1
|
Arauna D, Chandia E, Nova-Lamperti E, Radojkovic C, Fuentes E, Palomo I, Guzmán-Gutiérrez E, Moore-Carrasco R, Aguayo C. Platelet Content from Acute Myocardial Infarction Patients: Elevated Levels of IL-6 and IL-8 and their impact on Endothelial Nitric Oxide Production. Atherosclerosis 2025; 403:119119. [PMID: 40043445 DOI: 10.1016/j.atherosclerosis.2025.119119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND AND AIMS Platelets and inflammation play crucial roles in the atherothrombotic process of acute myocardial infarction (AMI), particularly in ischemia/reperfusion injury. This study aims to characterize the pro-inflammatory content of the platelet secretome in AMI patients, assess its effect on nitric oxide (NO) production, and correlate these findings with clinical parameters. METHODS Blood samples from 20 AMI patients and 20 controls were analyzed. Platelets were isolated and stimulated with thrombin, and their secretomes were collected. Endothelial cells were exposed to these secretomes, and NO production was measured. Our results demonstrate a significant reduction in NO production in endothelial cells exposed to the AMI platelet secretome (p < 0.05), suggesting acute endothelial dysfunction. RESULTS Elevated levels of interleukin-6 (IL-6) (p = 0.0323) and interleukin-8 (IL-8) (p = 0.0197) were identified in the secretome of AMI patients, correlating with clinical markers of myocardial injury. Specifically, IL-6 positively correlated with CK-MB levels (p = 0.04, Pearson r = 0.53), while IL-8 levels inversely correlated with NO production (p = 0.0141, Pearson r = -0.5652). CONCLUSIONS These findings underscore the critical role of platelet-derived IL-6 and IL-8 in endothelial dysfunction and myocardial injury in AMI patients. Future studies should explore the interactions between these cytokines in endothelial cells to further elucidate their roles in AMI pathology.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile
| | - Emerson Chandia
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile; Faculty of Health Sciences, University of Talca, Talca, 3460000, Chile
| | - Estefanía Nova-Lamperti
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | - Claudia Radojkovic
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile
| | - Iván Palomo
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, 3460000, Chile
| | - Enrique Guzmán-Gutiérrez
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile
| | | | - Claudio Aguayo
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepción, Chile.
| |
Collapse
|
2
|
Coenen DM, Alfar HR, Whiteheart SW. Platelet endocytosis and α-granule cargo packaging are essential for normal skin wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636051. [PMID: 39975047 PMCID: PMC11838500 DOI: 10.1101/2025.02.01.636051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The high prevalence of chronic wounds, i.e., 2.5-3% of the US population, causes a large social and financial burden. Physiological wound healing is a multi-step process that involves different cell types and growth factors. Platelet-rich plasma or platelet-derived factors have been used to accelerate wound repair, but their use has been controversial with mixed results. Thus, a detailed functional understanding of platelet functions in wound healing beyond hemostasis is needed. This study investigated the importance of platelet α-granule cargo packaging and endocytosis in a dorsal full-thickness excisional skin wound model using mice with defects in α-granule cargo packaging (Nbeal2 -/- mice) and endocytosis (platelet-specific Arf6 -/- and VAMP2/3 Δ mice). We found that proper kinetic and morphological healing of dorsal skin wounds in mice requires both de novo as well as endocytosed platelet α-granule cargo. Histological and morphometric analyses of cross-sectional wound sections illustrated that mice with defects in α-granule cargo packaging or platelet endocytosis had delayed (epi)dermal regeneration in both earlier and advanced healing. This was reflected by reductions in wound collagen and muscle/keratin content, delayed scab formation and/or resolution, re-epithelialization, and cell migration and proliferation. Molecular profiling analysis of wound extracts showed that the impact of platelet function extends beyond hemostasis to the inflammation, proliferation, and tissue remodeling phases via altered expression of several bioactive molecules, including IL-1β, VEGF, MMP-9, and TIMP-1. These findings provide a basis for advances in clinical wound care through a better understanding of key mechanistic processes and cellular interactions in (patho)physiological wound healing. Key points De novo and endocytosed platelet α-granule cargo support physiological skin wound healing Platelet function in wound healing extends to the inflammation, proliferation, and tissue remodeling phases.
Collapse
|
3
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024; 24:1381-1394. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
4
|
Najafipour H, Rostamzadeh F, Jafarinejad-Farsangi S, Bagheri-Hosseinabadi Z, Jafari E, Farsinejad A, Bagheri MM. Human platelet lysate combined with mesenchymal stem cells pretreated with platelet lysate improved cardiac function in rats with myocardial infarction. Sci Rep 2024; 14:27701. [PMID: 39533052 PMCID: PMC11557824 DOI: 10.1038/s41598-024-79050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, disability and mortality worldwide. In this study, the effects of intramyocardial injection of human platelet lysate (HPL), bone marrow mesenchymal stem cells pretreated with HPL (PMSCs), and PMSC lysate (lys), alone and in combination were investigated on MI-induced by LAD ligation in male Wistar rats. The experiment was carried out on sham, vehicle (Veh), HPL, PMSCs, PMSC lysate (PMSC lys), HPL + PMSCs, and HPL + PMSC lys groups. SBP, DBP, and ± dp/dt max were monitored by the PowerLab physiograph. The MSC characteristics and CD31, NKX2.5, and cardiac troponin I (cTnI) contents were determined by flow cytometry, immunohistochemistry, and immunofluorescence, respectively. SBP, DBP, and ± dp/dt max that decreased in the MI group were recovered by HPL, PMSC, PMSC lys, HPL + PMSC, and HPL + PMSC lys treatments. CD31 density was higher in all treated groups compared to the Veh group. CD31 density in the HPL + PMSCs and HPL + PMSC lys groups was higher than in the PMSCs group. The number of Dil+/NKX2.5 + and Dil+/cTnI + cells was higher in the HPL + PMSCs group compared to the PMSCs group. The HPL and PMSCs mitigates heart injuries and cardiac dysfunction after MI. HPL provides an appropriate environment for cardiomyocyte differentiation from PMSCs.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Boulevard Jihad, Ebne-Sina Avenue, 7619813159, Kerman, Iran.
| | - Seedieh Jafarinejad-Farsangi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, and Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Stem Cell and Regenerative Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohmmad Mehdi Bagheri
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Dutsch A, Graesser C, Novacek S, Krefting J, Schories V, Niedermeier B, Voll F, Kufner S, Xhepa E, Joner M, Cassese S, Schunkert H, Ndrepepa G, Kastrati A, Kessler T, Sager HB. Baseline Platelet Count Predicts Infarct Size and Mortality after Acute Myocardial Infarction. Hamostaseologie 2024. [PMID: 39366427 DOI: 10.1055/a-2299-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
INTRODUCTION Platelets greatly contribute to cardiovascular diseases. We sought to explore the association of platelet counts with infarct size and outcome in patients presenting with acute ST-segment elevation MI (STEMI) treated with primary percutaneous coronary intervention (PPCI). METHODS AND RESULTS In this retrospective study, we grouped 1,198 STEMI patients into tertiles (T) based on platelet count on admission: T1 = 102-206 [109 platelets/L] (n = 402), T2 = 207-259 [109 platelets/L] (n = 396), and T3 = 260-921 [109 platelets/L] (n = 400). Primary endpoint was 1-year all-cause mortality. Patients with highest platelet counts on admission showed the greatest area at risk and infarct size: area at risk (median) was 22.0% (interquartile range [IQR]: 12.0-39.8%) in T1, 21.0% (IQR: 11.0-37.1%) in T2, and 26.0% (IQR: 14.9-45.0%) of the left ventricle in T3 (p = 0.003); final infarct sizes after 7 to 14 days were as follows: 10.0% (IQR: 2.0-21.0%) in T1, 9.0% (IQR: 2.0-20.7%) in T2, and 12.0% (IQR: 3.0-27.3%) of the left ventricle in T3 (p = 0.015) as serial imaging revealed. At 1 year, 16 all-cause deaths occurred in T1, 5 in T2, and 22 in T3 (log-rank test, p = 0.006). After adjustment, T1 and T3 were associated with all-cause 1-year mortality (T1: hazard ratio [HR] = 3.40, 95% confidence interval [CI] = 1.23-9.54, p = 0.02; T3: HR = 3.55, 95% CI = 1.23-9.78, p = 0.01) compared with T2. At 5 years, all-cause mortality remained numerically higher in the T1 and T3. CONCLUSIONS In patients with STEMI undergoing PPCI, low and high blood platelet levels on admission were associated with increased long-term mortality (Fig. 1).
Collapse
Affiliation(s)
- Alexander Dutsch
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Christian Graesser
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Sophie Novacek
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Johannes Krefting
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Viktoria Schories
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Benedikt Niedermeier
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Felix Voll
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Sebastian Kufner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Erion Xhepa
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Salvatore Cassese
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Gjin Ndrepepa
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Adnan Kastrati
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich Germany
| |
Collapse
|
6
|
Reusswig F, Dille M, Krüger E, Ortscheid J, Feige T, Gorressen S, Fischer JW, Elvers M. Platelets modulate cardiac remodeling via the collagen receptor GPVI after acute myocardial infarction. Front Immunol 2024; 14:1275788. [PMID: 38274818 PMCID: PMC10808189 DOI: 10.3389/fimmu.2023.1275788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Platelets play an important role in cardiovascular diseases. After acute myocardial infarction, platelets display enhanced activation and migrate into the infarct zone. Furthermore, platelets trigger acute inflammation and cardiac remodeling leading to alterations in scar formation and cardiac function as observed in thrombocytopenic mice. GPVI is the major collagen receptor in platelets and important for platelet activation and thrombus formation and stability. Antibody induced deletion of GPVI at the platelet surface or treatment of mice with recombinant GPVI-Fc results in reduced inflammation and decreased infarct size in a mouse model of AMI. However, the role of GPVI has not been fully clarified to date. Methods/Results In this study, we found that GPVI is not involved in the inflammatory response in experimental AMI using GPVI deficient mice that were analyzed in a closed-chest model. However, reduced platelet activation in response to GPVI and PAR4 receptor stimulation resulted in reduced pro-coagulant activity leading to improved cardiac remodeling. In detail, GPVI deficiency in mice led to reduced TGF-β plasma levels and decreased expression of genes involved in cardiac remodeling such as Col1a1, Col3a1, periostin and Cthrc1 7 days post AMI. Consequently, collagen quality of the scar shifted to more tight and less fine collagen leading to improved scar formation and cardiac function in GPVI deficient mice at 21d post AMI. Conclusion Taken together, this study identifies GPVI as a major regulator of platelet-induced cardiac remodeling and supports the potential relevance of GPVI as therapeutic target to reduce ischemia reperfusion injury and to improve cardiac healing.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Matthias Dille
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - E. Krüger
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - J. Ortscheid
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - S. Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - J.-W. Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Schories C, Martus P, Guan T, Henes JK, Witte A, Müller K, Geisler T, Chatterjee M, Gawaz M, Rath D. Platelet versus plasma CXCL14, coronary artery disease, and clinical outcomes. Res Pract Thromb Haemost 2023; 7:100165. [PMID: 37255851 PMCID: PMC10225916 DOI: 10.1016/j.rpth.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Background Platelets express CXCL14, while platelet-derived CXCL14 induces monocyte chemotaxis and exerts an angiostatic effect on endothelial cells. Objectives This study investigated both platelet surface-associated and circulating levels of CXCL14 in patients with heart disease and associations of this chemokine with myocardial function and outcomes in patients with coronary artery disease (CAD). Methods This prospective study enrolled 450 patients with symptomatic heart disease. Platelet surface-associated and plasma CXCL14 levels were analyzed. All patients were followed up for 360 days for a primary composite outcome consisting of all-cause mortality, myocardial infarction, and/or ischemic stroke. Secondary outcomes consisted of the single events of all-cause mortality or myocardial infarction. Results Baseline platelet-associated but not circulating CXCL14 levels were significantly lower in patients with chronic coronary syndrome (mean fluorescence intensity logarithmized, 1.35 ± 0.35) when compared to those with acute coronary syndrome (1.47 ± 0.38) and without CAD (1.51 ± 0.40). Platelet CXCL14 levels were significantly lower (1.37 ± 0.37 vs 1.48 ± 0.39) and circulating CXCL14 levels were significantly higher (lg, 2.88 ± 0.20 pg/mL vs 2.82 ± 0.26 pg/mL) in patients with normal baseline left ventricular ejection fraction (LVEF) when compared to those with impaired LVEF. Low baseline circulating CXCL14 (hazard ratio, 2.33; 1.00-5.46) but not platelet CXCL14 was associated with worse outcome in patients with CAD. Conclusion Platelet-associated and circulating CXCL14 levels show differential regulation in patients with and without CAD. Although platelet-associated CXCL14 increased and circulating CXCL14 decreased with impairment of LVEF, only lower circulating CXCL14 upon admission was associated with worse prognosis in patients with CAD.
Collapse
Affiliation(s)
- Christoph Schories
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tübingen, Tübingen, Germany
| | - Tianyun Guan
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
- Department of Cardiology, the Second Hospital of Jilin University, Jilin, People’s Republic of China
| | - Jessica Kristin Henes
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Alexander Witte
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Karin Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Polzin A, Dannenberg L, Benkhoff M, Barcik M, Helten C, Mourikis P, Ahlbrecht S, Wildeis L, Ziese J, Zikeli D, Metzen D, Hu H, Baensch L, Schröder NH, Keul P, Weske S, Wollnitzke P, Duse D, Saffak S, Cramer M, Bönner F, Müller T, Gräler MH, Zeus T, Kelm M, Levkau B. Revealing concealed cardioprotection by platelet Mfsd2b-released S1P in human and murine myocardial infarction. Nat Commun 2023; 14:2404. [PMID: 37100836 PMCID: PMC10133218 DOI: 10.1038/s41467-023-38069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Antiplatelet medication is standard of care in acute myocardial infarction (AMI). However, it may have obscured beneficial properties of the activated platelet secretome. We identify platelets as major source of a sphingosine-1-phosphate (S1P) burst during AMI, and find its magnitude to favorably associate with cardiovascular mortality and infarct size in STEMI patients over 12 months. Experimentally, administration of supernatant from activated platelets reduces infarct size in murine AMI, which is blunted in platelets deficient for S1P export (Mfsd2b) or production (Sphk1) and in mice deficient for cardiomyocyte S1P receptor 1 (S1P1). Our study reveals an exploitable therapeutic window in antiplatelet therapy in AMI as the GPIIb/IIIa antagonist tirofiban preserves S1P release and cardioprotection, whereas the P2Y12 antagonist cangrelor does not. Here, we report that platelet-mediated intrinsic cardioprotection is an exciting therapeutic paradigm reaching beyond AMI, the benefits of which may need to be considered in all antiplatelet therapies.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Justus Ziese
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dorothee Zikeli
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leonard Baensch
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Süreyya Saffak
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Li T, Yan Z, Fan Y, Fan X, Li A, Qi Z, Zhang J. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med 2023; 9:1077290. [PMID: 36698953 PMCID: PMC9868426 DOI: 10.3389/fcvm.2022.1077290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Myocardial infarction is the leading cause of death and disability worldwide, and the development of new treatments can help reduce the size of myocardial infarction and prevent adverse cardiovascular events. Cardiac repair after myocardial infarction can effectively remove necrotic tissue, induce neovascularization, and ultimately replace granulation tissue. Cardiac inflammation is the primary determinant of whether beneficial cardiac repair occurs after myocardial infarction. Immune cells mediate inflammatory responses and play a dual role in injury and protection during cardiac repair. After myocardial infarction, genetic ablation or blocking of anti-inflammatory pathways is often harmful. However, enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways may improve cardiac repair after myocardial infarction. A deficiency of neutrophils or monocytes does not improve overall cardiac function after myocardial infarction but worsens it and aggravates cardiac fibrosis. Several factors are critical in regulating inflammatory genes and immune cells' phenotypes, including DNA methylation, histone modifications, and non-coding RNAs. Therefore, strict control and timely suppression of the inflammatory response, finding a balance between inflammatory cells, preventing excessive tissue degradation, and avoiding infarct expansion can effectively reduce the occurrence of adverse cardiovascular events after myocardial infarction. This article reviews the involvement of neutrophils, monocytes, macrophages, and regulatory T cells in cardiac repair after myocardial infarction. After myocardial infarction, neutrophils are the first to be recruited to the damaged site to engulf necrotic cell debris and secrete chemokines that enhance monocyte recruitment. Monocytes then infiltrate the infarct site and differentiate into macrophages and they release proteases and cytokines that are harmful to surviving myocardial cells in the pre-infarct period. As time progresses, apoptotic neutrophils are cleared, the recruitment of anti-inflammatory monocyte subsets, the polarization of macrophages toward the repair phenotype, and infiltration of regulatory T cells, which secrete anti-inflammatory factors that stimulate angiogenesis and granulation tissue formation for cardiac repair. We also explored how epigenetic modifications regulate the phenotype of inflammatory genes and immune cells to promote cardiac repair after myocardial infarction. This paper also elucidates the roles of alarmin S100A8/A9, secreted frizzled-related protein 1, and podoplanin in the inflammatory response and cardiac repair after myocardial infarction.
Collapse
Affiliation(s)
- Tingting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhipeng Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajie Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aolin Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Zhongwen Qi,
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,Junping Zhang,
| |
Collapse
|
11
|
Reusswig F, Polzin A, Klier M, Dille MA, Ayhan A, Benkhoff M, Lersch C, Prinz A, Gorressen S, Fischer JW, Kelm M, Elvers M. Only Acute but Not Chronic Thrombocytopenia Protects Mice against Left Ventricular Dysfunction after Acute Myocardial Infarction. Cells 2022; 11:3500. [PMID: 36359896 PMCID: PMC9659072 DOI: 10.3390/cells11213500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Platelets are major players of thrombosis and inflammation after acute myocardial infarction (AMI). The impact of thrombocytopenia on platelet-induced cellular processes post AMI is not well defined. METHODS The left anterior descending artery was ligated in C57/Bl6 mice and in two thrombocytopenic mouse models to induce AMI. RESULTS Platelets from STEMI patients and from C57/Bl6 mice displayed enhanced platelet activation after AMI. This allows platelets to migrate into the infarct but not into the remote zone of the left ventricle. Acute thrombocytopenia by antibody-induced platelet depletion resulted in reduced infarct size and improved cardiac function 24 h and 21 days post AMI. This was due to reduced platelet-mediated inflammation after 24 h and reduced scar formation after 21 days post AMI. The collagen composition and interstitial collagen content in the left ventricle were altered due to platelet interaction with cardiac fibroblasts. Acute inflammation was also significantly reduced in Mpl-/- mice with chronic thrombocytopenia, but cardiac remodeling was unaltered. Consequently, left ventricular function, infarct size and scar formation in Mpl-/- mice were comparable to controls. CONCLUSION This study discovers a novel role for platelets in cardiac remodeling and reveals that acute but not chronic thrombocytopenia protects left ventricular function post AMI.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Heinrich-Heine University Medical Center, Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, 40225 Düsseldorf, Germany
| | - Amin Polzin
- Heinrich-Heine University Medical Center, Department of Cardiology, Pulmonology and Angiology, 40225 Düsseldorf, Germany
| | - Meike Klier
- Heinrich-Heine University Medical Center, Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, 40225 Düsseldorf, Germany
| | - Matthias Achim Dille
- Heinrich-Heine University Medical Center, Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, 40225 Düsseldorf, Germany
| | - Aysel Ayhan
- Heinrich-Heine University Medical Center, Department of Cardiology, Pulmonology and Angiology, 40225 Düsseldorf, Germany
| | - Marcel Benkhoff
- Heinrich-Heine University Medical Center, Department of Cardiology, Pulmonology and Angiology, 40225 Düsseldorf, Germany
| | - Celina Lersch
- Heinrich-Heine University Medical Center, Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, 40225 Düsseldorf, Germany
| | - Anika Prinz
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jens Walter Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Malte Kelm
- Heinrich-Heine University Medical Center, Department of Cardiology, Pulmonology and Angiology, 40225 Düsseldorf, Germany
| | - Margitta Elvers
- Heinrich-Heine University Medical Center, Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Schanze N, Hamad MA, Nührenberg TG, Bode C, Duerschmied D. Platelets in Myocardial Ischemia/Reperfusion Injury. Hamostaseologie 2022; 43:110-121. [PMID: 35913081 PMCID: PMC10132858 DOI: 10.1055/a-1739-9351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Coronary artery disease, including myocardial infarction (MI), remains a leading cause of global mortality. Rapid reperfusion therapy is key to the improvement of patient outcome but contributes substantially to the final cardiac damage. This phenomenon is called "ischemia/reperfusion injury (IRI)." The underlying mechanisms of IRI are complex and not fully understood. Contributing cellular and molecular mechanisms involve the formation of microthrombi, alterations in ion concentrations, pH shifts, dysregulation of osmolality, and, importantly, inflammation. Beyond their known action as drivers of the development of coronary plaques leading to MI, platelets have been identified as important mediators in myocardial IRI. Circulating platelets are activated by the IRI-provoked damages in the vascular endothelium. This leads to platelet adherence to the reperfused endothelium, aggregation, and the formation of microthrombi. Furthermore, activated platelets release vasoconstrictive substances, act via surface molecules, and enhance leukocyte infiltration into post-IR tissue, that is, via platelet-leukocyte complexes. A better understanding of platelet contributions to myocardial IRI, including their interaction with other lesion-associated cells, is necessary to develop effective treatment strategies to prevent IRI and further improve the condition of the reperfused myocardium. In this review, we briefly summarize platelet properties that modulate IRI. We also describe the beneficial impacts of antiplatelet agents as well as their mechanisms of action in IRI beyond classic effects.
Collapse
Affiliation(s)
- Nancy Schanze
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Muataz Ali Hamad
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Georg Nührenberg
- Department of Cardiology and Angiology II, Heart Center, University of Freiburg, Freiburg, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.,European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany
| |
Collapse
|
13
|
Rurus Suryawan IG, Devi Anggaraeni A, Agita A, Adrian Nugraha R. The Role of Human Platelet-Rich Plasma to Enhance the Differentiation of Adipose derived Mesenchymal Stem Cells into Cardiomyocyte: An Experimental Study. Cardiovasc Hematol Agents Med Chem 2022:CHAMC-EPUB-123353. [PMID: 35538825 DOI: 10.1101/2020.12.10.420679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Several studies showed that Adipose derived mesenchymal stem cells (AMSCs) can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into cardiomyocytes is challenging. . Unfortunately, the optimal method to maximize AMSCs differentiation has not yet established. Platelet rich plasma (PRP) which contains rich growth factors, is believed could stimulate stem cell proliferation and differentiation in the context of cardiac tissue regeneration. OBJECTIVE To analyze the effect of PRP administration to enhance the differentiation of AMSCs into cardiomyocytes. METHODS This study used arandomized post-test only controlled group design. AMSCs were isolated from adipose tissues and cultured until 4 passages. The samples were divided into 3 groups, negative control group (α-MEM), positive control group (differentiation medium), and treatment group (PRP). The assessment of GATA-4 expression was conducted using flowcytometry on day-5. The assessment oftroponin expression was conducted using immunocytochemistry on day-10. Data analysis was conducted using T-test and One-Way ANOVA. RESULTS Flowcytometry of GATA-4 expression revealed a significant improvement in PRP group compared to negative and positive control group (67.04 4.49 vs 58.15 1.23 p < 0.05; 67.04 4.49 vs 52.96 2.02 p < 0.05). This was supported by the results of immunocytochemistry on troponin expression, which revealed significant improvement in the PRP group compared to negative and positive controls (38.13 5.2 vs 10.73 2.39 p < 0.05; 38.13 5.2 vs 26.00 0.4 p < 0.05). CONCLUSION PRP administration in the AMSCs culture could significantly improve the differentiation of AMSCs into cardiomyocytes measured by GATA-4 and troponin expressions. This was concordant with our hypothesis, which stated that there was an effect of PRP administration on AMSCs differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- I Gde Rurus Suryawan
- Division of Interventional Cardiology, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Arifta Devi Anggaraeni
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Arisya Agita
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ricardo Adrian Nugraha
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
14
|
Atypical Roles of the Chemokine Receptor ACKR3/CXCR7 in Platelet Pathophysiology. Cells 2022; 11:cells11020213. [PMID: 35053329 PMCID: PMC8773869 DOI: 10.3390/cells11020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1α are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1α themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis, i.e., megakaryopoiesis, thrombotic and thrombo-inflammatory actions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coronary syndrome (ACS) patients, and is also associated with improved functional recovery and prognosis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardiac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1α exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet-associated cardiovascular disorders, particularly in coronary artery disease (CAD) patients post-MI.
Collapse
|
15
|
Platelet ACKR3/CXCR7 Favors Anti-Platelet Lipids over an Atherothrombotic Lipidome and Regulates Thrombo-inflammation. Blood 2021; 139:1722-1742. [PMID: 34905596 DOI: 10.1182/blood.2021013097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease-(CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thrombo-inflammatory response, through its impact on the platelet lipidome. CAD patients-(n=230) with enhanced platelet-ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7-agonist-(VUF11207) significantly reduced pro-thrombotic platelet response in blood from ACS patients-(n=11) ex vivo. CXCR7-agonist administration reduced thrombotic functions and thrombo-inflammatory platelet-leukocyte interactions post myocardial infarction-(MI) and arterial injury in vivo. ACKR3/CXCR7-ligation did not affect surface availability of GPIbα, GPV, GPVI, GPIX, αv-integrin, β3-integrin, coagulation profile-(APTT, PT), bleeding time, plasma-dependent thrombin generation-(thrombinoscopy) or clot formation-(thromboelastography), but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted-(micro-UHPLC-ESI-QTrap-MS/MS) and untargeted-(UHPLC-ESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7-ligation favored generation of anti-thrombotic lipids-(dihomo-γ-linolenic acid-DGLA, 12-hydroxyeicosatrienoic acid-12-HETrE) over cyclooxygenase-COX-1-(thromboxane-TxA2), or 12-lipoxygenase-LOX-(12-HETE) metabolized pro-thrombotic, and phospholipase derived atherogenic-(lysophosphatidylcholine-LPC) lipids, in healthy subjects and CAD patients, contrary to anti-platelet therapy. Through 12-HETrE, ACKR3/CXCR7-ligation coordinated with Gαs-coupled prostacyclin receptor-(IP) to trigger cAMP-PKA mediated platelet inhibition. ACKR3/CXCR7-ligation reduced generation of lipid agonists-(arachidonic acid-AA,TxA2), lipid signaling intermediates-(lyophosphatidylinositol-LPI, diacylglycerol-DG), which affected calcium mobilization, intracellular signaling, consequently platelet interaction with physiological matrices and thrombo-inflammatory secretion-(IL1β,IFN-γ,TGF-β,IL-8), emphasizing its functional dichotomy from pro-thrombotic CXCR4. Moreover, CXCR7-agonist regulated heparin-induced thrombocytopenia-(HIT)-sera/IgG-induced platelet and neutrophil activation, heparin induced platelet aggregation-(HIPA), generation of COX-1-(TxA2), 12-LOX-(12-HETE) derived thrombo-inflammatory lipids, platelet-neutrophil aggregate formation, and thrombo-inflammatory secretion (sCD40L, IL-1β, IFN-γ, TNF-α, sP-selectin, IL-8, tissue factor-TF) ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thrombo-inflammation exaggerated cardiovascular pathologies, and CAD.
Collapse
|
16
|
Abstract
Coronary artery disease is a leading cause of morbidity and mortality worldwide. Despite significant advances in revascularization strategies and antiplatelet therapy with aspirin and/or P2Y12 receptor antagonist, patients with acute coronary syndrome (ACS) continue to be at long-term risk of further cardiovascular events. Besides platelet activation, the role of thrombin generation (TG) in atherothrombotic complications is widely recognized. In this study, we hypothesized that there is an elevation of coagulation activation persists beyond 12 months in patients with ACS and chronic coronary syndrome (CCS) when compared with healthy controls. We measured TG profiles of patients within 72 h after percutaneous coronary intervention, at 6-month, 12-month and 24-month. Our results demonstrated that TG of patients with ACS (n = 114) and CCS (n = 40) were persistently elevated when compared to healthy individuals (n = 50) in peak thrombin (ACS 273.1 nM vs CCS 287.3 nM vs healthy 234.3 nM) and velocity index (ACS 110.2 nM/min vs CCS 111.0 nM/min vs healthy 72.9 nM/min) at 24-month of follow-up. Our results suggest a rationale for addition of anticoagulation to antiplatelet therapy in preventing long-term ischemic events after ACS. Further research could clarify whether the use of TG parameters to enable risk stratification of patients at heightened long-term procoagulant risk who may benefit most from dual pathway inhibition.
Collapse
|
17
|
Sharma P, Wang X, Ming CLC, Vettori L, Figtree G, Boyle A, Gentile C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003765. [PMID: 33464713 DOI: 10.1002/smll.202003765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.
Collapse
Affiliation(s)
- Poonam Sharma
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Laura Vettori
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Gemma Figtree
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Andrew Boyle
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carmine Gentile
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
18
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
19
|
Park Y, Koh JS, Lee JH, Park JH, Shin ES, Oh JH, Chun W, Lee SY, Bae JW, Kim JS, Kim W, Suh JW, Yang DH, Hong YJ, Chan MY, Kang MG, Park HW, Hwang SJ, Hwang JY, Ahn JH, Choi SW, Jeong YH. Effect of Ticagrelor on Left Ventricular Remodeling in Patients With ST-Segment Elevation Myocardial Infarction (HEALING-AMI). JACC Cardiovasc Interv 2020; 13:2220-2234. [PMID: 33032710 DOI: 10.1016/j.jcin.2020.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of ticagrelor versus clopidogrel on left ventricular (LV) remodeling after reperfusion of ST-segment elevation myocardial infarction (STEMI) in humans. BACKGROUND Animal studies have demonstrated that ticagrelor compared with clopidogrel better protects myocardium against reperfusion injury and improves remodeling after myocardial infarction. METHODS In this investigator-initiated, randomized, open-label, assessor-blinded trial performed at 10 centers in Korea, patients were enrolled if they had naive STEMI successfully treated with primary percutaneous coronary intervention (PCI) and at least 6-month planned duration of dual-antiplatelet treatment. The coprimary endpoints were LV remodeling index (LVRI) (a relative change of LV end-diastolic volume) measured on 3-dimensional echocardiography and N-terminal pro-B-type natriuretic peptide level at 6 months. RESULTS Among initially enrolled patients with STEMI (n = 336), 139 in each group completed the study. LVRI at 6 months was numerically lower with ticagrelor versus clopidogrel (0.6 ± 18.6% vs. 4.5 ± 16.5%; p = 0.095). Ticagrelor significantly reduced the 6-month level of N-terminal pro-B-type natriuretic peptide (173 ± 141 pg/ml vs. 289 ± 585 pg/ml; p = 0.028). These differences were prominent in patients with pre-PCI TIMI (Thrombolysis In Myocardial Infarction) flow grade 0. By multivariate analysis, ticagrelor versus clopidogrel reduced the risk for positive LV remodeling (LVRI >0%) (odds ratio: 0.56; 95% confidence interval: 0.33 to 0.95; p = 0.030). The LV end-diastolic volume index remained unchanged during ticagrelor treatment (from 54.7 ± 12.2 to 54.2 ± 12.2 ml/m2; p = 0.629), but this value increased over time during clopidogrel treatment (from 54.6 ± 11.3 to 56.4 ± 13.9 ml/m2; p = 0.056) (difference -2.3 ml/m2; 95% confidence interval: -4.8 to 0.2 ml/m2; p = 0.073). Ticagrelor reduced LV end-systolic volume index (from 27.0 ± 8.5 to 24.7 ± 8.4 ml/m2; p < 0.001), whereas no reduction was seen with clopidogrel (from 26.2 ± 8.9 to 25.6 ± 11.0 ml/m2; p = 0.366) (difference -1.8 ml/m2; 95% confidence interval: -3.5 to -0.1 ml/m2; p = 0.040). CONCLUSIONS Ticagrelor was superior to clopidogrel for LV remodeling after reperfusion of STEMI with primary PCI. (High Platelet Inhibition With Ticagrelor to Improve Left Ventricular Remodeling in Patients With ST Segment Elevation Myocardial Infarction [HEALING-AMI]; NCT02224534).
Collapse
Affiliation(s)
- Yongwhi Park
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Jin Sin Koh
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Jae-Hwan Lee
- Department of Cardiology, Chungnam National University Hospital, Daejeon, South Korea
| | - Jae-Hyeong Park
- Department of Cardiology, Chungnam National University Hospital, Daejeon, South Korea
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan Medical Center, Ulsan Hospital, Ulsan, South Korea
| | - Ju Hyeon Oh
- Division of Cardiology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Woojung Chun
- Division of Cardiology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Sang Yeub Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jang-Whan Bae
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jeong Su Kim
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Weon Kim
- Cardiovascular Department of Internal Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Jung-Won Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Heon Yang
- Department of Cardiology, Kyungpook National University Hospital, Daegu, South Korea
| | - Young-Joon Hong
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Mark Y Chan
- Singapore National University Heart Center, Singapore National University Hospital, Singapore, Singapore
| | - Min Gyu Kang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun-Woong Park
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Seok-Jae Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Jin-Yong Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Jong-Hwa Ahn
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Si Wan Choi
- Department of Cardiology, Chungnam National University Hospital, Daejeon, South Korea.
| | - Young-Hoon Jeong
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea.
| |
Collapse
|
20
|
Park Y, Kim JH, Kim TH, Koh JS, Hwang SJ, Hwang JY, Jeong YH. Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial. J Clin Med 2020; 9:1678. [PMID: 32492942 PMCID: PMC7356664 DOI: 10.3390/jcm9061678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have the potential to protect against atherothrombotic event occurrences. There are no data to evaluate the impact of cilostazol on EPC levels in high-risk patients. METHODS We conducted a randomized, double-blind, placebo-controlled trial to assess the effect of adjunctive cilostazol on EPC mobilization and platelet reactivity in patients with acute myocardial infarction (AMI). Before discharge, patients undergoing percutaneous coronary intervention (PCI) were randomly assigned to receive cilostazol SR capsule (200-mg) a day (n = 30) or placebo (n = 30) on top of dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Before randomization (baseline) and at 30-day follow-up, circulating EPC levels were analyzed using flow cytometry and hemostatic measurements were evaluated by VerifyNow and thromboelastography assays. The primary endpoint was the relative change in EPC levels between baseline and 30-day. RESULTS At baseline, there were similar levels of EPC counts between treatments, whereas patients with cilostazol showed higher levels of EPC counts compared with placebo after 30 days. Cilostazol versus placebo treatment displayed significantly higher changes in EPC levels between baseline and follow-up (ΔCD133+/KDR+: difference 216%, 95% confidence interval (CI) 44~388%, p = 0.015; ΔCD34+/KDR+: difference 183%, 95% CI 25~342%, p = 0.024). At 30-day follow-up, platelet reactivity was lower in the cilostazol group compared with the placebo group (130 ± 45 versus 169 ± 62 P2Y12 Reaction Unit, p = 0.009). However, there were no significant correlations between the changes of EPC levels and platelet reactivity. CONCLUSION Adjunctive cilostazol on top of clopidogrel and aspirin versus DAPT alone is associated with increased EPC mobilization and decreased platelet reactivity in AMI patients, suggesting its pleiotropic effects against atherothrombotic events (NCT04407312).
Collapse
Affiliation(s)
- Yongwhi Park
- Department of Internal Medicine, Gyeongsang National University, School of Medicine, Jinju 52828, Korea; (Y.P.); (J.-S.K.); (S.-J.H.); (J.-Y.H.)
- Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Institute of the Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
| | - Jin Hyun Kim
- Institute of the Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea;
| | - Tae Ho Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea;
| | - Jin-Sin Koh
- Department of Internal Medicine, Gyeongsang National University, School of Medicine, Jinju 52828, Korea; (Y.P.); (J.-S.K.); (S.-J.H.); (J.-Y.H.)
- Department of Internal Medicine, Gyeongsang National University, School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Seok-Jae Hwang
- Department of Internal Medicine, Gyeongsang National University, School of Medicine, Jinju 52828, Korea; (Y.P.); (J.-S.K.); (S.-J.H.); (J.-Y.H.)
- Department of Internal Medicine, Gyeongsang National University, School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Jin-Yong Hwang
- Department of Internal Medicine, Gyeongsang National University, School of Medicine, Jinju 52828, Korea; (Y.P.); (J.-S.K.); (S.-J.H.); (J.-Y.H.)
- Institute of the Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
- Department of Internal Medicine, Gyeongsang National University, School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Young-Hoon Jeong
- Department of Internal Medicine, Gyeongsang National University, School of Medicine, Jinju 52828, Korea; (Y.P.); (J.-S.K.); (S.-J.H.); (J.-Y.H.)
- Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Institute of the Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
| |
Collapse
|
21
|
Agbani EO, Zhao X, Williams CM, Aungraheeta R, Hers I, Swenson ER, Poole AW. Carbonic Anhydrase Inhibitors suppress platelet procoagulant responses and in vivo thrombosis. Platelets 2020; 31:853-859. [PMID: 31893963 DOI: 10.1080/09537104.2019.1709632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbonic anhydrase (CA) inhibitors have a long history of safe clinical use as mild diuretics, in the treatment of glaucoma and for altitude sickness prevention. In this study, we aimed to determine if CA inhibition may be an alternative approach to control thrombosis. We utilized a high-resolution dynamic imaging approach to provide mechanistic evidence that CA inhibitors may be potent anti-procoagulant agents in vitro and effective anti-thrombotics in vivo. Acetazolamide and methazolamide, while sparing platelet secretion, attenuated intracellular chloride ion entry and suppressed the procoagulant response of activated platelets in vitro and thrombosis in vivo. The chemically similar N-methyl acetazolamide, which lacks CA inhibitory activity, did not affect platelet procoagulant response in vitro. Outputs from rotational thromboelastometry did not reflect changes in procoagulant activity and reveal the need for a suitable clinical test for procoagulant activity. Drugs specifically targeting procoagulant remodeling of activated platelets, by blockade of carbonic anhydrases, may provide a new way to control platelet-driven thrombosis without blocking essential platelet secretion responses.
Collapse
Affiliation(s)
- Ejaife O Agbani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta, Canada.,Vascular Basic Science, Libin Cardiovascular Institute of Alberta , Calgary, Alberta, Canada
| | - Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Riyaad Aungraheeta
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, Medical Service, VA Puget Sound Health Care System, University of Washington , Seattle, WA, USA
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK
| |
Collapse
|
22
|
Song YL, Jiang H, Jiang NG, Jin YM, Zeng TT. Mesenchymal Stem Cell–Platelet Aggregates Increased in the Peripheral Blood of Patients with Acute Myocardial Infarction and Might Depend on the Stromal Cell-Derived Factor 1/CXCR4 Axis. Stem Cells Dev 2019; 28:1607-1619. [PMID: 31650891 DOI: 10.1089/scd.2019.0154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Neng-Gang Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yong-Mei Jin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
23
|
Hally KE, Bird GK, La Flamme AC, Harding SA, Larsen PD. Platelets modulate multiple markers of neutrophil function in response to in vitro Toll-like receptor stimulation. PLoS One 2019; 14:e0223444. [PMID: 31581214 PMCID: PMC6776355 DOI: 10.1371/journal.pone.0223444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION In addition to their role in facilitating leukocyte-mediated inflammation, platelets can dampen leukocyte pro-inflammatory responses in some contexts. Consequently, platelets are increasingly appreciated as regulators of inflammation. Together, platelets and neutrophils play a role in inflammation through Toll-like receptor (TLR) expression, although we do not fully understand how platelets shape neutrophil responses to TLR stimulation. Here, we aimed to determine the extent to which platelets can modulate neutrophil function in response to in vitro stimulation with TLR4, TLR2/1, and TLR2/6 agonists. METHODS Neutrophils from 10 healthy individuals were cultured alone or with autologous platelets. Neutrophils ± platelets were left unstimulated or were stimulated with 1 or 100 ng/mL lipopolysaccharide (LPS; a TLR4 agonist), Pam3CSK4 (a TLR2/1 agonist) and fibroblast-stimulating lipopeptide (FSL)-1 (a TLR2/6 agonist). Neutrophil activation and phagocytic activity were assessed by flow cytometry, and elastase and interleukin-8 secretion were assessed by ELISA. RESULTS The addition of platelets attenuated neutrophil CD66b and CD11b expression in response to various doses of Pam3CSK4 and FSL-1. Furthermore, platelet co-culture was associated with higher CD62L expression (indicating reduced CD62L shedding) in response to these TLR agonists. Platelets also reduced elastase secretion in unstimulated cultures and in response to low-dose TLR stimulation. Conversely, platelet co-culture increased neutrophil phagocytosis in unstimulated cultures and in response to low-dose Pam3CSK4 and FSL-1. Platelets also increased IL-8 secretion in response to low-dose LPS. CONCLUSION Platelets are complex immunomodulators that can attenuate some, and simultaneously augment other, neutrophil functions. This modulation can occur both in the absence and presence of TLR stimulation.
Collapse
Affiliation(s)
- Kathryn E. Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
- * E-mail:
| | - Georgina K. Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Anne C. La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Scott A. Harding
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
- Department of Cardiology, Wellington Hospital, Wellington, New Zealand
| | - Peter D. Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Wellington Cardiovascular Research Group, Wellington, New Zealand
| |
Collapse
|
24
|
Schanze N, Bode C, Duerschmied D. Platelet Contributions to Myocardial Ischemia/Reperfusion Injury. Front Immunol 2019; 10:1260. [PMID: 31244834 PMCID: PMC6562336 DOI: 10.3389/fimmu.2019.01260] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Obstruction of a coronary artery causes ischemia of heart tissue leading to myocardial infarction. Prolonged oxygen deficiency provokes tissue necrosis, which can result in heart failure and death of the patient. Therefore, restoration of coronary blood flow (reperfusion of the ischemic area) by re-canalizing the affected vessel is essential for a better patient outcome. Paradoxically, sudden reperfusion also causes tissue injury, thereby increasing the initial ischemic damage despite restoration of blood flow (=ischemia/reperfusion injury, IRI). Myocardial IRI is a complex event that involves various harmful mechanisms (e.g., production of reactive oxygen species and local increase in calcium ions) as well as inflammatory cells and signals like chemokines and cytokines. An involvement of platelets in the inflammatory reaction associated with IRI was discovered several years ago, but the underlying mechanisms are not yet fully understood. This mini review focusses on platelet contributions to the intricate picture of myocardial IRI. We summarize how upregulation of platelet surface receptors and release of immunomodulatory mediators lead to aggravation of myocardial IRI and subsequent cardiac damage by different mechanisms such as recruitment and activation of immune cells or modification of the cardiac vascular endothelium. In addition, evidence for cardioprotective roles of distinct platelet factors during IRI will be discussed.
Collapse
Affiliation(s)
- Nancy Schanze
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, van Royen N, Schulz R, Heusch G. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 2019; 115:1143-1155. [PMID: 30428011 PMCID: PMC6529918 DOI: 10.1093/cvr/cvy286] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
The coronary circulation is both culprit and victim of acute myocardial infarction. The rupture of an epicardial atherosclerotic plaque with superimposed thrombosis causes coronary occlusion, and this occlusion must be removed to induce reperfusion. However, ischaemia and reperfusion cause damage not only in cardiomyocytes but also in the coronary circulation, including microembolization of debris and release of soluble factors from the culprit lesion, impairment of endothelial integrity with subsequently increased permeability and oedema formation, platelet activation and leucocyte adherence, erythrocyte stasis, a shift from vasodilation to vasoconstriction, and ultimately structural damage to the capillaries with eventual no-reflow, microvascular obstruction (MVO), and intramyocardial haemorrhage (IMH). Therefore, the coronary circulation is a valid target for cardioprotection, beyond protection of the cardiomyocyte. Virtually all of the above deleterious endpoints have been demonstrated to be favourably influenced by one or the other mechanical or pharmacological cardioprotective intervention. However, no-reflow is still a serious complication of reperfused myocardial infarction and carries, independently from infarct size, an unfavourable prognosis. MVO and IMH can be diagnosed by modern imaging technologies, but still await an effective therapy. The current review provides an overview of strategies to protect the coronary circulation from acute myocardial ischaemia/reperfusion injury. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Department of Cardiology, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, USA
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, F. Policlinico Gemelli—IRCCS, Università Cattolica Sacro Cuore, Roma, Italy
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - David Garcia-Dorado
- Department of Cardiology, Vascular Biology and Metabolism Area, Vall d’Hebron University Hospital and Research Institute (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Instituto CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
26
|
Ziegler M, Wang X, Peter K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res 2019; 115:1178-1188. [PMID: 30906948 PMCID: PMC6529900 DOI: 10.1093/cvr/cvz070] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myocardial infarction (AMI) is the single leading cause of mortality and morbidity worldwide. A key component of AMI therapy is the timely reopening of occluded vessels to prevent further ischaemic damage to the myocardium. However, reperfusion of the ischaemic myocardium can itself trigger reperfusion injury causing up to 50% of the overall infarct size. In recent years, considerable research has been devoted to understanding the pathogenesis of ischaemia/reperfusion (I/R) injury and platelets have emerged as a major contributing factor. This review summarizes the role of platelets in the pathogenesis of I/R injury and highlights the potential of platelet-directed therapeutics to minimize cardiac I/R injury. Activated platelets infiltrate specifically into the ischaemic/reperfused myocardium and contribute to I/R injury by the formation of microthrombi, enhanced platelet-leucocyte aggregation, and the release of potent vasoconstrictor and pro-inflammatory molecules. This review demonstrates the benefits of platelet inhibition beyond their well-described anti-thrombotic effect and highlights the direct cardioprotective role of anti-platelet drugs. In particular, the inhibition of COX, the P2Y12 receptor and the GPIIb/IIIa receptor has demonstrated the potential to attenuate I/R injury. Moreover, targeting of drug candidates or regenerative cells to the activated platelets accumulated within the ischaemic/reperfused myocardium shows remarkable potential to protect the myocardium from I/R injury. Overall, activated platelets play a key role in the pathogenesis of I/R injury. Their direct inhibition as well as their use as epitopes for site-directed therapy is a unique and promising therapeutic approach for the prevention of I/R injury and ultimately the preservation of cardiac function.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| |
Collapse
|
27
|
Abstract
Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.
Collapse
Affiliation(s)
- Tony G Walsh
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Yong Li
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Andreas Wersäll
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Alastair W Poole
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| |
Collapse
|