1
|
Rafea R, Siragusa M, Fleming I. The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase. Basic Clin Pharmacol Toxicol 2025; 136:e70029. [PMID: 40150952 PMCID: PMC11950718 DOI: 10.1111/bcpt.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Nitric oxide (NO) generated by the endothelial NO synthase (eNOS) plays an essential role in the maintenance of vascular homeostasis and the prevention of vascular inflammation. There are a myriad of mechanisms that regulate the activity of the enzyme that may prove to represent interesting therapeutic opportunities. In this regard, the kinases that phosphorylate the enzyme and regulate its activity in situations linked to vascular disease seem to be particularly promising. Although the actions of NO were initially linked mainly to the activation of the guanylyl cyclase and the generation of cyclic GMP in vascular smooth muscle cells and platelets, it is now clear that NO elicits the majority of its actions via its ability to modify redox-activated cysteine residues in a process referred to as S-nitrosylation. The more wide spread use of mass spectrometry to detect S-nitrosylated proteins has helped to identify just how large the NO sphere of influence is and just how many cellular processes are affected. It may be an old target, but the sheer impact of eNOS on vascular health really justifies a revaluation of therapeutic options to maintain and protect its activity in situations associated with a high risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Riham Rafea
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
- Partner Site RheinMainGerman Center for Cardiovascular Research (DZHK)Frankfurt am MainGermany
| |
Collapse
|
2
|
Di Russo S, Liberati FR, Riva A, Di Fonzo F, Macone A, Giardina G, Arese M, Rinaldo S, Cutruzzolà F, Paone A. Beyond the barrier: the immune-inspired pathways of tumor extravasation. Cell Commun Signal 2024; 22:104. [PMID: 38331871 PMCID: PMC10851599 DOI: 10.1186/s12964-023-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024] Open
Abstract
Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.
Collapse
Affiliation(s)
- Sara Di Russo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Agnese Riva
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti P.Le A. Moro 5, Rome, 00185, Italy.
| |
Collapse
|
3
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
4
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
7
|
Aguilar G, Córdova F, Koning T, Sarmiento J, Boric MP, Birukov K, Cancino J, Varas-Godoy M, Soza A, Alves NG, Mujica PE, Durán WN, Ehrenfeld P, Sánchez FA. TNF-α-activated eNOS signaling increases leukocyte adhesion through the S-nitrosylation pathway. Am J Physiol Heart Circ Physiol 2021; 321:H1083-H1095. [PMID: 34652985 PMCID: PMC8782658 DOI: 10.1152/ajpheart.00065.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-α (TNF-α) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase Cζ (PKCζ) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-α, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-α-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-α-induced NO also produced S-nitrosylation and phosphorylation of PKCζ, association of PKCζ with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCζ blocked leukocyte adhesion induced by TNF-α. Mass spectrometry analysis of purified PKCζ identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCζ may be an important regulatory step in early leukocyte adhesion in inflammation.NEW & NOTEWORTHY Contrary to the well-established inhibitory role of NO in leukocyte adhesion, we demonstrate a positive role of nitric oxide in this process. We demonstrate that NO induced by eNOS after TNF-α treatment induces early leukocyte adhesion activating the S-nitrosylation pathway. Our data suggest that PKCζ S-nitrosylation may be a key step in this process.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Córdova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio P Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Konstantin Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natascha G Alves
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Patricio E Mujica
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy College, Dobbs Ferry, New York
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Pamela Ehrenfeld
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Tomita T, Kato M, Hiratsuka S. Regulation of vascular permeability in cancer metastasis. Cancer Sci 2021; 112:2966-2974. [PMID: 33966313 PMCID: PMC8353911 DOI: 10.1111/cas.14942] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Enhancement of vascular permeability is indispensable for cancer metastasis. Weakened endothelial barrier function enhances vascular permeability. Circulating tumor cells moving in the microvasculature tend to invade into stromal tissue at the location where vascular permeability is enhanced. Many basic studies have identified permeability factors by using gene‐modified animals and cells. These factors directly/indirectly interact with endothelial cells. Here, we review vascular permeability factors and their molecular mechanisms. Interactions between tumor cells and endothelial cells are also discussed in the process of extravasation, one of the most critical steps in tumor metastasis. In some cases, primary tumors can manipulate permeability in a remote organ by secreting permeability factors. In addition, the importance of glycocalyx, which covers the endothelial cell surface, in controlling vascular permeability and tumor metastasis is also described. Furthermore, analysis of the hyperpermeable region found in a mouse model study is introduced. It clearly showed that tumor‐bearing mouse lungs had a hyperpermeable region due to the influence of a remote primary tumor, and fibrinogen deposition was observed in that region. Given that fibrinogen was reported to be a permeability factor and a key regulator of inflammation, eliminating fibrinogen deposition may prevent future metastasis.
Collapse
Affiliation(s)
- Takeshi Tomita
- Department of Biochemistry and Molecular Biology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayoshi Kato
- Department of Biochemistry and Molecular Biology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Sachie Hiratsuka
- Department of Biochemistry and Molecular Biology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
9
|
Mendez-Barbero N, Yuste-Montalvo A, Nuñez-Borque E, Jensen BM, Gutiérrez-Muñoz C, Tome-Amat J, Garrido-Arandia M, Díaz-Perales A, Ballesteros-Martinez C, Laguna JJ, Beitia J, Poulsen LK, Cuesta-Herranz J, Blanco-Colio LM, Esteban V. The TNF-like weak inducer of the apoptosis/fibroblast growth factor–inducible molecule 14 axis mediates histamine and platelet-activating factor–induced subcutaneous vascular leakage and anaphylactic shock. J Allergy Clin Immunol 2020; 145:583-596.e6. [DOI: 10.1016/j.jaci.2019.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
|
10
|
Tang X, Pan L, Zhao S, Dai F, Chao M, Jiang H, Li X, Lin Z, Huang Z, Meng G, Wang C, Chen C, Liu J, Wang X, Ferro A, Wang H, Chen H, Gao Y, Lu Q, Xie L, Han Y, Ji Y. SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation. Circulation 2020; 141:984-1000. [PMID: 31902237 DOI: 10.1161/circulationaha.119.042336] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND S-nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in the pathogenesis of cardiovascular disease. The aim of this study was to determine the role of SNO of MLP (muscle LIM protein) in myocardial hypertrophy, as well as the mechanism by which SNO-MLP modulates hypertrophic growth in response to pressure overload. METHODS Myocardial samples from patients and animal models exhibiting myocardial hypertrophy were examined for SNO-MLP level using biotin-switch methods. SNO sites were further identified through liquid chromatography-tandem mass spectrometry. Denitrosylation of MLP by the mutation of nitrosylation sites or overexpression of S-nitrosoglutathione reductase was used to analyze the contribution of SNO-MLP in myocardial hypertrophy. Downstream effectors of SNO-MLP were screened through mass spectrometry and confirmed by coimmunoprecipitation. Recruitment of TLR3 (Toll-like receptor 3) by SNO-MLP in myocardial hypertrophy was examined in TLR3 small interfering RNA-transfected neonatal rat cardiomyocytes and in a TLR3 knockout mouse model. RESULTS SNO-MLP level was significantly higher in hypertrophic myocardium from patients and in spontaneously hypertensive rats and mice subjected to transverse aortic constriction. The level of SNO-MLP also increased in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes. S-nitrosylated site of MLP at cysteine 79 was identified by liquid chromatography-tandem mass spectrometry and confirmed in neonatal rat cardiomyocytes. Mutation of cysteine 79 significantly reduced hypertrophic growth in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes and transverse aortic constriction mice. Reducing SNO-MLP level by overexpression of S-nitrosoglutathione reductase greatly attenuated myocardial hypertrophy. Mechanistically, SNO-MLP stimulated TLR3 binding to MLP in response to hypertrophic stimuli, and disrupted this interaction by downregulating TLR3-attenuated myocardial hypertrophy. SNO-MLP also increased the complex formation between TLR3 and RIP3 (receptor-interacting protein kinase 3). This interaction in turn induced NLRP3 (nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3) inflammasome activation, thereby promoting the development of myocardial hypertrophy. CONCLUSIONS Our findings revealed a key role of SNO-MLP in myocardial hypertrophy and demonstrated TLR3-mediated RIP3 and NLRP3 inflammasome activation as the downstream signaling pathway, which may represent a therapeutic target for myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Lihong Pan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Feiyue Dai
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Menglin Chao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Zhe Lin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Zhengrong Huang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, China (Z.H.)
| | - Guoliang Meng
- Nanjing Medical University, Nanjing, China (G.M.).,Department of Pharmacology, School of Pharmacy, Nantong University, China (G.M.)
| | - Chun Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, China (C.W.)
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China (C.C., J.L.)
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China (C.C., J.L.)
| | - Xin Wang
- Faculty of Biology, Medicine and Health, the University of Manchester, United Kingdom (X.W.)
| | - Albert Ferro
- Cardiovascular Clinical Pharmacology, British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, United Kingdom (A.F.)
| | - Hong Wang
- Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA (H.W.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.).,State Key Laboratory of Reproductive Medicine (Y.J.)
| |
Collapse
|
11
|
Guequén A, Zamorano P, Córdova F, Koning T, Torres A, Ehrenfeld P, Boric MP, Salazar-Onfray F, Gavard J, Durán WN, Quezada C, Sarmiento J, Sánchez FA. Interleukin-8 Secreted by Glioblastoma Cells Induces Microvascular Hyperpermeability Through NO Signaling Involving S-Nitrosylation of VE-Cadherin and p120 in Endothelial Cells. Front Physiol 2019; 10:988. [PMID: 31440166 PMCID: PMC6694439 DOI: 10.3389/fphys.2019.00988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor, characterized by the formation of dysfunctional blood vessels and a permeable endothelial barrier. S-nitrosylation, a post-translational modification, has been identified as a regulator of endothelial function. In this work we explored whether S-nitrosylation induced by glioblastoma tumors regulates the endothelial function. As proof of concept, we observed that S-nitrosylation is present in the tumoral microenvironment of glioblastoma in two different animal models. Subsequently, we measured S nitrosylation and microvascular permeability in EAhy296 endothelial cells and in cremaster muscle. In vitro, conditioned medium from the human glioblastoma cell line U87 activates endothelial nitric oxide synthase, causes VE-cadherin- S-nitrosylation and induces hyperpermeability. Blocking Interleukin-8 (IL-8) in the conditioned medium inhibited S-nitrosylation of VE-cadherin and hyperpermeability. Recombinant IL-8 increased endothelial permeability by activating eNOS, S-nitrosylation of VE-cadherin and p120, internalization of VE-cadherin and disassembly of adherens junctions. In vivo, IL-8 induced S-nitrosylation of VE-cadherin and p120 and conditioned medium from U87 cells caused hyperpermeability in the mouse cremaster muscle. We conclude that eNOS signaling induced by glioma cells-secreted IL-8 regulates endothelial barrier function in the context of glioblastoma involving S-nitrosylation of VE-cadherin and p120. Our results suggest that inhibiting S-nitrosylation may be an effective way to control and/or block damage to the endothelial barrier and prevent cancer progression.
Collapse
Affiliation(s)
- Anita Guequén
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia Zamorano
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Córdova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Angelo Torres
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Histología, Anatomía y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio P. Boric
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Julie Gavard
- Team SOAP, Signaling in Oncogenesis, Angiogenesis and Permeability, INSERM, CNRS, Institut de Cancérologie de l’Ouest, Université de Nantes, Nantes, France
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Claudia Quezada
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A. Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
12
|
S-nitrosylation and its role in breast cancer angiogenesis and metastasis. Nitric Oxide 2019; 87:52-59. [PMID: 30862477 DOI: 10.1016/j.niox.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
S-nitrosylation, the modification by nitric oxide of free sulfhydryl groups in cysteines, has become an important regulatory mechanism in carcinogenesis and metastasis. S-nitrosylation of targets in tumor cells contributes to metastasis regulating epithelial to mesenchymal transition, migration and invasion. In the tumor environment, the role of S-nitrosylation in endothelium has not been addressed; however, the evidence points out that S-nitrosylation of endothelial proteins may regulate angiogenesis, adhesion of tumor cells to the endothelium, intra and extravasation of tumor cells and contribute to metastasis.
Collapse
|
13
|
Slit2/Robo4 signaling pathway modulates endothelial hyper-permeability in a two-event in vitro model of transfusion-related acute lung injury. Blood Cells Mol Dis 2018; 76:7-12. [PMID: 30846360 DOI: 10.1016/j.bcmd.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 11/20/2022]
Abstract
Transfusion-related acute lung injury (TRALI) remains the leading cause of transfusion-related mortality. Endothelium semipermeable barrier function plays a critical role in the pathophysiology of transfusion-related acute lung injury (TRALI). Recently, Roundabout protein 4 (Robo4), interaction with its ligand Slit 2, was appreciated as a modulator of endothelial permeability and integrity. However, not much is known about the role of Slit2/Robo4 signaling pathway in the pathophysiology of TRALI. In this study, the TRALI model was performed by the "two-event" model of polymorphonuclear neutrophils (PMN)-mediated pulmonary microvascular endothelial cells (PMVECs) damage. We investigated the expression of Slit2/Robo4 and VE-cadherin and examined the pulmonary endothelial hyper-permeability in TRALI model. We found that the expression of Slit2/Robo4 and VE-cadherin were significantly decreased in a time-dependent manner, whereas the PMVECs permeability was gradually increased over time in TRALI model. Moreover, the treatment with Slit2-N, an active fragment of Slit2, increased the expression of Slit2/Robo4 and VE-cadherin to protect PMVECs from PMN-mediated pulmonary endothelial hyper-permeability. These results indicate that targeting Slit2/Robo4 signaling pathway may modulate the permeability as well as protect the integrity of endothelial barrier. In addition, Slit2-N appears to be a promising candidate for developing novel therapies against TRALI.
Collapse
|
14
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
15
|
S-nitrosylation of NOS pathway mediators in the penis contributes to cavernous nerve injury-induced erectile dysfunction. Int J Impot Res 2018; 30:108-116. [PMID: 29736011 PMCID: PMC6173628 DOI: 10.1038/s41443-018-0021-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/21/2017] [Accepted: 12/24/2017] [Indexed: 11/25/2022]
Abstract
cGMP-independent nitric oxide (NO) signaling occurs via S-nitrosylation. We evaluated whether aberrant S-nitrosylation operates in the penis under conditions of cavernous nerve injury and targets proteins involved in regulating erectile function. Adult male Sprague-Dawley rats underwent bilateral cavernous nerve crush injury (BCNI) or sham surgery. Rats were given a denitrosylation agent N-acetylcysteine (NAC, 300 mg/kg/day) or vehicle in drinking water starting 2 days before BCNI and continuing for 2 weeks following surgery. After assessment of erectile function (intracavernous pressure), penes were collected for measurements of S-nitrosylation by Saville-Griess and TMT-switch assays and PKG-I function by immunoblotting of phospho (P)-VASP-Ser-239. Erectile function was decreased (P<0.05) after BCNI, and it was preserved (P<0.05) by NAC treatment. Total S-nitrosothiols and total S-nitrosylated proteins were increased (P<0.05) after BCNI, and these were partially prevented by NAC treatment. S-nitrosylation of sGC was increased (P<0.05) after BCNI, and it was prevented (P<0.05) by NAC treatment. S-nitrosylation of eNOS was increased (P<0.05) after BCNI, and showed a trend towards decrease by NAC treatment. Protein expression of P-VASP-Ser-239 was decreased (P<0.05) after BCNI, and showed a trend towards increase by NAC treatment. In conclusion, erectile dysfunction following BCNI is mediated in part by S-nitrosylation of eNOS and its downstream signaling mediator GC, while denitrosylation protects erectile function by preserving the NO/cGMP signaling pathway.
Collapse
|