1
|
Kane MS, Juncos JXM, Manzoor S, Grenett M, Oh JY, Pat B, Ahmed MI, Lewis C, Davies JE, Denney TS, McConathy J, Dell’Italia LJ. Gene expression and ultra-structural evidence for metabolic derangement in the primary mitral regurgitation heart. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae034. [PMID: 38854954 PMCID: PMC11157345 DOI: 10.1093/ehjopen/oeae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Aims Chronic neurohormonal activation and haemodynamic load cause derangement in the utilization of the myocardial substrate. In this study, we test the hypothesis that the primary mitral regurgitation (PMR) heart shows an altered metabolic gene profile and cardiac ultra-structure consistent with decreased fatty acid and glucose metabolism despite a left ventricular ejection fraction (LVEF) > 60%. Methods and results Metabolic gene expression in right atrial (RA), left atrial (LA), and left ventricular (LV) biopsies from donor hearts (n = 10) and from patients with moderate-to-severe PMR (n = 11) at surgery showed decreased mRNA glucose transporter type 4 (GLUT4), GLUT1, and insulin receptor substrate 2 and increased mRNA hexokinase 2, O-linked N-acetylglucosamine transferase, and O-linked N-acetylglucosaminyl transferase, rate-limiting steps in the hexosamine biosynthetic pathway. Pericardial fluid levels of neuropeptide Y were four-fold higher than simultaneous plasma, indicative of increased sympathetic drive. Quantitative transmission electron microscopy showed glycogen accumulation, glycophagy, increased lipid droplets (LDs), and mitochondrial cristae lysis. These findings are associated with increased mRNA for glycogen synthase kinase 3β, decreased carnitine palmitoyl transferase 2, and fatty acid synthase in PMR vs. normals. Cardiac magnetic resonance and positron emission tomography for 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake showed decreased LV [18F]FDG uptake and increased plasma haemoglobin A1C, free fatty acids, and mitochondrial damage-associated molecular patterns in a separate cohort of patients with stable moderate PMR with an LVEF > 60% (n = 8) vs. normal controls (n = 8). Conclusion The PMR heart has a global ultra-structural and metabolic gene expression pattern of decreased glucose uptake along with increased glycogen and LDs. Further studies must determine whether this presentation is an adaptation or maladaptation in the PMR heart in the clinical evaluation of PMR.
Collapse
Affiliation(s)
- Mariame Selma Kane
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Health Care System, 700 South 19th Street, Birmingham, AL 35233, USA
| | - Juan Xavier Masjoan Juncos
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
| | - Shajer Manzoor
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
| | - Maximiliano Grenett
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
| | - Joo-Yeun Oh
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Health Care System, 700 South 19th Street, Birmingham, AL 35233, USA
| | - Betty Pat
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Health Care System, 700 South 19th Street, Birmingham, AL 35233, USA
| | - Mustafa I Ahmed
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Alabama at Birmingham (UAB), 1808 7th Avenue, Birmingham, AL 35294, USA
| | - Clifton Lewis
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Alabama at Birmingham (UAB), 1808 7th Avenue, Birmingham, AL 35294, USA
| | - James E Davies
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Alabama at Birmingham (UAB), 1808 7th Avenue, Birmingham, AL 35294, USA
| | - Thomas S Denney
- Samuel Ginn College of Engineering, Auburn University, 345 W Magnolia Ave, Auburn, AL 36849, USA
| | - Jonathan McConathy
- Department of Radiology, University of Albama (UAB), 619 19th Street South, Birmingham, AL 35294, USA
| | - Louis J Dell’Italia
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham (UAB), 1900 University Boulevard, Birmingham, AL 35233, USA
- Birmingham Veterans Affairs Health Care System, 700 South 19th Street, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Zheng J, Li Y, Billor N, Ahmed MI, Fang YHD, Pat B, Denney TS, Dell’Italia LJ. Understanding post-surgical decline in left ventricular function in primary mitral regurgitation using regression and machine learning models. Front Cardiovasc Med 2023; 10:1112797. [PMID: 37153472 PMCID: PMC10160646 DOI: 10.3389/fcvm.2023.1112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Background Class I echocardiographic guidelines in primary mitral regurgitation (PMR) risks left ventricular ejection fraction (LVEF) < 50% after mitral valve surgery even with pre-surgical LVEF > 60%. There are no models predicting LVEF < 50% after surgery in the complex interplay of increased preload and facilitated ejection in PMR using cardiac magnetic resonance (CMR). Objective Use regression and machine learning models to identify a combination of CMR LV remodeling and function parameters that predict LVEF < 50% after mitral valve surgery. Methods CMR with tissue tagging was performed in 51 pre-surgery PMR patients (median CMR LVEF 64%), 49 asymptomatic (median CMR LVEF 63%), and age-matched controls (median CMR LVEF 64%). To predict post-surgery LVEF < 50%, least absolute shrinkage and selection operator (LASSO), random forest (RF), extreme gradient boosting (XGBoost), and support vector machine (SVM) were developed and validated in pre-surgery PMR patients. Recursive feature elimination and LASSO reduced the number of features and model complexity. Data was split and tested 100 times and models were evaluated via stratified cross validation to avoid overfitting. The final RF model was tested in asymptomatic PMR patients to predict post-surgical LVEF < 50% if they had gone to mitral valve surgery. Results Thirteen pre-surgery PMR had LVEF < 50% after mitral valve surgery. In addition to LVEF (P = 0.005) and LVESD (P = 0.13), LV sphericity index (P = 0.047) and LV mid systolic circumferential strain rate (P = 0.024) were predictors of post-surgery LVEF < 50%. Using these four parameters, logistic regression achieved 77.92% classification accuracy while RF improved the accuracy to 86.17%. This final RF model was applied to asymptomatic PMR and predicted 14 (28.57%) out of 49 would have post-surgery LVEF < 50% if they had mitral valve surgery. Conclusions These preliminary findings call for a longitudinal study to determine whether LV sphericity index and circumferential strain rate, or other combination of parameters, accurately predict post-surgical LVEF in PMR.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, United States
| | - Yuexin Li
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, United States
| | - Nedret Billor
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, United States
| | - Mustafa I. Ahmed
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yu-Hua Dean Fang
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Betty Pat
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States
| | - Thomas S. Denney
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, United States
| | - Louis J. Dell’Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States
| |
Collapse
|
3
|
Fukuda K, Hasegawa S, Kawamura T, Waratani N, Hirata K, Higashimori A, Yokoi Y. Changes in cardiac sympathetic nerve activity on 123 I-metaiodobenzylguanidine scintigraphy after MitraClip therapy. ESC Heart Fail 2021; 8:1590-1595. [PMID: 33609015 PMCID: PMC8006686 DOI: 10.1002/ehf2.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Aims In patients with heart failure, over‐activation of the cardiac sympathetic nerve (CSN) function is associated with severity of heart failure and worse outcome. The effects of MitraClip therapy on the CSN activity in patients with mitral regurgitation (MR) remained unknown. In this study, we evaluated the impact of the MitraClip therapy on CSN activity assessed by 123I‐metaiodobezylguanidine (MIBG) scintigraphy. Methods and results We enrolled consecutive patients with moderate‐to‐severe (3+) or severe (4+) MR who were scheduled to undergo MitraClip procedure in this prospective observational study. MIBG scintigraphy was performed at baseline and 6 months after the MitraClip procedure to evaluate the heart–mediastinum ratio and washout rate (WR). Changes in these MIBG parameters were analysed. Of the 13 consecutive patients, 10 were successfully treated with MitraClip procedure and completed follow‐up assessment. With regard to the MIBG parameters, changes in the early and delayed heart–mediastinum ratio from baseline to 6 months were not significant (2.16 ± 0.42 to 2.06 ± 0.34, P = 0.38 and 1.87 ± 0.39 to 1.83 ± 0.39, P = 0.43, respectively), whereas WR was significantly decreased (38.6 ± 3.9% to 32.6 ± 3.94%, P = 0.002). Conclusions The CSN activity of the WR on MIBG imaging was improved 6 months after MitraClip therapy in patients with 3+ or 4+ MR.
Collapse
Affiliation(s)
- Keisuke Fukuda
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan
| | - Seiji Hasegawa
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan
| | - Tomonori Kawamura
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan
| | - Naoto Waratani
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan
| | - Kumiko Hirata
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan.,Department of Medical Science, Osaka Educational University, Osaka, Japan
| | - Akihiro Higashimori
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan
| | - Yoshiaki Yokoi
- Department of Cardiology, Kishiwada Tokushukai Hospital, 4-27-1 Kamori-cho, Kishiwada, Osaka, 596-8522, Japan
| |
Collapse
|
4
|
Butts B, Ahmed MI, Bajaj NS, Cox Powell P, Pat B, Litovsky S, Gupta H, Lloyd SG, Denney TS, Zhang X, Aban I, Sadayappan S, McNamara JW, Watson MJ, Ferrario CM, Collawn JF, Lewis C, Davies JE, Dell'Italia LJ. Reduced Left Atrial Emptying Fraction and Chymase Activation in Pathophysiology of Primary Mitral Regurgitation. JACC Basic Transl Sci 2020; 5:109-122. [PMID: 32140620 PMCID: PMC7046515 DOI: 10.1016/j.jacbts.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
Abstract
Increasing left atrial (LA) size predicts outcomes in patients with isolated mitral regurgitation (MR). Chymase is plentiful in the human heart and affects extracellular matrix remodeling. Chymase activation correlates to LA fibrosis, LA enlargement, and a decreased total LA emptying fraction in addition to having a potential intracellular role in mediating myofibrillar breakdown in LA myocytes. Because of the unreliability of the left ventricular ejection fraction in predicting outcomes in MR, LA size and the total LA emptying fraction may be more suitable indicators for timing of surgical intervention.
Collapse
Affiliation(s)
- Brittany Butts
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mustafa I Ahmed
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Navkaranbir S Bajaj
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pamela Cox Powell
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Betty Pat
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Silvio Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Himanshu Gupta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
- Department of Cardiology, Valley Health System, Paramus, New Jersey
| | - Steven G Lloyd
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University School of Engineering, Auburn, Alabama
| | - Xiaoxia Zhang
- Department of Electrical and Computer Engineering, Auburn University School of Engineering, Auburn, Alabama
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sakthivel Sadayappan
- Division of Cardiovascular Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James W McNamara
- Division of Cardiovascular Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael J Watson
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Clifton Lewis
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - James E Davies
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
5
|
Guichard JL, Rogowski M, Agnetti G, Fu L, Powell P, Wei CC, Collawn J, Dell'Italia LJ. Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiol Heart Circ Physiol 2017; 313:H32-H45. [PMID: 28455287 PMCID: PMC5538858 DOI: 10.1152/ajpheart.00027.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
Heart failure due to chronic volume overload (VO) in rats and humans is characterized by disorganization of the cardiomyocyte desmin/mitochondrial network. Here, we tested the hypothesis that desmin breakdown is an early and continuous process throughout VO. Male Sprague-Dawley rats had aortocaval fistula (ACF) or sham surgery and were examined 24 h and 4 and 12 wk later. Desmin/mitochondrial ultrastructure was examined by transmission electron microscopy (TEM) and immunohistochemistry (IHC). Protein and kinome analysis were performed in isolated cardiomyocytes, and desmin cleavage was assessed by mass spectrometry in left ventricular (LV) tissue. Echocardiography demonstrated a 40% decrease in the LV mass-to-volume ratio with spherical remodeling at 4 wk with ACF and LV systolic dysfunction at 12 wk. Starting at 24 h and continuing to 4 and 12 wk, with ACF there is TEM evidence of extensive mitochondrial clustering, IHC evidence of disorganization associated with desmin breakdown, and desmin protein cleavage verified by Western blot analysis and mass spectrometry. IHC results revealed that ACF cardiomyocytes at 4 and 12 wk had perinuclear translocation of αB-crystallin from the Z disk with increased α, β-unsaturated aldehyde 4-hydroxynonelal. Use of protein markers with verification by TUNEL staining and kinome analysis revealed an absence of cardiomyocyte apoptosis at 4 and 12 wk of ACF. Significant increases in protein indicators of mitophagy were countered by a sixfold increase in p62/sequestosome-1, which is indicative of an inability to complete autophagy. An early and continuous disruption of the desmin/mitochondrial architecture, accompanied by oxidative stress and inhibition of apoptosis and mitophagy, suggests its causal role in LV dilatation and systolic dysfunction in VO.NEW & NOTEWORTHY This study provides new evidence of early onset (24 h) and continuous (4-12 wk) desmin misarrangement and disruption of the normal sarcomeric and mitochondrial architecture throughout the progression of volume overload heart failure, suggesting a causal link between desmin cleavage and mitochondrial disorganization and damage.
Collapse
Affiliation(s)
- Jason L Guichard
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama.,Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Rogowski
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Giulio Agnetti
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; and
| | - Lianwu Fu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pamela Powell
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Chih-Chang Wei
- Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama; .,Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
6
|
Ahmed MI, Guichard JL, Soorappan RN, Ahmad S, Mariappan N, Litovsky S, Gupta H, Lloyd SG, Denney TS, Powell PC, Aban I, Collawn J, Davies JE, McGiffin DC, Dell'Italia LJ. Disruption of desmin-mitochondrial architecture in patients with regurgitant mitral valves and preserved ventricular function. J Thorac Cardiovasc Surg 2016; 152:1059-1070.e2. [PMID: 27464577 DOI: 10.1016/j.jtcvs.2016.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. METHODS Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for American Heart Association class I indications was evaluated for desmin, the voltage-dependent anion channel, α-B-crystallin, and α, β-unsaturated aldehyde 4-hydroxynonenal by fluorescence microscopy. The same was evaluated in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients before and 6 months after mitral valve repair. RESULTS LV end-diastolic volume was 1.5-fold (P < .0001) higher and LV mass-to-volume ratio was lower in MR (P = .004) hearts versus normal hearts and showed improvement 6 months after mitral valve surgery. However, LV ejection fraction decreased from 65% ± 7% to 52% ± 9% (P < .0001) and LV circumferential (P < .0001) and longitudinal strain decreased significantly below normal values (P = .002) after surgery. Hearts with MR had a 53% decrease in desmin (P < .0001) and a 2.6-fold increase in desmin aggregates (P < .0001) versus normal, along with substantial, intense perinuclear staining of α, β-unsaturated aldehyde 4-hydroxynonenal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron-dense deposits, myofibrillar loss, Z-disc abnormalities, and extensive granulofilamentous debris identified as desmin-positive by immunogold transmission electron microscopy. CONCLUSIONS Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain postoperative LV functional decline and further supports the move toward earlier surgical intervention.
Collapse
Affiliation(s)
- Mustafa I Ahmed
- Department of Medicine, Division of Cardiovascular Disease, UAB
| | | | | | - Shama Ahmad
- Department of Anesthesiology& Perioperative Medicine, UAB
| | | | | | - Himanshu Gupta
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| | - Steven G Lloyd
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| | - Thomas S Denney
- Auburn University School of Engineering, Auburn, Alabama, USA
| | - Pamela Cox Powell
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA
| | | | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, UAB
| | - James E Davies
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Surgery, Division of Thoracic and Cardiovascular Surgery, UAB
| | | | - Louis J Dell'Italia
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| |
Collapse
|
7
|
Linares OA, Fudin J, Daly A, Schiesser WE, Boston RC. Methadone Recycling Sustains Drug Reservoir in Tissue. J Pain Palliat Care Pharmacother 2015; 29:261-71. [PMID: 26368295 DOI: 10.3109/15360288.2015.1047552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We hypothesize that there is a tissue store of methadone content in humans that is not directly accessible, but is quantifiable. Further, we hypothesize the mechanism by which methadone content is sustained in tissue stores involves methadone uptake, storage, and release from tissue depots in the body (recycling). Accordingly, we hypothesize that such tissue stores, in part, determine plasma methadone levels. We studied a random sample of six opioid-naïve healthy subjects. We performed a clinical trial simulation in silico using pharmacokinetic modeling. We found a large tissue store of methadone content whose size was much larger than methadone's size in plasma in response to a single oral dose of methadone 10 mg. The tissue store measured 13-17 mg. This finding could only be explained by the contemporaneous storage of methadone in tissue with dose recycling. We found that methadone recycles 2-5 times through an inaccessible extravascular compartment (IAC), from an accessible plasma-containing compartment (AC), before exiting irreversibly. We estimate the rate of accumulation (or storage) of methadone in tissue was 0.029-7.29 mg/h. We predict 39 ± 13% to 83 ± 6% of methadone's tissue stores "spillover" into the circulation. Our results indicate that there exists a large quantifiable tissue store of methadone in humans. Our results support the notion that methadone in humans undergoes tissue uptake, storage, release into the circulation, reuptake from the circulation, and re-release into the circulation, and that spillover of methadone from tissue stores, in part, maintain plasma methadone levels in humans.
Collapse
|
8
|
Oxycodone recycling: A novel hypothesis of opioid tolerance development in humans. Med Hypotheses 2014; 83:326-31. [DOI: 10.1016/j.mehy.2014.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 01/06/2023]
|
9
|
Organ-specific microcirculatory mass transport of oxycodone in humans: clinical implications for therapeutic use. Clin J Pain 2014; 31:206-13. [PMID: 24709626 DOI: 10.1097/ajp.0000000000000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To begin to address the problem of heterogeneity of distribution of oxycodone (OC) in humans, we developed an organ-specific microcirculatory capillary-tissue exchange 2-compartment model for studying regional OC mass transport. MATERIALS AND METHODS The model was developed in silico. It quantifies OC's organ-specific mass transport rates, clearances and recycling, and it considers the effects of blood flow on OC's convective and diffusive transport. RESULTS What is new is the finding that OC undergoes local recycling at the level of organ-specific capillary-tissue exchange units in humans. Results indicate recycled OC occurs in sufficient amounts to function as a reusable source of circulating OC; which has important implications for OC dosing. Results show the brain, which is central to OC effects only receives about 8% of OC delivered to all organs via the microcirculation. This suggests that differential regulation of receptor binding, trafficking, internalization, or desensitization in the brain likely plays a dominant role in OC's central analgesic effects. DISCUSSION Organ-specific OC mass transport kinetics provide new information for OC dosing in pain management. The model promotes patient safety in opioid prescribing because it allows predictions to be made about the relative contribution that OC recycling makes to circulating OC levels. The model indicates that pharmacologic modulation of the microcirculation may give way to site-specific delivery of opioids in the future. Our study demonstrates that translation of bench in silico research data into clinical practice, although still challenging, is feasible and can assist in OC dose regimen design for patient safety.
Collapse
|
10
|
Hamade AK, Misra V, Rabold R, Tankersley CG. Age-related changes in cardiac and respiratory adaptation to acute ozone and carbon black exposures: interstrain variation in mice. Inhal Toxicol 2010; 22 Suppl 2:84-94. [PMID: 20883109 DOI: 10.3109/08958378.2010.503974] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Epidemiological studies show positive associations between increased ambient air pollutant levels and adverse cardiopulmonary effects. These studies suggest that the elderly and those with certain genetic polymorphisms are susceptible to adverse air pollution-associated health events. HYPOTHESIS/OBJECTIVE We hypothesize that physiological responses to air pollutants vary with age and are genetically influenced. MATERIALS AND METHODS To test this hypothesis, we exposed mice from three inbred strains (C57BL/6J, B6; C3H/HeJ, HeJ; C3H/HeOuJ, OuJ) to ozone (O(3)) and carbon black (CB) at two ages, (5 months, 12 months), for 3 consecutive days, to either filtered air (FA), CB particles, or O(3) and CB sequentially (O(3)CB) (CB, 550 µg/m(3); O(3), 600 ppb). Heart rate (HR), HR variability (HRV), breathing, and core temperature (Tco) responses were analyzed. RESULTS We observed time-dependent physiological changes in response to O(3)CB exposure in each strain, relative to FA exposure for both age groups. Each mouse strain showed distinct adaptation profiles to repeated acute exposures to O(3). In younger mice, several time-dependent effects (decreased HR and increased HRV) were prominent in HeJ and OuJ mice but not B6 mice. We also observed variability in adaptation in older mice. However, responses in older mice were generally attenuated when compared to the younger mice. In addition, cardiac-respiratory interactions were affected with CB and O(3)CB exposures albeit with patterns differing by age or exposure. DISCUSSION/CONCLUSION Our results suggest that age considerably attenuates physiological responses to O(3) and O(3)CB exposures. Age-related physiological changes such as increased oxidative stress in mouse tissue may be involved in this attenuation.
Collapse
|
11
|
Abstract
Mitral regurgitation affects more than 2 million people in the USA. The main causes are classified as degenerative (with valve prolapse) and ischaemic (ie, due to consequences of coronary disease) in developed countries, or rheumatic (in developing countries). This disorder generally progresses insidiously, because the heart compensates for increasing regurgitant volume by left-atrial enlargement, causes left-ventricular overload and dysfunction, and yields poor outcome when it becomes severe. Doppler-echocardiographic methods can be used to quantify the severity of mitral regurgitation. Yearly mortality rates with medical treatment in patients aged 50 years or older are about 3% for moderate organic regurgitation and about 6% for severe organic regurgitation. Surgery is the only treatment proven to improve symptoms and prevent heart failure. Valve repair improves outcome compared with valve replacement and reduces mortality of patient with severe organic mitral regurgitation by about 70%. The best short-term and long-term results are obtained in asymptomatic patients operated on in advanced repair centres with low operative mortality (<1%) and high repair rates (>/=80-90%). These results emphasise the importance of early detection and assessment of mitral regurgitation.
Collapse
|
12
|
Kiviniemi AM, Hautala AJ, Mäkikallio TH, Seppänen T, Huikuri HV, Tulppo MP. Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R–R interval. Eur J Appl Physiol 2006; 96:686-92. [PMID: 16416318 DOI: 10.1007/s00421-005-0130-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2005] [Indexed: 11/28/2022]
Abstract
This study was designed to assess the effect of aerobic training on the dynamics between the R-R interval length and the high-frequency (HF) oscillation of the R-R interval. Seventeen healthy males (26+/-2 years) participated in an 8-week aerobic training intervention. The mean HF spectral power (0.15-0.4 Hz) of the R-R interval and the mean R-R interval length were analyzed from 24-h recordings. HF power was also analyzed in 5-min sequences and plotted as a function of the corresponding mean R-R interval length. The relationship between the R-R interval length and the HF power was analyzed by a quadratic regression model. The relationship was defined as saturated if the distinct deflection point of the model occurred before the maximum R-R interval. Otherwise, the relationship was defined as linear. Additionally, the mean HF power was calculated from the linear portion of the R-R interval versus the HF power regression curve (HF index). Before the training intervention, seven subjects had a saturated HF power. After the intervention, five new cases of saturated HF power were observed. The mean HF power of the 24-h recording did not change in the group with a saturated HF power before training (7.4+/-0.8 vs. 7.6+/-0.8 ms(2)), but the HF index increased (6.7+/-0.7 vs. 7.1+/-0.7 ms(2), P<0.05). We conclude that enhanced vagal activity due to aerobic training increases the prevalence of the saturation of the HF oscillation of the R-R interval variability in healthy subjects. HF power calculated from unsaturated area detects more accurately subtle changes in the vagally mediated beat-to-beat variability of the R-R interval after aerobic training than the mean 24-h HF power.
Collapse
Affiliation(s)
- Antti M Kiviniemi
- Merikoski Rehabilitation and Research Center, Kasarmintie 13, P.O.Box 404, 90101, Oulu, Finland
| | | | | | | | | | | |
Collapse
|