1
|
Yao H, Chen J, Wang Y, Li Y, Tang P, Liang M, Jiang Q. Uncovering therapeutic targets for Pre-eclampsia and pregnancy hypertension via multi-tissue data integration. BMC Pregnancy Childbirth 2025; 25:479. [PMID: 40269770 PMCID: PMC12020376 DOI: 10.1186/s12884-025-07608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Pre-eclampsia (PE) and pregnancy hypertension (PH) are common and serious complications during pregnancy, which can lead to maternal and fetal death in severe cases. Therefore, further research on the potential therapeutic targets of PE and PH is of great significance for developing new treatment strategies. METHODS This study used the summary data-based Mendelian randomization (SMR) method to analyze expression quantitative trait loci (eQTL) data from blood, aorta, and uterus with Genome-wide association studies (GWAS) data on PE and PH, exploring potential genetic loci involved in PE and PH. Since proteinuria is a clinical manifestation of PE, we also analyzed genes related to the kidney and PE. The HEIDI test was used for heterogeneity testing, and results were adjusted using FDR. The cis-eQTL data were obtained from the blood summary-level data of the eQTLGen Consortium and the aorta and uterus data from the V8 release of the GTEx eQTL summary data. The GWAS data for PE and PH were obtained from the FinnGen Documentation of R10 release. This study utilized the STROBE-MR checklist for reporting Mendelian Randomization (MR) studies. RESULTS This study identified several potential therapeutic targets by integrating eQTL data from blood, uterus, and aorta with GWAS data for PE and PH, as well as kidney eQTL data with GWAS data for PE. Additionally, the study discovered some genes with common roles in PE and PH, offering new insights into the shared pathological mechanisms of these two conditions. These findings not only provide new clues to the pathogenesis of PE and PH but also offer crucial foundational data for the development of future therapeutic strategies. CONCLUSION This study revealed multiple potential therapeutic targets for PE and PH, providing new insights for basic experimental research and clinical treatment to mitigate the severe consequences of PE and PH. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hang Yao
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jiahao Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuxin Li
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Peiyu Tang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingpeng Liang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qingling Jiang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Mangum KD, denDekker A, Li Q, Tsoi LC, Joshi AD, Melvin WJ, Wolf SJ, Moon JY, Audu CO, Shadiow J, Obi AT, Wasikowski R, Barrett EC, Bauer TM, Boyer K, Ahmed Z, Davis FM, Gudjonsson J, Gallagher KA. The STAT3/SETDB2 axis dictates NF-κB-mediated inflammation in macrophages during wound repair. JCI Insight 2024; 9:e179017. [PMID: 39435663 PMCID: PMC11530128 DOI: 10.1172/jci.insight.179017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Macrophage transition from an inflammatory to reparative phenotype after tissue injury is controlled by epigenetic enzymes that regulate inflammatory gene expression. We have previously identified that the histone methyltransferase SETDB2 in macrophages drives tissue repair by repressing NF-κB-mediated inflammation. Complementary ATAC-Seq and RNA-Seq of wound macrophages isolated from mice deficient in SETDB2 in myeloid cells revealed that SETDB2 suppresses the inflammatory gene program by inhibiting chromatin accessibility at NF-κB-dependent gene promoters. We found that STAT3 was required for SETDB2 expression in macrophages, yet paradoxically, it also functioned as a binding partner of SETDB2 where it repressed SETDB2 activity by inhibiting its interaction with the NF-κB component, RELA, leading to increased RELA/NF-κB-mediated inflammatory gene expression. Furthermore, RNA-Seq in wound macrophages from STAT3-deficient mice corroborated this and revealed STAT3 and SETDB2 transcriptionally coregulate overlapping genes. Finally, in diabetic wound macrophages, STAT3 expression and STAT3/SETDB2 binding were increased. We have identified what we believe to be a novel STAT3/SETDB2 axis that modulates macrophage phenotype during tissue repair and may be an important therapeutic target for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Kevin D. Mangum
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Qinmengge Li
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - James Shadiow
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Andrea T. Obi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Tyler M. Bauer
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Kylie Boyer
- Section of Vascular Surgery, Department of Surgery
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery
| | - Frank M. Davis
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| |
Collapse
|
3
|
Zou M, Mangum KD, Magin JC, Cao HH, Yarboro MT, Shelton EL, Taylor JM, Reese J, Furey TS, Mack CP. Prdm6 drives ductus arteriosus closure by promoting ductus arteriosus smooth muscle cell identity and contractility. JCI Insight 2023; 8:e163454. [PMID: 36749647 PMCID: PMC10077476 DOI: 10.1172/jci.insight.163454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Based upon our demonstration that the smooth muscle cell-selective (SMC-selective) putative methyltransferase, Prdm6, interacts with myocardin-related transcription factor-A, we examined Prdm6's role in SMCs in vivo using cell type-specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well tolerated, Prdm6 depletion in Wnt1-expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2 Prdm6fl/fl ROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-Seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile associated proteins that was downregulated by Prdm6 depletion. Chromatin immunoprecipitation-sequencing experiments in outflow tract SMCs demonstrated that 50% of the genes Prdm6 depletion altered contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified an SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity, providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.
Collapse
Affiliation(s)
- Meng Zou
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D. Mangum
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin C. Magin
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heidi H. Cao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael T. Yarboro
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joan M. Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Terrence S. Furey
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P. Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Liao KA, Rangarajan KV, Bai X, Taylor JM, Mack CP. The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. Am J Physiol Heart Circ Physiol 2021; 321:H893-H904. [PMID: 34559579 DOI: 10.1152/ajpheart.00142.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-β (TGF-β) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.
Collapse
Affiliation(s)
- Kuo An Liao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Krsna V Rangarajan
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xue Bai
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joan M Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher P Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Fu X, Zhao B, Tian K, Wu Y, Suo L, Ba G, Ciren D, De J, Awang C, Gun S, Yang B. Integrated analysis of lncRNA and mRNA reveals novel insights into cashmere fineness in Tibetan cashmere goats. PeerJ 2020; 8:e10217. [PMID: 33240606 PMCID: PMC7659624 DOI: 10.7717/peerj.10217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Tibetan cashmere goats are famous for producing the finest, softest and lightest cashmere fiber in China. The growth and development of skin are closely related to fineness and are the key factors affecting the quality of cashmere. To investigate the specific role of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in regulating cashmere fineness of Tibetan Cashmere goats in the anagen phase, we conducted high-throughput RNA sequencing of fine-type and coarse-type skin tissues. We identified 2,059 lncRNA candidates (1,589 lncRNAs annotated, 470 lncRNAs novel), and 80 differentially expressed (DE) lncRNAs and their potential targets were predicted. We also identified 384 DE messenger RNAs (mRNAs) out of 29,119 mRNAs. Several key genes in KRT26, KRT28, KRT39, IFT88, JAK3, NOTCH2 and NOTCH3 and a series of lncRNAs, including ENSCHIT00000009853, MSTRG.16794.17, MSTRG.17532.2, were shown to be potentially important for regulating cashmere fineness. GO and KEGG enrichment analyses of DE mRNAs and DE lncRNAs targets significantly enriched in positive regulation of the canonical Wnt signaling pathway, regulation of protein processing and metabolism processes. The mRNA-mRNA and lncRNA-mRNA regulatory networks further revealed potential transcripts involved in cashmere fineness. We further validated the expression patterns of DE mRNAs and DE lncRNAs by quantitative real-time PCR (qRT-PCR), and the results were consistent with the sequencing data. This study will shed new light on selective cashmere goat breeding, and these lncRNAs and mRNAs that were found to be enriched in Capra hircus RNA database.
Collapse
Affiliation(s)
- Xuefeng Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kechuan Tian
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Gui Ba
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Deji Ciren
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ji De
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Cuoji Awang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bohui Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Molecular Regulation of the RhoGAP GRAF3 and Its Capacity to Limit Blood Pressure In Vivo. Cells 2020; 9:cells9041042. [PMID: 32331391 PMCID: PMC7226614 DOI: 10.3390/cells9041042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-hypertensive therapies are usually prescribed empirically and are often ineffective. Given the prevalence and deleterious outcomes of hypertension (HTN), improved strategies are needed. We reported that the Rho-GAP GRAF3 is selectively expressed in smooth muscle cells (SMC) and controls blood pressure (BP) by limiting the RhoA-dependent contractility of resistance arterioles. Importantly, genetic variants at the GRAF3 locus controls BP in patients. The goal of this study was to validate GRAF3 as a druggable candidate for future anti-HTN therapies. Importantly, using a novel mouse model, we found that modest induction of GRAF3 in SMC significantly decreased basal and vasoconstrictor-induced BP. Moreover, we found that GRAF3 protein toggles between inactive and active states by processes controlled by the mechano-sensing kinase, focal adhesion kinase (FAK). Using resonance energy transfer methods, we showed that agonist-induced FAK-dependent phosphorylation at Y376GRAF3 reverses an auto-inhibitory interaction between the GAP and BAR-PH domains. Y376 is located in a linker between the PH and GAP domains and is invariant in GRAF3 homologues and a phosphomimetic E376GRAF3 variant exhibited elevated GAP activity. Collectively, these data provide strong support for the future identification of allosteric activators of GRAF3 for targeted anti-hypertensive therapies.
Collapse
|