here we identify two functional folate transporters (named PfFT1 and PfFT2) and delineate unexpected substrate preferences of the folate salvage pathway in Plasmodium falciparum. Both proteins are localized in the plasma membrane and internal membranes of the parasite intra-erythrocytic stages. Transport substrates include folic acid, folinic acid, the folate precursor p-amino benzoic acid (pABA), and the human folate catabolite pABAGn. Intriguingly, the major circulating plasma folate, 5-methyltetrahydrofolate, was a poor substrate for transport via PfFT2 and was not transported by PfFT1. Transport of all folates studied was inhibited by probenecid and methotrexate. Growth rescue in Escherichia coli and antifolate antagonism experiments in P. falciparum indicate that functional salvage of 5-methyltetrahydrofolate is detectable but trivial. In fact pABA was the only effective salvage substrate at normal physiological levels. Because pABA is neither synthesized nor required by the human host, pABA metabolism may offer opportunities for chemotherapeutic intervention.
Collapse
Affiliation(s)
- J Enrique Salcedo-Sora
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Subramanian VS, Rapp L, Marchant JS, Said HM. Role of cysteine residues in cell surface expression of the human riboflavin transporter-2 (hRFT2) in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G100-9. [PMID: 21512156 PMCID: PMC3129935 DOI: 10.1152/ajpgi.00120.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-soluble vitamin B2 (riboflavin, RF) is an essential micronutrient for normal cell function and survival. Recent studies have identified a role for the human riboflavin transporter-2 (hRFT2) in normal intestinal RF absorption. However, little is known about the cell biology of this transporter and specifically about the molecular determinant(s) that dictate its cell surface expression in human intestinal epithelial cells. Here we show that the full-length hRFT2 protein fused to green fluorescent protein (GFP) (GFP-hRFT2) is expressed exclusively at the apical membrane domain of Caco-2 cells. COOH-terminal sequence was essential in dictating cell surface expression with a specific role for conserved cysteine residues (C463 and C467). Mutation of C463 and C467 ablated RF uptake, explained by retention of the constructs within the endoplasmic reticulum. Modeling analysis suggested a potential disulfide bridge between C463 and C386. Consistent with this prediction, mutating the C386 site in the context of the full-length transporter resulted in intracellular retention, whereas mutation of another conserved cysteine (C326A) was without effect on hRFT2 targeting. Intracellular trafficking of hRFT2 was also examined and appeared to involve distinct vesicular structures, the motility of vesicles critically dependent on an intact microtubule network. These results demonstrate a potential role for specific cysteine residues in the cell surface expression of the hRFT2 in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- 1Departments of Medicine and Physiology/Biophysics, University of California Medical School, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Laramie Rapp
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jonathan S. Marchant
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hamid M. Said
- 1Departments of Medicine and Physiology/Biophysics, University of California Medical School, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| |
Collapse
|
11
|
Naso A, Dreyer I, Pedemonte L, Testa I, Gomez-Porras JL, Usai C, Mueller-Rueber B, Diaspro A, Gambale F, Picco C. The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys J 2009; 96:4063-74. [PMID: 19450478 DOI: 10.1016/j.bpj.2009.02.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/06/2009] [Accepted: 02/17/2009] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K(+) channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha-subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two-hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C-terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K(HA) domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal K(HA) domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.
Collapse
Affiliation(s)
- Alessia Naso
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 2009; 186:201-9. [PMID: 19620632 PMCID: PMC2717647 DOI: 10.1083/jcb.200904073] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/25/2009] [Indexed: 12/04/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a widespread and potent calcium-mobilizing messenger that is highly unusual in activating calcium channels located on acidic stores. However, the molecular identity of the target protein is unclear. In this study, we show that the previously uncharacterized human two-pore channels (TPC1 and TPC2) are endolysosomal proteins, that NAADP-mediated calcium signals are enhanced by overexpression of TPC1 and attenuated after knockdown of TPC1, and that mutation of a single highly conserved residue within a putative pore region abrogated calcium release by NAADP. Thus, TPC1 is critical for NAADP action and is likely the long sought after target channel for NAADP.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Dev Churamani
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Xinjiang Cai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Michael G. Schrlau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
| | - G. Cristina Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Xin Gao
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Robert Hooper
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Michael J. Boulware
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Nae J. Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
13
|
Molecular characterization of a novel cell surface ADP-ribosyl cyclase from the sea urchin. Cell Signal 2008; 20:2347-55. [PMID: 18824228 DOI: 10.1016/j.cellsig.2008.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 08/26/2008] [Accepted: 09/09/2008] [Indexed: 11/24/2022]
Abstract
The sea urchin is an extensively used model system for the study of calcium signalling by the messenger molecules NAADP and cyclic ADP-ribose. Both are synthesized by ADP-ribosyl cyclases but our molecular understanding of these enzymes in the sea urchin is limited. We have recently reported the cloning of an extended family of sea urchin ADP-ribosyl cyclases and shown that one of these enzymes (SpARC1) is active within the endoplasmic reticulum lumen. These studies suggest that production of messengers is compartmentalized. Here we characterize the properties of SpARC2. SpARC2 catalyzed both NAADP and cyclic ADP-ribose production. Unusually, the NAD surrogate, NGD was a poor substrate. In contrast to SpARC1, heterologously expressed SpARC2 localized to the plasma membrane via a glycosylphosphatidylinositol (GPI)-anchor. Transcripts for SpARC2 were readily detectable in sea urchin eggs and a majority of the endogenous membrane bound activity was found to be GPI-anchored. Our data reveal striking differences in the properties of sea urchin ADP-ribosyl cyclases and provide further evidence that messenger production may occur outside of the cytosol.
Collapse
|
14
|
Collins JF. Novel insights into intestinal and renal folate transport. Focus on “Apical membrane targeting and trafficking of the human proton-coupled folate transporter in polarized epithelia”. Am J Physiol Cell Physiol 2008; 294:C381-2. [DOI: 10.1152/ajpcell.00566.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Subramanian VS, Marchant JS, Said HM. Apical membrane targeting and trafficking of the human proton-coupled transporter in polarized epithelia. Am J Physiol Cell Physiol 2007; 294:C233-40. [PMID: 18003745 DOI: 10.1152/ajpcell.00468.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human proton-coupled folate transporter (hPCFT) is a recently discovered intestinal transporter involved in folate uptake in epithelia (and possibly other cells). Little is currently known about the structure-function relationship of the different domains of this transporter, particularly which regions are important for substrate transport as well as targeting of the transporter to the apical cell surface of polarized cells. Here we have investigated the role of the COOH-terminal domain and a well-conserved sequence separating transmembrane (TM) domains TM2 and TM3 (DXXGRR; amino acids 109-114) speculated by others to be important for transport function. Using live cell imaging approaches, we show that 1) an hPCFT-yellow fluorescent protein construct is functionally expressed at the apical membrane domain and is localized differentially to the human reduced folate carrier; 2) the predicted cytoplasmic COOH-terminal region of hPCFT is not essential for apical targeting or transporter functionality; 3) mutations that ablate a consensus beta-turn sequence separating predicted TM2 and TM3 abolished apical [(3)H]folic acid uptake as a consequence of endoplasmic reticulum retention of mutant, likely misfolded, transporters; and 4) cell surface delivery of hPCFT is disrupted by microtubule depolymerization or by overexpression of the dynactin complex dynamitin (p50). For the first time, our data present information regarding structure-function and membrane targeting of the hPCFT polypeptide, as well as the mechanisms that control its steady-state expression in polarized cells.
Collapse
|
16
|
Churamani D, Boulware MJ, Geach TJ, Martin AC, Moy GW, Su YH, Vacquier VD, Marchant JS, Dale L, Patel S. Molecular characterization of a novel intracellular ADP-ribosyl cyclase. PLoS One 2007; 2:e797. [PMID: 17726527 PMCID: PMC1949048 DOI: 10.1371/journal.pone.0000797] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/02/2007] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates. METHODOLOGY/PRINCIPAL FINDINGS Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1) is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained. CONCLUSIONS/SIGNIFICANCE Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized.
Collapse
Affiliation(s)
- Dev Churamani
- Department of Physiology, University College London, London, United Kingdom
| | - Michael J. Boulware
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Timothy J. Geach
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | - Andrew C.R. Martin
- Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | - Gary W. Moy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, United States of America
| | - Yi-Hsien Su
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, United States of America
| | - Victor D. Vacquier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Leslie Dale
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | - Sandip Patel
- Department of Physiology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 2005; 37:1141-6. [PMID: 16155566 DOI: 10.1038/ng1643] [Citation(s) in RCA: 740] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/08/2005] [Indexed: 11/09/2022]
Abstract
Many important agronomic traits in crop plants, including stress tolerance, are complex traits controlled by quantitative trait loci (QTLs). Isolation of these QTLs holds great promise to improve world agriculture but is a challenging task. We previously mapped a rice QTL, SKC1, that maintained K(+) homeostasis in the salt-tolerant variety under salt stress, consistent with the earlier finding that K(+) homeostasis is important in salt tolerance. To understand the molecular basis of this QTL, we isolated the SKC1 gene by map-based cloning and found that it encoded a member of HKT-type transporters. SKC1 is preferentially expressed in the parenchyma cells surrounding the xylem vessels. Voltage-clamp analysis showed that SKC1 protein functions as a Na(+)-selective transporter. Physiological analysis suggested that SKC1 is involved in regulating K(+)/Na(+) homeostasis under salt stress, providing a potential tool for improving salt tolerance in crops.
Collapse
Affiliation(s)
- Zhong-Hai Ren
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Significant progress has been made in recent years toward understanding the mechanisms and regulation of intestinal absorption of water-soluble vitamins from the diet, especially those that are transported by a specialized carrier-mediated mechanism (i.e., ascorbic acid, biotin, folate, riboflavin, thiamin, and pyridoxine). The driving force involved in the uptake events and the molecular identity of the systems involved have been identified for a number of these vitamins. In addition, information about regulation of the uptake process of these micronutrients by intracellular and extracellular factors has been forthcoming. Furthermore, the 5' regulatory region of the genes that encode a number of these transporters has been characterized, thus providing information about transcriptional regulation of the transport events. Also of interest is the identification of existence of carrier-mediated mechanisms in human colonocytes that are capable of absorbing some of the vitamins that are synthesized by normal microflora of the large intestine. Although the contribution of the latter source of vitamins toward overall host nutrition is not clear and requires further investigations, it is highly likely that it does contribute toward the cellular homeostasis of these vitamins in the localized colonocytes.
Collapse
Affiliation(s)
- Hamid M Said
- University of California School of Medicine, Irvine and VA Medical Center, Long Beach, Long Beach, California 90822, USA.
| |
Collapse
|
19
|
Boulware MJ, Subramanian VS, Said HM, Marchant JS. Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochem J 2003; 376:43-8. [PMID: 14602044 PMCID: PMC1223768 DOI: 10.1042/bj20031220] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans lack biochemical pathways for the synthesis of the micro-nutrients thiamine and folate. Cellular requirements are met through membrane transport activity, which is mediated by proteins of the SLC19A gene family. By using live-cell confocal imaging methods to resolve the localization of all SLC19A family members, we show that the two human thiamine transporters are differentially targeted in polarized cells, establishing a vectorial transport system. Such polarization decreases functional redundancy between transporter isoforms and allows for independent regulation of thiamine import and export pathways in cells.
Collapse
Affiliation(s)
- Michael J Boulware
- Department of Pharmacology, 321 Church Street SE, University of Minnesota Medical School, MN 55455, USA
| | | | | | | |
Collapse
|
20
|
Sadlish H, Williams FMR, Flintoff WF. Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function. Biochem J 2002; 364:777-86. [PMID: 12049642 PMCID: PMC1222627 DOI: 10.1042/bj20011361] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reduced folate carrier (RFC) protein has a secondary structure consistent with the predicted 12 transmembrane (TM) domains, intracellular N- and C-termini and a large cytoplasmic loop between TM6 and TM7. In the present study, the role of the cytoplasmic domains in substrate transport and protein biogenesis were examined using an array of hamster RFC deletion mutants fused to enhanced green fluorescent protein and expressed in Chinese hamster ovary cells. The N- and C-terminal tails were removed both individually and together, or the large cytoplasmic loop was modified such that the domain size and role of conserved sequences could be examined. The loss of the N- or C-terminal tails did not appear to significantly disrupt protein function, although both termini appeared to have a role in the efficiency with which molecules exited the endoplasmic reticulum to localize at the plasma membrane. There appeared to be both size and sequence requirements for the intracellular loop, which are able to drastically affect protein stability and function unless met. Furthermore, there might be an indirect role for the loop in substrate translocation, since even moderate changes significantly reduced the V(max) for methotrexate transport. Although these cytoplasmic domains do not appear to be absolutely essential for substrate transport, each one is important for biogenesis and localization.
Collapse
Affiliation(s)
- Heather Sadlish
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|