1
|
Li M, Sorensen M, Johnson MA, Ingram SL, Andresen MC, Habecker BA. Hypertension increases sympathetic neuron activity by enhancing intraganglionic cholinergic collateral connections. J Physiol 2025; 603:2005-2020. [PMID: 39031543 PMCID: PMC11662085 DOI: 10.1113/jp286601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024] Open
Abstract
Autonomic dysregulation, including sympathetic hyperactivity, is a common feature of hypertension (HT) and other cardiovascular diseases. The CNS plays a role in driving chronic sympathetic activation in disease, but several lines of evidence suggest that neuroplasticity in the periphery may also contribute. The potential contribution of postganglionic sympathetic neurons to sustained sympathetic hyperactivity is not well understood. We recently discovered that noradrenergic sympathetic neurons in the stellate ganglion (SG) have excitatory cholinergic collateral connections to other neurons within the ganglion. We hypothesize that remodelling of these neurons and increased cholinergic collateral transmission contributes to sustained sympathetic hyperactivity in cardiovascular diseases, including HT. To test that hypothesis, we examined the activity of sympathetic neurons in isolated SG under control conditions and after 1 week of HT induced by peripheral angiotensin II infusion, using whole-cell patch clamp recordings. Despite the absence of central inputs, we observed elevated spontaneous activity and synaptic transmission in sympathetic SG neurons from hypertensive mice that required generation of action potentials. Genetically disrupting cholinergic transmission in noradrenergic neurons decreased basal neuronal activity and prevented angiotensin II-mediated enhancement of activity. Similar changes in activity, driven by increased collateral transmission, were identified in cardiac projecting neurons and neurons projecting to brown adipose tissue. These changes were not driven by altered A-type K+ currents. This suggests that HT stimulates increased activity throughout the intraganglionic network of collateral connections, contributing to the sustained sympathetic hyperactivity characteristic in cardiovascular disease. KEY POINTS: Sympathetic neurons in ganglia isolated from angiotensin II-treated hypertensive mice are more active than neurons from control mice despite the absence of central activation. The enhanced activity is the result of a ganglionic network of cholinergic collaterals, rather than altered intrinsic excitability. Increased neuronal activity was observed in both cardiac neurons and brown adipose tissue-projecting neurons, which are not involved in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Minghua Li
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Michelle Sorensen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Morgan A. Johnson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Susan L. Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael C. Andresen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States of America, 97239
| |
Collapse
|
2
|
Booth LC, Saseetharan B, May CN, Yao ST. Selective efferent vagal stimulation in heart failure. Exp Physiol 2024; 109:2001-2005. [PMID: 37755233 PMCID: PMC11607613 DOI: 10.1113/ep090866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Patients diagnosed with heart failure have high rates of mortality and morbidity. Based on promising preclinical studies, vagal nerve stimulation has been trialled in these patients using whole nerve electrical stimulation, but the results have been mixed. This is, at least in part, due to an inability to selectively recruit the activity of specific fibres within the vagus with whole nerve electrical stimulation, as well as not knowing which the 'therapeutic' fibres are. This symposium review focuses on a population of cardiac-projecting efferent vagal fibres with cell bodies located within the dorsal motor nucleus of the vagus nerve and a new method of selectively targeting these projections as a potential treatment in heart failure.
Collapse
Affiliation(s)
- Lindsea C. Booth
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Baagavi Saseetharan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Song T. Yao
- Department of Anatomy and PhysiologyThe University of MelbourneMelbourneAustralia
| |
Collapse
|
3
|
Long K, Zhang X, Wang N, Lei H. Heart Rate Variability during Online Video Game Playing in Habitual Gamers: Effects of Internet Addiction Scale, Ranking Score and Gaming Performance. Brain Sci 2023; 14:29. [PMID: 38248244 PMCID: PMC10813724 DOI: 10.3390/brainsci14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Previous studies have demonstrated that individuals with internet gaming disorder (IGD) display abnormal autonomic activities at rest and during gameplay. Here, we examined whether and how in-game autonomic activity is modulated by human characteristics and behavioral performance of the player. We measured heart rate variability (HRV) in 42 male university student habitual gamers (HGs) when they played a round of League of Legends game online. Short-term HRV indices measured in early, middle and late phases of the game were compared between the players at high risk of developing IGD and those at low risk, as assessed by the revised Chen Internet addiction scale (CIAS-R). Multiple linear regression (MLR) was used to identify significant predictors of HRV measured over the whole gameplay period (WG), among CIAS-R, ranking score, hours of weekly playing and selected in-game performance parameters. The high-risk players showed a significantly higher low-frequency power/high-frequency power ratio (LF/HF) relative to the low-risk players, regardless of game phase. MLR analysis revealed that LF/HF measured in WG was predicted by, and only by, CIAS-R. The HRV indicators of sympathetic activity were found to be predicted only by the number of slain in WG (NSlain), and the indicators of parasympathetic activity were predicted by both CIAS-R and NSlain. Collectively, the results demonstrated that risk of developing IGD is associated with dysregulated autonomic balance during gameplay, and in-game autonomic activities are modulated by complex interactions among personal attributes and in-game behavioral performance of the player, as well as situational factors embedded in game mechanics.
Collapse
Affiliation(s)
- Kehong Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (K.L.); (X.Z.); (N.W.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xuzhe Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (K.L.); (X.Z.); (N.W.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ningxin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (K.L.); (X.Z.); (N.W.)
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (K.L.); (X.Z.); (N.W.)
- University of Chinese Academy of Sciences, Beijing 100190, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Booth LC, de Silva RAU, Pontes RB, Yao ST, Hood SG, Lankadeva YR, Kosaka J, Eikelis N, Lambert GW, Schlaich MP, May CN. Renal, Cardiac, and Autonomic Effects of Catheter-Based Renal Denervation in Ovine Heart Failure. Hypertension 2021; 78:706-715. [PMID: 34333989 DOI: 10.1161/hypertensionaha.120.16054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia
| | - R Anethra U de Silva
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia
| | - Roberto B Pontes
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia.,Department of Physiology, Cardiovascular Division, Federal University of São Paulo, Brazil (R.B.P.)
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Physiology, MDHS (S.T.Y.), University of Melbourne, Parkville, Victoria, Australia
| | - Sally G Hood
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia
| | - Yugeesh R Lankadeva
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia
| | - Junko Kosaka
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia.,Department of Anesthesiology and Resuscitology, Okayama University Hospital, Japan (J.K.)
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia (N.E., G.W.L.)
| | - Gavin W Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia (N.E., G.W.L.)
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Perth (M.P.S.)
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health (L.C.B., R.A.U.d.S., R.B.P., S.T.T., S.G.H., Y.R.L., J.K., C.N.M.), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Pachen M, Abukar Y, Shanks J, Lever N, Ramchandra R. Activation of the carotid body increases directly recorded cardiac sympathetic nerve activity and coronary blood flow in conscious sheep. Am J Physiol Regul Integr Comp Physiol 2020; 320:R203-R212. [PMID: 33206558 DOI: 10.1152/ajpregu.00246.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the carotid body (CB) using intracarotid potassium cyanide (KCN) injection increases coronary blood flow (CoBF). This increase in CoBF is considered to be mediated by co-activation of both the sympathetic and parasympathetic nerves to the heart. However, whether cardiac sympathetic nerve activity (cardiac SNA) actually increases during CB activation has not been determined previously. We hypothesized that activation of the CB would increase directly recorded cardiac SNA, which would cause coronary vasodilatation. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA and diaphragmatic electromyography (dEMG), flow probes to record CoBF and cardiac output, and a catheter to record arterial pressure. Intracarotid KCN injection was used to activate the CB. To eliminate the contribution of metabolic demand on coronary flow, the heart was paced at a constant rate during CB chemoreflex stimulation. Intracarotid KCN injection resulted in a significant increase in directly recorded cardiac SNA frequency (from 24 ± 2 to 40 ± 4 bursts/min; P < 0.05) as well as a dose-dependent increase in mean arterial pressure (79 ± 15 to 88 ± 14 mmHg; P < 0.01) and CoBF (75 ± 37 vs. 86 ± 42 mL/min; P < 0.05). The increase in CoBF and coronary vascular conductance to intracarotid KCN injection was abolished after propranolol infusion, suggesting that the increased cardiac SNA mediates coronary vasodilatation. The pressor response to activation of the CB was abolished by pretreatment with intravenous atropine, but there was no change in the coronary flow response. Our results indicate that CB activation increases directly recorded cardiac SNA, which mediates vasodilatation of the coronary vasculature.
Collapse
Affiliation(s)
- Mridula Pachen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Yonis Abukar
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Nigel Lever
- Department of Medicine, University of Auckland and Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
7
|
Roy S, Goswami DP, Sengupta A. Geometry of the Poincaré plot can segregate the two arms of autonomic nervous system - A hypothesis. Med Hypotheses 2020; 138:109574. [PMID: 32014816 DOI: 10.1016/j.mehy.2020.109574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/01/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Autonomic Nervous System (ANS) operates to achieve the optimum physiological functioning and maintains homeostasis in a tonic and continuous manner. Evaluation of ANS profile is crucial in assessing autonomic dysfunction. Conventional ANS evaluation procedures fail to capture minute dynamic alterations of ANS activities. The ANS output pattern is appropriately reflected in the fine alteration of the resting heart rate (HR). HR is a non-stationary variable, results from the dynamic interplay between the multiple physiologic mechanisms. The control of cardiac rate or the chronotropic regulation of heart is considered as a coupled network of oscillators, each representing a specific facet of the cardiovascular reflex. The slower vasomotor oscillation via sympathetic system is combined with rapid respiratory oscillation by parasympathetic system to modulate the intrinsic oscillation pattern of the SA Node. Heart Rate Variability (HRV) is used to understand the autonomic influence on cardiovascular system in health and disease. Fourier decomposition of HRV offers us mainly two different frequency components. High frequency (HF) variation indicates parasympathetic variability due to respiration and Low frequency (LF) mainly implicates tonic sympathetic influence, due to slower vasomotor modulation of heart rate. However, different studies show conflicting results and direct recording of sympathetic nerve activity also failed to correlate with LF power in either healthy subjects or in patients with increased cardiac sympathetic drive. A scatter-plot where each R-R interval is plotted against the preceding R-R interval forms a distributed elliptic point cloud in two dimensional plane. The phase space realization of this plot with dimension two and delay one is referred to as Poincaré plot analysis, an emerging quantitative-visual technique where the shape of the plot is categorized into different functional classes. The plot provides summary as well as detailed beat-to-beat information of the heart. This plot can be extended to three dimensions and with multi-lag, offering more insight and information. A mathematical expression was developed by an interventional study by Toichi et al., using pharmacological blockers during different physiological variables that calculated the lengths of transverse and longitudinal axes of the Poincaré plot to derive two quantitative expressions of sympathetic and vagal influence on HRV: 'cardiac sympathetic index' (CSI)) and 'cardiac vagal index' (CVI). In the present study, we emulate Poincaré plot patterns seen in normal range of sympatho-vagal balances and also in Diabetes Mellitus (DM), known to cause autonomic dysfunction. The emerging pattern of R-R interval time series would provide valuable insight into the altered temporal dynamics and also extract crucial features embedded within. DM is a major public health crisis globally and particularly in Indian population. We hypothesize that, CSI and CVI will effectively segregate the two arms of ANS and can be utilized as an effective evaluation tool to explore the disease status in patients of Diabetes Mellitus. We also propose that, the dynamics of fluctuations in physiological rhythms that exhibit long-term correlation and memory, can also be explored and expressed quantitatively by incorporating various degrees of 'lag' in these recurrence plots.
Collapse
Affiliation(s)
- Soma Roy
- Dept. of Physiology, Rampurhat Govt. Medical College & Hospital Birbhum, 731224 WB, India
| | - Damodar Prasad Goswami
- Dept. of Mathematics, Netaji Subhash Engineering College, Panchpota, Garia, Kolkata 700152, West Bengal, India
| | - Arnab Sengupta
- Dept. of Physiology, Calcutta Medical College, 88, College Street, Calcutta 700073, India.
| |
Collapse
|
8
|
Abukar Y, Lever N, Pachen M, LeGrice IJ, Ramchandra R. Impaired Baroreflex Function in an Ovine Model of Chronic Heart Failure Induced by Multiple Coronary Microembolizations. Front Physiol 2019; 10:1420. [PMID: 31824334 PMCID: PMC6882935 DOI: 10.3389/fphys.2019.01420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Testing new therapies in heart failure (HF) requires a chronic stable model of HF in large animals. Microembolization of the coronary arteries has been used to model HF previously; however, neural control has not been previously explored in this model. Thus the aim of this study was to further characterize neural control in this model of HF. HF was induced by infusion of microspheres (45 micron; 1.3 ml) into the proximal left coronary artery or left descending coronary arteries, with three sequential embolizations over 3 weeks. Twelve to 14 weeks after the final embolization, and when ejection fraction had decreased below 45%, animals were instrumented to record blood pressure and heart rate. Baroreflex control of heart rate was investigated in conscious animals. Additionally, pressure-volume loops were constructed under anesthesia. Embolization-induced HF was associated with a decrease in mean arterial pressure (67 ± 2 vs. 85 ± 4 mmHg, p < 0.05), an increase in heart rate (108 ± 4 vs. 94 ± 4 bpm, p < 0.05), and a significant increase in left ventricular end-diastolic pressure (11.4 ± 2 vs. 6.2 ± 1 mmHg, p < 0.01). Under conscious conditions, there was a significant decrease in the gain (-8.2 ± 2 vs. -4.1 ± 1 beats/min/mmHg, p < 0.05) as well as the lower plateau of the baroreflex in HF compared to control animals. HF was also associated with significantly increased respiratory rate (107 ± 4 vs. 87 ± 4 breaths/min, p < 0.01) and incidence of apneas (520 ± 24 vs. 191 ± 8 apnea periods >4 s, p < 0.05), compared to control sheep. The microembolization model of heart failure is associated with an increase in left ventricular end-diastolic pressure, impaired cardiac function, and altered baroreflex control of the heart. These findings suggest this chronic model of HF is appropriate to use for investigating interventions aimed at improving neural control in HF.
Collapse
Affiliation(s)
- Yonis Abukar
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Nigel Lever
- Department of Cardiology, Auckland District Health Board, Auckland, New Zealand
| | - Mridula Pachen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ian J LeGrice
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol 2019; 317:R386-R396. [DOI: 10.1152/ajpregu.00026.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In heart failure (HF), increases in renal sympathetic nerve activity (RSNA), renal norepinephrine spillover, and renin release cause renal vasoconstriction, which may contribute to the cardiorenal syndrome. To increase our understanding of the mechanisms causing renal vasoconstriction in HF, we investigated the interactions between the increased activity of the renal nerves and the renal release of norepinephrine and renin in an ovine pacing-induced model of HF compared with healthy sheep. In addition, we determined the level of renal angiotensin type-1 receptors and the renal vascular responsiveness to stimulation of the renal nerves and α1-adrenoceptors. In conscious sheep with mild HF (ejection fraction 35%–40%), renal blood flow (276 ± 13 to 185 ± 18 mL/min) and renal vascular conductance (3.8 ± 0.2 to 3.1 ± 0.2 mL·min−1·mmHg−1) were decreased compared with healthy sheep. There were increases in the burst frequency of RSNA (27%), renal norepinephrine spillover (377%), and plasma renin activity (141%), whereas the density of renal medullary angiotensin type-1 receptors decreased. In anesthetized sheep with HF, the renal vasoconstrictor responses to electrical stimulation of the renal nerves or to phenylephrine were attenuated. Irbesartan improved the responses to nerve stimulation, but not to phenylephrine, in HF and reduced the responses in normal sheep. In summary, in HF, the increases in renal norepinephrine spillover and plasma renin activity are augmented compared with the increase in RSNA. The vasoconstrictor effect of the increased renal norepinephrine and angiotensin II is offset by reduced levels of renal angiotensin type-1 receptors and reduced renal vasoconstrictor responsiveness to α1-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Daniel T. Xing
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marcus Matear
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Gavin Lambert
- Iverson Health Innovation Research Institute and Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew M. Allen
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Xiong L, Liu Y, Zhou M, Wang G, Quan D, Shuai W, Shen C, Kong B, Huang C, Huang H. Targeted ablation of cardiac sympathetic neurons attenuates adverse postinfarction remodelling and left ventricular dysfunction. Exp Physiol 2018; 103:1221-1229. [PMID: 29928790 DOI: 10.1113/ep086928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Liang Xiong
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Yu Liu
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Mingmin Zhou
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Guangji Wang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Dajun Quan
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Wei Shuai
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Caijie Shen
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Bin Kong
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - Congxin Huang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| | - He Huang
- Department of Cardiology; Renmin Hospital of Wuhan University; Wuhan China
- Cardiovascular Research Institute of Wuhan University; Wuhan China
- Hubei Key Laboratory of Cardiology; Wuhan China
| |
Collapse
|
11
|
Increased cardiac sympathetic nerve activity in ovine heart failure is reduced by lesion of the area postrema, but not lamina terminalis. Basic Res Cardiol 2018; 113:35. [DOI: 10.1007/s00395-018-0695-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
|
12
|
Ramchandra R, Hood SG, Xing D, Lambert GW, May CN. Mechanisms underlying the increased cardiac norepinephrine spillover in heart failure. Am J Physiol Heart Circ Physiol 2018; 315:H340-H347. [PMID: 29701999 DOI: 10.1152/ajpheart.00069.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with heart failure (HF) have increased levels of cardiac norepinephrine (NE) spillover, which is an independent predictor of mortality. We hypothesized that this increase in NE spillover in HF depends not only on increases in sympathetic nerve activity (SNA) but also on changes in the mechanisms controlling NE release and reuptake. Such changes would lead to differences between the increases in directly recorded SNA and NE spillover to the heart in HF. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA (CSNA). In addition, arterial pressure and cardiac NE spillover were determined. In HF, the levels of both CSNA (102 ± 8 vs. 45 ± 8 bursts/min, P < 0.05) and cardiac NE spillover (21.6 ± 3.8 vs. 3.9 ± 0.8 pmol/min, P < 0.05) were significantly higher than in normal control animals. In HF, baroreflex control of cardiac NE spillover was impaired, and when CSNA was abolished by increasing arterial pressure, there was no reduction in cardiac NE spillover. A decrease in cardiac filling pressures in the HF group led to a significant increase in CSNA, but it significantly decreased cardiac NE spillover. In HF, the levels of cardiac NE spillover were enhanced above those expected from the high level of SNA, suggesting that changes in mechanisms controlling NE release and reuptake further increase the high level of NE at the heart, which will act to enhance the deleterious effects of increased CSNA in HF. NEW & NOTEWORTHY This is the first study, to our knowledge, to compare direct recordings of cardiac sympathetic nerve activity with simultaneously measured cardiac norepinephrine (NE) spillover. Our results indicate that in heart failure, increased cardiac sympathetic nerve activity is a major contributor to the increased NE spillover. In addition, there is enhanced NE spillover for the levels of synaptic nerve activity.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, Victoria , Australia.,Department of Physiology, University of Auckland , New Zealand
| | - Sally G Hood
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, Victoria , Australia
| | - Daniel Xing
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, Victoria , Australia
| | - Gavin W Lambert
- Faculty of Health, Arts and Design, Swinburne University of Technology , Melbourne, Victoria , Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, Victoria , Australia
| |
Collapse
|
13
|
Tromp TR, Mahesh D, Joles JA, Ramchandra R. Direct Recording of Cardiac and Renal Sympathetic Nerve Activity Shows Differential Control in Renovascular Hypertension. Hypertension 2018; 71:1108-1116. [PMID: 29686011 DOI: 10.1161/hypertensionaha.117.10749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/27/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that hypertension is initiated and maintained by elevated sympathetic tone. Increased sympathetic drive to the heart is linked to cardiac hypertrophy in hypertension and worsens prognosis. However, cardiac sympathetic nerve activity (SNA) has not previously been directly recorded in hypertension. We hypothesized that directly recorded cardiac SNA levels would be elevated during hypertension and that baroreflex control of cardiac SNA would be impaired during hypertension. Adult ewes either underwent unilateral renal artery clipping (n=12) or sham surgery (n=15). Two weeks later, electrodes were placed in the contralateral renal and cardiac nerves to record SNA. Baseline levels of SNA and baroreflex control of heart rate and sympathetic drive were examined. Unilateral renal artery clipping induced hypertension (mean arterial pressure 109±2 versus 91±3 mm Hg in shams; P<0.001). The heart rate baroreflex curve was shifted rightward but remained intact. In the hypertensive group, cardiac sympathetic burst incidence (bursts/100 beats) was increased (39±14 versus 25±9 in normotensives; P<0.05), whereas renal sympathetic burst incidence was decreased (69±20 versus 93±8 in normotensives; P<0.01). The renal sympathetic baroreflex curve was shifted rightward and showed increased gain, but there was no change in the cardiac sympathetic baroreflex gain. Renovascular hypertension is associated with differential control of cardiac and renal SNA; baseline cardiac SNA is increased, whereas renal SNA is decreased.
Collapse
Affiliation(s)
- Tycho R Tromp
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.)
| | - Darvina Mahesh
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.)
| | - Jaap A Joles
- and Department of Nephrology and Hypertension, University Medical Centre Utrecht, The Netherlands (T.R.T., J.A.J.)
| | - Rohit Ramchandra
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.);
| |
Collapse
|
14
|
Hart EC, Head GA, Carter JR, Wallin BG, May CN, Hamza SM, Hall JE, Charkoudian N, Osborn JW. Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization. Am J Physiol Heart Circ Physiol 2017; 312:H1031-H1051. [PMID: 28364017 DOI: 10.1152/ajpheart.00703.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Over the past several decades, studies of the sympathetic nervous system in humans, sheep, rabbits, rats, and mice have substantially increased mechanistic understanding of cardiovascular function and dysfunction. Recently, interest in sympathetic neural mechanisms contributing to blood pressure control has grown, in part because of the development of devices or surgical procedures that treat hypertension by manipulating sympathetic outflow. Studies in animal models have provided important insights into physiological and pathophysiological mechanisms that are not accessible in human studies. Across species and among laboratories, various approaches have been developed to record, quantify, analyze, and interpret sympathetic nerve activity (SNA). In general, SNA demonstrates "bursting" behavior, where groups of action potentials are synchronized and linked to the cardiac cycle via the arterial baroreflex. In humans, it is common to quantify SNA as bursts per minute or bursts per 100 heart beats. This type of quantification can be done in other species but is only commonly reported in sheep, which have heart rates similar to humans. In rabbits, rats, and mice, SNA is often recorded relative to a maximal level elicited in the laboratory to control for differences in electrode position among animals or on different study days. SNA in humans can also be presented as total activity, where normalization to the largest burst is a common approach. The goal of the present paper is to put together a summary of "best practices" in several of the most common experimental models and to discuss opportunities and challenges relative to the optimal measurement of SNA across species.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/guidelines-for-measuring-sympathetic-nerve-activity/.
Collapse
Affiliation(s)
- Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Geoffrey A Head
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts; and
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
15
|
Afanasiev SA, Pavliukova EN, Kuzmichkina MA, Rebrova TY, Anfinogenova Y, Likhomanov KS, Karpov RS. Nonpharmacological Correction of Hypersympatheticotonia in Patients with Chronic Coronary Insufficiency and Severe Left Ventricular Dysfunction. Ann Noninvasive Electrocardiol 2016; 21:548-556. [PMID: 26947948 PMCID: PMC6931422 DOI: 10.1111/anec.12349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Control of sympathetic hyperactivity is pivotal for treatment of heart failure (HF) in patients with coronary artery disease (CAD). Our earlier studies demonstrated that the auricular pulsed electrical stimulation of the vagus nerve (VNS) beneficially affected condition of CAD patients with HF. The aim of our study was to evaluate changes in heart rate (HR) and the levels of heat shock proteins in peripheral blood lymphocytes in patients with CAD in the course of VNS. METHODS The study comprised 70 individuals aged 50-68 years with chronic coronary insufficiency, severe left ventricular dysfunction, and NYHA functional class (FC) III-IV HF. Main group included 63 patients who received VNS course (group 1). Control patients (n = 7) received sham therapy (group 2). RESULTS According to the results of 6-minute walk test and 24-hour ECG monitoring, administration of VNS improved clinical condition of 58 of 63 patients, decreased HF FC, and attenuated HR. Clinical condition in sham therapy group did not change. Immunoenzyme method demonstrated that hsp70 and hsp60 contents in peripheral blood lymphocyte lysate increased by 58% and 48% (P < 0.05), respectively, in patients who initially had HR < 80 bpm. The hsp70 level significantly increased and hsp60 level remained unchanged in patients with initial HR > 80 bpm. CONCLUSIONS Correction of autonomous nervous status by VNS attenuated HR and improved functional state of the heart in CAD patients. Cardiotropic effect of VNS was the most pronounced in patients with preserved endogenous stress-limiting systems associated with hsp60 and/or hsp70.
Collapse
Affiliation(s)
- Sergey A Afanasiev
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia
| | - Elena N Pavliukova
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia
| | - Maria A Kuzmichkina
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia
| | - Tatiana Yu Rebrova
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia
| | - Yana Anfinogenova
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia.
- National Research Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk, Russia.
| | - Konstantin S Likhomanov
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia
| | - Rostislav S Karpov
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology,", Tomsk, Russia
| |
Collapse
|
16
|
Marchi A, Bari V, De Maria B, Esler M, Lambert E, Baumert M, Porta A. Simultaneous Characterization of Sympathetic and Cardiac Arms of the Baroreflex through Sequence Techniques during Incremental Head-Up Tilt. Front Physiol 2016; 7:438. [PMID: 27746741 PMCID: PMC5041323 DOI: 10.3389/fphys.2016.00438] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
We propose a sympathetic baroreflex (sBR) sequence method for characterizing sBR from spontaneous beat-to-beat fluctuations of muscle sympathetic nerve activity (MSNA) and diastolic arterial pressure (DAP). The method exploits a previously defined MSNA variability quantifying the fluctuations of MSNA burst rate. The method is based on the detection of MSNA and DAP sequences characterized by the contemporaneous DAP increase and MSNA decrease or vice versa. The percentage of sBR sequences (SEQ%sBR) was taken as an indication of the degree of sBR solicitation and the average slope of the regression lines in the (DAP, MSNA) plane was taken as sBR sensitivity (sBRSSEQ) and expressed in bursts.s−1.mmHg−1. sBRSSEQ was compared to a more traditional estimate based on the baroreflex threshold analysis (sBRSBTA). An incremental head-up tilt protocol, carried out in 12 young healthy subjects (age: 20–36 yr, median = 22.5 yr, 9 females) sequentially tilted at 0, 20, 30, 40, 60° table inclinations, was utilized to set the sBR sequence method parameters. Traditional sequence analysis was exploited to estimate cardiac baroreflex (cBR) sensitivity (cBRSSEQ) and percentage of cBR sequences (SEQ%cBR). The head-up tilt induced the progressive increase of SEQ%sBR and SEQ%cBR and gradual decrease of both sBRSSEQ and cBRSSEQ, thus suggesting the gradual rise of the sBR and cBR solicitations and the progressive reduction of their effectiveness with the stimulus. sBRSSEQ was significantly associated with sBRSBTA. sBRSSEQ and cBRSSEQ were significantly correlated as well as SEQ%sBR and SEQ%cBR, even though the correlation was not strong, thus suggesting a certain degree of independence between the baroreflex arms. The proposed sBR sequence approach provides a dynamical characterization of the sBR alternative to more traditional static pharmacological and nonpharmacological methods and fully homogenous with the cBR sequence technique.
Collapse
Affiliation(s)
- Andrea Marchi
- Department of Electronics Information and Bioengineering, Politecnico di MilanoMilan, Italy; Department of Emergency and Intensive Care, San Gerardo HospitalMonza, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| | - Beatrice De Maria
- Department of Electronics Information and Bioengineering, Politecnico di MilanoMilan, Italy; IRCCS Fondazione Salvatore MaugeriMilan, Italy
| | - Murray Esler
- Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| | - Elisabeth Lambert
- Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide, SA, Australia
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San DonatoMilan, Italy
| |
Collapse
|
17
|
Abukar Y, May CN, Ramchandra R. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure. Am J Physiol Regul Integr Comp Physiol 2015; 310:R94-9. [PMID: 26468257 DOI: 10.1152/ajpregu.00205.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.
Collapse
Affiliation(s)
- Yonis Abukar
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville Victoria, Australia; and
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville Victoria, Australia; and
| | - Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville Victoria, Australia; and Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Booth LC, May CN, Yao ST. The role of the renal afferent and efferent nerve fibers in heart failure. Front Physiol 2015; 6:270. [PMID: 26483699 PMCID: PMC4589650 DOI: 10.3389/fphys.2015.00270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 01/14/2023] Open
Abstract
Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.
Collapse
Affiliation(s)
- Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
19
|
Pinkham MI, Whalley GA, Guild SJ, Malpas SC, Barrett CJ. Arterial baroreceptor reflex control of renal sympathetic nerve activity following chronic myocardial infarction in male, female, and ovariectomized female rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R169-78. [PMID: 25994953 DOI: 10.1152/ajpregu.00026.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is controversy regarding whether the arterial baroreflex control of renal sympathetic nerve activity (SNA) in heart failure is altered. We investigated the impact of sex and ovarian hormones on changes in the arterial baroreflex control of renal SNA following a chronic myocardial infarction (MI). Renal SNA and arterial pressure were recorded in chloralose-urethane anesthetized male, female, and ovariectomized female (OVX) Wistar rats 6-7 wk postsham or MI surgery. Animals were grouped according to MI size (sham, small and large MI). Ovary-intact females had a lower mortality rate post-MI (24%) compared with both males (38%) and OVX (50%) (P < 0.05). Males and OVX with large MI, but not small MI, displayed an impaired ability of the arterial baroreflex to inhibit renal SNA. As a result, the male large MI group (49 ± 6 vs. 84 ± 5% in male sham group) and OVX large MI group (37 ± 3 vs. 75 ± 5% in OVX sham group) displayed significantly reduced arterial baroreflex range of control of normalized renal SNA (P < 0.05). In ovary-intact females, arterial baroreflex control of normalized renal SNA was unchanged regardless of MI size. In males and OVX there was a significant, positive correlation between left ventricle (LV) ejection fraction and arterial baroreflex range of control of normalized renal SNA, but not absolute renal SNA, that was not evident in ovary-intact females. The current findings demonstrate that the arterial baroreflex control of renal SNA post-MI is preserved in ovary-intact females, and the state of left ventricular dysfunction significantly impacts on the changes in the arterial baroreflex post-MI.
Collapse
|
20
|
Thaung HPA, Baldi JC, Wang HY, Hughes G, Cook RF, Bussey CT, Sheard PW, Bahn A, Jones PP, Schwenke DO, Lamberts RR. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes. Diabetes 2015; 64:2944-56. [PMID: 25784543 DOI: 10.2337/db14-0955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/09/2015] [Indexed: 11/13/2022]
Abstract
Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart.
Collapse
Affiliation(s)
- H P Aye Thaung
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - J Chris Baldi
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Heng-Yu Wang
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosalind F Cook
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Carol T Bussey
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Phil W Sheard
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Peter P Jones
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Daryl O Schwenke
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- HeartOtago, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 2015; 36:1974-82b. [PMID: 25975657 DOI: 10.1093/eurheartj/ehv087] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular autonomic imbalance, a cardinal phenotype of human heart failure, has adverse implications for symptoms during wakefulness and sleep; for cardiac, renal, and immune function; for exercise capacity; and for lifespan and mode of death. The objectives of this Clinical Review are to summarize current knowledge concerning mechanisms for disturbed parasympathetic and sympathetic circulatory control in heart failure with reduced ejection fraction and its clinical and prognostic implications; to demonstrate the patient-specific nature of abnormalities underlying this common phenotype; and to illustrate how such variation provides opportunities to improve or restore normal sympathetic/parasympathetic balance through personalized drug or device therapy.
Collapse
Affiliation(s)
- John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Suite 1614, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Piotr Ponikowski
- Department for Heart Disease, Medical University, Clinical Military Hospital, Wroclaw, Poland
| |
Collapse
|
22
|
Booth LC, Schlaich MP, Nishi EE, Yao ST, Xu J, Ramchandra R, Lambert GW, May CN. Short-term effects of catheter-based renal denervation on cardiac sympathetic drive and cardiac baroreflex function in heart failure. Int J Cardiol 2015; 190:220-6. [PMID: 25920032 DOI: 10.1016/j.ijcard.2015.03.440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/08/2015] [Accepted: 03/16/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Sympathetic drive, especially to the heart, is elevated in heart failure and is strongly associated with poor outcome. The mechanisms causing the increased sympathetic drive to the heart remain poorly understood. Catheter-based renal denervation (RDN), which reduces blood pressure (BP) and sympathetic drive in hypertensive patients, is a potential treatment in heart failure. The aim of this study was to investigate the short-term effects of catheter-based RDN on BP, heart rate (HR) and cardiac sympathetic nerve activity (CSNA) and on baroreflex function in a conscious, large animal model of heart failure. METHODS Adult Merino ewes were paced into heart failure (ejection fraction<40%) and then instrumented to directly record CSNA. The resting levels and baroreflex control of CSNA and HR were measured before and 24h after bilateral renal (n=6) or sham (n=6) denervation. RDN was performed using the Symplicity Flex Catheter System® (Medtronic) using the same algorithm as in patients. RESULTS Catheter-based RDN significantly reduced resting diastolic BP (P<0.01) and mean arterial blood pressure (P<0.05), but did not change resting HR or CSNA compared with sham denervation. Renal denervation reduced the BP at which CSNA was at 50% of maximum (BP50; P<0.005) compared with sham denervation. CONCLUSIONS In an ovine model of heart failure, catheter-based RDN did not reduce resting CSNA in the short-term. There was, however, a lack of a reflex increase in CSNA in response to the fall in arterial pressure due to a leftward shift in the baroreflex control of CSNA, which may be due to denervation of renal efferent and/or afferent nerves.
Collapse
Affiliation(s)
- Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
| | | | - Erika E Nishi
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Physiology, Cardiovascular Division, Federal University of São Paulo, São Paulo, Brazil
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Jianzhong Xu
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai, China
| | - Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gavin W Lambert
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
23
|
Pellegrino PR, Schiller AM. Letter to the editor: Does low-frequency power of heart rate variability correlate with cardiac sympathetic tone in normal sheep? Am J Physiol Heart Circ Physiol 2015; 308:H146-7. [PMID: 25552629 DOI: 10.1152/ajpheart.00798.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wu JM, Yu HJ, Lai HS, Yang PJ, Lin MT, Lai F. Improvement of heart rate variability after decreased insulin resistance after sleeve gastrectomy for morbidly obesity patients. Surg Obes Relat Dis 2014; 11:557-63. [PMID: 25630807 DOI: 10.1016/j.soard.2014.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Morbidly obese patients display both an autonomic nervous imbalance and impaired glucose metabolism, and both of these conditions can be partially reversed after bariatric surgery. The aim of the present study was to investigate changes in heart rate variability (HRV) and glucose metabolism in patients after laparoscopic sleeve gastrectomy (SG). METHODS Eighteen morbidly obese patients who underwent SG were examined before surgery and at 7, 30, 90, and 180 days after surgery. Indices of HRV included time-domain, frequency-domain, and nonlinear parameters. Glucose metabolism was evaluated by the measuring levels of insulin resistance, glycated hemoglobin (HbA(1c)), and gut hormones. RESULTS The study included 9 men and 9 women with a mean age of 34 years. In the HRV study, the average R-R interval, median R-R interval, standard deviation of the R-R intervals, root mean squared successive difference of the R-R intervals (RMSSD), and the number of pairs of successive normal-to-normal beat intervals that differed by>50 ms significantly increased at 180 days after surgery. Regarding the frequency-domain indices, the low frequency (LF)/high frequency (HF) ratio was more balanced at 90 days after SG compared with baseline, and increases in the total power, LF band, and HF band were observed at 180 days. The assessments of insulin resistance, glucose metabolism, and gut hormones revealed not only improvements in the homeostasis model assessment of insulin resistance and HbA1c levels but also increases in the levels of glucagon-like peptide-1 at 90 and 180 days after surgery compared with baseline. A multivariable regression model revealed significantly negative associations between the perioperative changes in HOMA-IR and changes in both the RMSSD and HF band. CONCLUSIONS SG leads to early improvements in insulin resistance and glucose metabolism that are followed by improvements in HRV indices. Improvements in insulin resistance were associated with increases in the RMSSD and HF band index, but the mechanism of these changes require further study.
Collapse
Affiliation(s)
- Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hwan-Jeu Yu
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Schultz HD. The arterial chemoreflex and cardiac stress in heart failure: nothing to be sheepish about. Exp Physiol 2014; 99:1029-30. [PMID: 25085916 DOI: 10.1113/expphysiol.2014.081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Martelli D, Silvani A, McAllen RM, May CN, Ramchandra R. The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity. Am J Physiol Heart Circ Physiol 2014; 307:H1005-12. [PMID: 25063795 DOI: 10.1152/ajpheart.00361.2014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lack of noninvasive approaches to measure cardiac sympathetic nerve activity (CSNA) has driven the development of indirect estimates such as the low-frequency (LF) power of heart rate variability (HRV). Recently, it has been suggested that LF HRV can be used to estimate the baroreflex modulation of heart period (HP) rather than cardiac sympathetic tone. To test this hypothesis, we measured CSNA, HP, blood pressure (BP), and baroreflex sensitivity (BRS) of HP, estimated with the modified Oxford technique, in conscious sheep with pacing-induced heart failure and in healthy control sheep. We found that CSNA was higher and systolic BP and HP were lower in sheep with heart failure than in control sheep. Cross-correlation analysis showed that in each group, the beat-to-beat changes in HP correlated with those in CSNA and in BP, but LF HRV did not correlate significantly with either CSNA or BRS. However, when control sheep and sheep with heart failure were considered together, CSNA correlated negatively with HP and BRS. There was also a negative correlation between CSNA and BRS in control sheep when considered alone. In conclusion, we demonstrate that in conscious sheep, LF HRV is neither a robust index of CSNA nor of BRS and is outperformed by HP and BRS in tracking CSNA. These results do not support the use of LF HRV as a noninvasive estimate of either CSNA or baroreflex function, but they highlight a link between CSNA and BRS.
Collapse
Affiliation(s)
- Davide Martelli
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia; and
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Booth LC, Ramchandra R, Calzavacca P, May CN. Role of prostaglandins in determining the increased cardiac sympathetic nerve activity in ovine sepsis. Am J Physiol Regul Integr Comp Physiol 2014; 307:R75-81. [DOI: 10.1152/ajpregu.00450.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Effective treatment of sepsis remains a significant challenge in intensive care units. During sepsis, there is widespread activation of the sympathetic nervous system, which is thought to have both beneficial and detrimental effects. The sympathoexcitation is thought to be partly due to the developing hypotension, but may also be a response to the inflammatory mediators released. Thus, we investigated whether intracarotid infusion of prostaglandin E2 (PGE2) induced similar cardiovascular changes to those caused by intravenous infusion of Escherichia coli in sheep and whether inhibition of prostaglandin synthesis, with the nonselective cyclooxygenase inhibitor indomethacin, administered at 2 and 8 h after the onset of sepsis, reduced sympathetic nerve activity (SNA), and heart rate (HR). Studies were performed in conscious sheep instrumented to measure mean arterial pressure (MAP), HR, cardiac SNA (CSNA), and renal SNA (RSNA). Intracarotid infusion of PGE2 (50 ng·kg−1·min−1) increased temperature, CSNA, and HR, but not MAP or RSNA. Sepsis, induced by infusion of E. coli, increased CSNA, but caused an initial, transient inhibition of RSNA. At 2 h of sepsis, indomethacin (1.25 mg/kg bolus) increased MAP and caused reflex decreases in HR and CSNA. After 8 h of sepsis, indomethacin did not alter MAP, but reduced CSNA and HR, without altering baroreflex control. These findings indicate an important role for prostaglandins in mediating the increase in CSNA and HR during the development of hyperdynamic sepsis, whereas prostaglandins do not have a major role in determining the early changes in RSNA.
Collapse
Affiliation(s)
- Lindsea C. Booth
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Paolo Calzavacca
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Xing DT, May CN, Booth LC, Ramchandra R. Tonic arterial chemoreceptor activity contributes to cardiac sympathetic activation in mild ovine heart failure. Exp Physiol 2014; 99:1031-41. [PMID: 24928955 DOI: 10.1113/expphysiol.2014.079491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heart failure (HF) is associated with a large increase in cardiac sympathetic nerve activity (CSNA), which has detrimental effects on the heart and promotes arrhythmias and sudden death. There is increasing evidence that arterial chemoreceptor activation plays an important role in stimulating renal sympathetic nerve activity (RSNA) and muscle sympathetic nerve activity in HF. Given that sympathetic nerve activity to individual organs is differentially controlled, we investigated whether tonic arterial chemoreceptor activation contributes to the increased CSNA in HF. We recorded CSNA and RSNA in conscious normal sheep and in sheep with mild HF induced by rapid ventricular pacing (ejection fraction <40%). Tonic arterial chemoreceptor function was evaluated by supplementing room air with 100% intranasal oxygen (2-3 l min(-1)) for 20 min, thereby deactivating chemoreceptors. The effects of hyperoxia on resting levels and baroreflex control of heart rate, CSNA and RSNA were determined. In HF, chemoreceptor deactivation induced by hyperoxia significantly reduced CSNA [90 ± 2 versus 75 ± 5 bursts (100 heart beats)(-1), P < 0.05, n = 10; room air versus hyperoxia] and heart rate (96 ± 4 versus 85 ± 4 beats min(-1), P < 0.001, n = 12). There was no change in RSNA burst incidence [93 ± 4 versus 92 ± 4 bursts (100 heart beats)(-1), n = 7], although due to the bradycardia the RSNA burst frequency was decreased (90 ± 8 versus 77 ± 7 bursts min(-1), P < 0.001). In normal sheep, chemoreceptor deactivation reduced heart rate without a significant effect on CSNA or RSNA. In summary, deactivation of peripheral chemoreceptors during HF reduced the elevated levels of CSNA, indicating that tonic arterial chemoreceptor activation plays a critical role in stimulating the elevated CSNA in HF.
Collapse
Affiliation(s)
- Daniel T Xing
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Clive N May
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lindsea C Booth
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rohit Ramchandra
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
29
|
Ramchandra R, Hood SG, May CN. Central exogenous nitric oxide decreases cardiac sympathetic drive and improves baroreflex control of heart rate in ovine heart failure. Am J Physiol Regul Integr Comp Physiol 2014; 307:R271-80. [PMID: 24848361 DOI: 10.1152/ajpregu.00057.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure (HF) is associated with increased cardiac and renal sympathetic drive, which are both independent predictors of poor prognosis. A candidate mechanism for the centrally mediated sympathoexcitation in HF is reduced synthesis of the inhibitory neuromodulator nitric oxide (NO), resulting from downregulation of neuronal NO synthase (nNOS). Therefore, we investigated the effects of increasing the levels of NO in the brain, or selectively in the paraventricular nucleus of the hypothalamus (PVN), on cardiac sympathetic nerve activity (CSNA) and baroreflex control of CSNA and heart rate in ovine pacing-induced HF. The resting level of CSNA was significantly higher in the HF than in the normal group, but the resting level of RSNA was unchanged. Intracerebroventricular infusion of the NO donor sodium nitroprusside (SNP; 500 μg · ml(-1)· h(-1)) in conscious normal sheep and sheep in HF inhibited CSNA and restored baroreflex control of heart rate, but there was no change in RSNA. Microinjection of SNP into the PVN did not cause a similar cardiac sympathoinhibition in either group, although the number of nNOS-positive cells was decreased in the PVN of sheep in HF. Reduction of endogenous NO with intracerebroventricular infusion of N(ω)-nitro-l-arginine methyl ester decreased CSNA in normal but not in HF sheep and caused no change in RSNA in either group. These findings indicate that endogenous NO in the brain provides tonic excitatory drive to increase resting CSNA in the normal state, but not in HF. In contrast, exogenously administered NO inhibited CSNA in both the normal and HF groups via an action on sites other than the PVN.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New ZealandFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; and
| | - Sally G Hood
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; and
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; and
| |
Collapse
|
30
|
Frithiof R, Xing T, McKinley MJ, May CN, Ramchandra R. Intracarotid hypertonic sodium chloride differentially modulates sympathetic nerve activity to the heart and kidney. Am J Physiol Regul Integr Comp Physiol 2014; 306:R567-75. [PMID: 24523342 DOI: 10.1152/ajpregu.00460.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertonic NaCl infused into the carotid arteries increases mean arterial pressure (MAP) and changes sympathetic nerve activity (SNA) via cerebral mechanisms. We hypothesized that elevated sodium levels in the blood supply to the brain would induce differential responses in renal and cardiac SNA via sensors located outside the blood-brain barrier. To investigate this hypothesis, we measured renal and cardiac SNA simultaneously in conscious sheep during intracarotid infusions of NaCl (1.2 M), sorbitol (2.4 M), or urea (2.4 M) at 1 ml/min for 4 min into each carotid. Intracarotid NaCl significantly increased MAP (91 ± 2 to 97 ± 3 mmHg, P < 0.05) without changing heart rate (HR). Intracarotid NaCl was associated with no change in cardiac SNA (11 ± 5.0%), but a significant inhibition of renal SNA (-32.5 ± 6.4%, P < 0.05). Neither intracarotid sorbitol nor urea changed MAP, HR, central venous pressure, cardiac SNA, and renal SNA. The changes in MAP and renal SNA were completely abolished by microinjection of the GABA agonist muscimol (5 mM, 500 nl each side) into the paraventricular nucleus of the hypothalamus (PVN). Infusion of intracarotid NaCl for 20 min stimulated a larger increase in water intake (1,100 ± 75 ml) than intracarotid sorbitol (683 ± 125 ml) or intracarotid urea (0 ml). These results demonstrate that acute increases in blood sodium levels cause a decrease in renal SNA, but no change in cardiac SNA in conscious sheep. These effects are mediated by cerebral sensors located outside the blood-brain barrier that are more responsive to changes in sodium concentration than osmolality. The renal sympathoinhibitory effects of sodium are mediated via a pathway that synapses in the PVN.
Collapse
Affiliation(s)
- Robert Frithiof
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
31
|
Kanaoka T, Tamura K, Wakui H, Ohsawa M, Azushima K, Uneda K, Kobayashi R, Fujikawa T, Tsurumi-Ikeya Y, Maeda A, Yanagi M, Toya Y, Umemura S. L/N-type calcium channel blocker cilnidipine added to renin-angiotensin inhibition improves ambulatory blood pressure profile and suppresses cardiac hypertrophy in hypertension with chronic kidney disease. Int J Mol Sci 2013; 14:16866-81. [PMID: 23959116 PMCID: PMC3759940 DOI: 10.3390/ijms140816866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/22/2023] Open
Abstract
Ambulatory blood pressure (BP) and heart rate (HR) profile are proposed to be related to renal deterioration and cardiovascular complication in hypertension and chronic kidney disease (CKD). In this study, we examined the beneficial effects cilnidipine, a unique L/N-type calcium channel blocker (CCB), in addition to renin-angiotensin system inhibitors, on ambulatory BP and HR profile, as well as cardiorenal function in hypertensive CKD patients. Forty-five patients were randomly assigned to the cilnidipine replacement group (n = 21) or the control CCBs group (n = 24) during a 24-week active treatment period. Although clinical BP values were similar in the cilnidipine and control CCBs groups after the treatment period, the results of ambulatory BP monitoring showed that the 24-h and daytime systolic BP levels in the cilnidipine group were significantly lower compared with the control group after the study. Furthermore, the left ventricular mass index (LVMI) was significantly decreased in the cilnidipine group compared to the control group after the study (LVMI, 135.3 ± 26.4 versus 181.2 ± 88.4, p = 0.031), with a significant difference in the changes in the LVMI between the cilnidipine and control groups (change in LVMI, −12.4 ± 23.7 versus 26.2 ± 64.4, p = 0.007). These results indicate that cilnidipine is beneficial for the suppression of pathological cardiac remodeling, at least partly, via a superior improving effect on ambulatory BP profile compared with control CCBs in hypertensive CKD patients.
Collapse
Affiliation(s)
| | - Kouichi Tamura
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-45-787-2635 (ext. 6326); Fax: +81-45-701-3738
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramchandra R, Yao ST, May CN. Organ Selective Regulation of Sympathetic Outflow by the Brain Angiotensin System. Curr Hypertens Rep 2013; 15:401-8. [DOI: 10.1007/s11906-013-0355-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
May CN, Yao ST, Booth LC, Ramchandra R. Cardiac sympathoexcitation in heart failure. Auton Neurosci 2013; 175:76-84. [DOI: 10.1016/j.autneu.2012.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
34
|
Heart rate variability in children with tricyclic antidepressant intoxication. Cardiol Res Pract 2013; 2013:196506. [PMID: 23533941 PMCID: PMC3603152 DOI: 10.1155/2013/196506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to evaluate HRV in children requiring intensive care unit stays due to TCA poisoning between March 2009 and July 2010. In the time-domain nonspectral evaluation, the SDNN (P < 0.001), SDNNi (P < 0.05), RMSDD (P < 0.01), and pNN50 (P < 0.01) were found to be significantly lower in the TCA intoxication group. The spectral analysis of the data recorded during the first 5 minutes after intensive care unit admission showed that the values of the nLF (P < 0.05) and the LF/HF ratio (P = 0.001) were significantly higher in the TCA intoxication group, while the nHF (P = 0.001) values were significantly lower. The frequency-domain spectral analysis of the data recorded during the last 5 minutes showed a lower nHF (P = 0.001) in the TCA intoxication group than in the controls, and the LF/HF ratio was significantly higher (P < 0.05) in the intoxication group. The LF/HF ratio was higher in the seven children with seizures (P < 0.001). These findings provided us with a starting point for the value of HRV analysis in determining the risk of arrhythmia and convulsion in TCA poisoning patients. HRV can be used as a noninvasive testing method in determining the treatment and prognosis of TCA poisoning patients.
Collapse
|
35
|
Reyes del Paso GA, Langewitz W, Mulder LJM, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology 2013; 50:477-87. [PMID: 23445494 DOI: 10.1111/psyp.12027] [Citation(s) in RCA: 630] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022]
Abstract
This article evaluates the suitability of low frequency (LF) heart rate variability (HRV) as an index of sympathetic cardiac control and the LF/high frequency (HF) ratio as an index of autonomic balance. It includes a comprehensive literature review and a reanalysis of some previous studies on autonomic cardiovascular regulation. The following sources of evidence are addressed: effects of manipulations affecting sympathetic and vagal activity on HRV, predictions of group differences in cardiac autonomic regulation from HRV, relationships between HRV and other cardiac parameters, and the theoretical and mathematical bases of the concept of autonomic balance. Available data challenge the interpretation of the LF and LF/HF ratio as indices of sympathetic cardiac control and autonomic balance, respectively, and suggest that the HRV power spectrum, including its LF component, is mainly determined by the parasympathetic system.
Collapse
|
36
|
Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 2013; 4:26. [PMID: 23431279 PMCID: PMC3576706 DOI: 10.3389/fphys.2013.00026] [Citation(s) in RCA: 769] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/02/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA
| |
Collapse
|
37
|
Tank J, Heusser K, Malehsa D, Hegemann K, Haufe S, Brinkmann J, Tegtbur U, Diedrich A, Bara C, Jordan J, Strüber M. Patients With Continuous-Flow Left Ventricular Assist Devices Provide Insight in Human Baroreflex Physiology. Hypertension 2012; 60:849-55. [DOI: 10.1161/hypertensionaha.112.198630] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jens Tank
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Karsten Heusser
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Doris Malehsa
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Katrin Hegemann
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Sven Haufe
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Julia Brinkmann
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Uwe Tegtbur
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - André Diedrich
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Christoph Bara
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Jens Jordan
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Martin Strüber
- From the Institute of Clinical Pharmacology (J.T., K.Heu., K.Heg., S.H., J.B., J.J.), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery (D.M., C.B., M.S.), and Institute of Sports Medicine (S.H., U.T.), Hannover Medical School, Hannover, Germany; Division of Clinical Pharmacology (A.D.), Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
38
|
Ramchandra R, Hood SG, Frithiof R, McKinley MJ, May CN. The role of the paraventricular nucleus of the hypothalamus in the regulation of cardiac and renal sympathetic nerve activity in conscious normal and heart failure sheep. J Physiol 2012; 591:93-107. [PMID: 22615431 DOI: 10.1113/jphysiol.2012.236059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) plays a major role in central cardiovascular and volume control, and has been implicated in controlling sympathetic nerve activity (SNA) during volume expansion and in heart failure (HF). The objectives were to determine the role of the PVN on cardiac and renal SNA (CSNA and RSNA) in conscious normal sheep and sheep with pacing-induced heart failure. In normovolaemic sheep in the normal state and in HF, bilateral microinjection of the GABA agonist muscimol (2 mm, 500 nl), had no effects on resting mean arterial pressure (MAP), heart rate (HR), CSNA or RSNA. In addition, neither chemical inhibition of the PVN using the inhibitory amino acid glycine (0.5 m, 500 nl), nor electrolytic lesion of the PVN reduced the elevated level of CSNA in HF. Dysinhibition of the PVN with bilateral microinjection of bicuculline (1 mm, 500 nl) in normal sheep increased MAP, HR and CSNA, but decreased RSNA, whereas in HF bicuculline had no effects on MAP, HR or CSNA, but inhibited RSNA. During volume expansion in normal sheep, muscimol reversed the inhibition of RSNA, but not of CSNA. In summary, removal of endogenous GABAergic inhibition to the PVN indicated that CSNA is normally under inhibitory control. Although this inhibition was absent in HF, the responses to pharmacological inhibition, or lesion of the PVN, indicates that it does not drive the increased CSNA in HF. These findings indicate the PVN has a greater influence on RSNA than CSNA in the resting state in normal and HF sheep, and during volume expansion in normal sheep.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
39
|
Ramchandra R, Hood SG, Watson AMD, Allen AM, May CN. Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension 2012; 59:634-41. [PMID: 22311902 DOI: 10.1161/hypertensionaha.111.181131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In heart failure (HF), cardiac sympathetic nerve activity (SNA; CSNA) is increased, which has detrimental effects on the heart and promotes arrhythmias and sudden death. There is evidence that the central renin-angiotensin system plays an important role in stimulating renal SNA in HF. Because SNA to individual organs is differentially controlled, we have investigated whether central angiotensin receptor blockade decreases CSNA in HF. We simultaneously recorded CSNA and renal SNA in conscious normal sheep and in sheep with HF induced by rapid ventricular pacing (ejection fraction: <40%). The effect of blockade of central angiotensin type 1 receptors by intracerebroventricular infusion of losartan (1 mg/h for 5 hours) on resting levels and baroreflex control of CSNA and renal SNA were determined. In addition, the levels of angiotensin receptors in central autonomic nuclei were determined using autoradiography. Sheep in HF had a large increase in CSNA (43±2 to 88±3 bursts per 100 heart beats; P<0.05) and heart rate, with no effect on renal SNA. In HF, central infusion of losartan for 5 hours significantly reduced the baseline levels of CSNA (to 69±5 bursts per 100 heart beats) and heart rate. Losartan had no effect in normal animals. In HF, angiotensin receptor levels were increased in the paraventricular nucleus and supraoptic nucleus but reduced in the area postrema and nucleus tractus solitarius. In summary, infusion of losartan reduced the elevated levels of CNSA in an ovine model of HF, indicating that central angiotensin receptors play a critical role in stimulating the increased sympathetic activity to the heart.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
40
|
Lambert GW. Comment on: Effects of surgically-induced weight loss via Roux-en-Y gastric bypass on cardiovascular autonomic nerve function. Surg Obes Relat Dis 2011; 9:226-8. [PMID: 22206612 DOI: 10.1016/j.soard.2011.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/29/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022]
|
41
|
Goldstein DS, Bentho O, Park MY, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 2011; 96:1255-61. [PMID: 21890520 PMCID: PMC3224799 DOI: 10.1113/expphysiol.2010.056259] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Power spectral analysis of heart rate variability has often been used to assess cardiac autonomic function; however, the relationship of low-frequency (LF) power of heart rate variability to cardiac sympathetic tone has been unclear. With or without adjustment for high-frequency (HF) power, total power or respiration, LF power seems to provide an index not of cardiac sympathetic tone but of baroreflex function. Manipulations and drugs that change LF power or LF:HF may do so not by affecting cardiac autonomic outflows directly but by affecting modulation of those outflows by baroreflexes.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, USA.
| | | | | | | |
Collapse
|
42
|
Lambert EA, Schlaich MP, Dawood T, Sari C, Chopra R, Barton DA, Kaye DM, Elam M, Esler MD, Lambert GW. Single-unit muscle sympathetic nervous activity and its relation to cardiac noradrenaline spillover. J Physiol 2011; 589:2597-605. [PMID: 21486790 DOI: 10.1113/jphysiol.2011.205351] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent work using single-unit sympathetic nerve recording techniques has demonstrated aberrations in the firing pattern of sympathetic nerves in a variety of patient groups. We sought to examine whether nerve firing pattern is associated with increased noradrenaline release. Using single-unit muscle sympathetic nerve recording techniques coupled with direct cardiac catheterisation and noradrenaline isotope dilution methodology we examined the relationship between single-unit firing patterns and cardiac and whole body noradrenaline spillover to plasma. Participants comprised patients with hypertension (n=6), depression (n=7) and panic disorder (n =9) who were drawn from our ongoing studies. The patient groups examined did not differ in their single-unit muscle sympathetic nerve firing characteristics nor in the rate of spillover of noradrenaline to plasma from the heart. The median incidence of multiple spikes per beat was 9%. Patients were stratified according to the firing pattern: low level of incidence (less than 9% incidence of multiple spikes per beat) and high level of incidence (greater than 9% incidence of multiple spikes per beat). High incidence of multiple spikes within a cardiac cycle was associated with higher firing rates (P <0.0001) and increased probability of firing (P <0.0001). Whole body noradrenaline spillover to plasma and (multi-unit) muscle sympathetic nerve activity in subjects with low incidence of multiple spikes was not different to that of those with high incidence of multiple spikes. In those with high incidence of multiple spikes there occurred a parallel activation of the sympathetic outflow to the heart, with cardiac noradrenaline spillover to plasma being two times that of subjects with low nerve firing rates (11.0 ± 1.5 vs. 22.0 ± 4.5 ng min⁻¹, P <0.05). This study indicates that multiple within-burst firing and increased single-unit firing rates of the sympathetic outflow to the skeletal muscle vasculature is associated with high cardiac noradrenaline spillover.
Collapse
Affiliation(s)
- Elisabeth A Lambert
- Human Neurotransmitters Laboratory, Baker IDI Heart & Diabetes Institute, PO Box 6492 St Kilda Road Central, Melbourne, Vic 8008, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baroreflex sensitivity is higher during acute psychological stress in healthy subjects under β-adrenergic blockade. Clin Sci (Lond) 2011; 120:161-7. [PMID: 20828371 PMCID: PMC2973234 DOI: 10.1042/cs20100137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute psychological stress challenges the cardiovascular system with an increase in BP (blood pressure), HR (heart rate) and reduced BRS (baroreflex sensitivity). β-adrenergic blockade enhances BRS during rest, but its effect on BRS during acute psychological stress is unknown. This study tested the hypothesis that BRS is higher during acute psychological stress in healthy subjects under β-adrenergic blockade. Twenty healthy novice male bungee jumpers were randomized and studied with (PROP, n=10) or without (CTRL, n=10) propranolol. BP and HR responses and BRS [cross-correlation time-domain (BRSTD) and cross-spectral frequency-domain (BRSFD) analysis] were evaluated from 30 min prior up to 2 h after the jump. HR, cardiac output and pulse pressure were lower in the PROP group throughout the study. Prior to the bungee jump, BRS was higher in the PROP group compared with the CTRL group [BRSTD: 28 (24-42) compared with 17 (16-28) ms·mmHg-1, P<0.05; BRSFD: 27 (20-34) compared with 14 (9-19) ms·mmHg-1, P<0.05; values are medians (interquartile range)]. BP declined after the jump in both groups, and post-jump BRS did not differ between the groups. In conclusion, during acute psychological stress, BRS is higher in healthy subjects treated with non-selective β-adrenergic blockade with significantly lower HR but comparable BP.
Collapse
|
44
|
Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 2010; 90:513-57. [PMID: 20393193 DOI: 10.1152/physrev.00007.2009] [Citation(s) in RCA: 460] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review examines how the sympathetic nervous system plays a major role in the regulation of cardiovascular function over multiple time scales. This is achieved through differential regulation of sympathetic outflow to a variety of organs. This differential control is a product of the topographical organization of the central nervous system and a myriad of afferent inputs. Together this organization produces sympathetic responses tailored to match stimuli. The long-term control of sympathetic nerve activity (SNA) is an area of considerable interest and involves a variety of mediators acting in a quite distinct fashion. These mediators include arterial baroreflexes, angiotensin II, blood volume and osmolarity, and a host of humoral factors. A key feature of many cardiovascular diseases is increased SNA. However, rather than there being a generalized increase in SNA, it is organ specific, in particular to the heart and kidneys. These increases in regional SNA are associated with increased mortality. Understanding the regulation of organ-specific SNA is likely to offer new targets for drug therapy. There is a need for the research community to develop better animal models and technologies that reflect the disease progression seen in humans. A particular focus is required on models in which SNA is chronically elevated.
Collapse
Affiliation(s)
- Simon C Malpas
- Department of Physiology and the Auckland Bioengineering Institute, University of Auckland and Telemetry Research Ltd., Auckland, New Zealand.
| |
Collapse
|
45
|
Ramchandra R, Watson AMD, Hood SG, May CN. Response of cardiac sympathetic nerve activity to intravenous irbesartan in heart failure. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1056-60. [PMID: 20147604 DOI: 10.1152/ajpregu.00767.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effect of irbesartan treatment on resting levels and arterial baroreflex control of cardiac sympathetic nerve activity (CSNA) in heart failure (HF), we studied conscious normal sheep and sheep with HF induced by rapid ventricular pacing for 8-10 wk (n = 7 per group). In HF, there is a large increase in CSNA that is detrimental to outcome. The causes of this increase in CSNA and the effect of angiotensin receptor blockers on CSNA in HF are unclear. CSNA, arterial blood pressure, heart rate (HR), and arterial baroreflex curves were recorded during a resting period and after 90 min of irbesartan infusion (12 mg.kg(-1).h(-1) iv). This dose of irbesartan abolished the pressor response to intravenous ANG II infusion but caused only a slight decrease in the pressor response to centrally administered ANG II. In HF, there was a large increase in CSNA (from 44 +/- 3 to 87 +/- 3 bursts/100 heartbeats). Irbesartan reduced arterial pressure in the normal and HF groups, but the usual baroreflex-mediated increases in CSNA and HR were prevented. This resulted from a significant leftward shift in the CSNA and HR baroreflex curves in both groups. Irbesartan also decreased the sensitivity of the arterial baroreflex control of CSNA. Short-term treatment with an angiotensin receptor blocker, at a dose that abolished the response to circulating, but not central, ANG II, prevented the reflex increase in CSNA in response to the drug-induced fall in arterial pressure.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
46
|
Straznicky NE, Lambert GW, Lambert EA. Neuroadrenergic dysfunction in obesity: an overview of the effects of weight loss. Curr Opin Lipidol 2010; 21:21-30. [PMID: 19809312 DOI: 10.1097/mol.0b013e3283329c62] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The prevalence of obesity is rising to epidemic proportions worldwide, and in tandem so is that of type 2 diabetes. Neuroadrenergic abnormalities, comprising increased resting sympathetic nervous system activity and blunted sympathetic neural responsiveness are recognized features of metabolic syndrome obesity, which contribute importantly to both the pathophysiology and adverse clinical prognosis of this high-risk population. Weight loss is recommended as first-line treatment for obesity. This review examines the effects of nonpharmacological weight loss on sympathetic nervous system function under basal and stimulated conditions. RECENT FINDINGS Human weight loss trials show that even moderate weight reduction is accompanied by significant attenuation in resting whole-body norepinephrine spillover rate and muscle sympathetic nerve activity, an improvement in cardiac autonomic modulation, and a reversal of blunted sympathetic responsiveness at both peripheral and central nervous system levels. Recent findings underscore the relevance of insulin resistance in mediating blunted sympathetic responsiveness to endogenous hyperinsulinemia induced by glucose ingestion. Impaired insulin transport across the blood-brain barrier may be one mechanism mediating these effects. Weight loss reverses blunted sympathetic responsiveness to glucose, which has implications for postprandial energy expenditure and body weight homeostasis. SUMMARY The autonomic dysfunction of obesity is reversible with weight loss, highlighting the importance of lifestyle intervention as a key therapeutic modality.
Collapse
Affiliation(s)
- Nora E Straznicky
- Human Neurotransmitters Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
47
|
Ramchandra R, Wan L, Hood SG, Frithiof R, Bellomo R, May CN. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1247-53. [DOI: 10.1152/ajpregu.00437.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis and septic shock are the chief cause of death in intensive care units, with mortality rates between 30 and 70%. In a large animal model of septic shock, we have demonstrated hypotension, increased cardiac output, and tachycardia, together with renal vasodilatation and renal failure. The changes in cardiac sympathetic nerve activity (CSNA) that may contribute to the tachycardia have not been investigated, and the changes in renal SNA (RSNA) that may mediate the changes in renal blood flow and function are unclear. We therefore recorded CSNA and RSNA during septic shock in conscious sheep. Septic shock was induced by administration of Escherichia coli, which caused a delayed hypotension and an immediate, biphasic increase in heart rate (HR) associated with similar changes in CSNA. After E. coli, RSNA decreased for over 3 h, followed by a sustained increase (180%), whereas renal blood flow progressively increased and remained elevated. There was an initial diuresis, followed by oliguria and decreased creatinine clearance. There were differential changes in the range of the arterial baroreflex curves; it was depressed for HR, increased for CSNA, and unchanged for RSNA. Our findings, recording CSNA for the first time in septic shock, suggest that the increase in SNA to the heart is not driven solely by unloading of baroreceptors and that the increase has an important role to increase HR and cardiac output. There was little correlation between the changes in RSNA and renal blood flow, suggesting that the renal vasodilatation was mediated mainly by other mechanisms.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Howard Florey Institute, University of Melbourne, Parkville, Australia
| | - Li Wan
- Howard Florey Institute, University of Melbourne, Parkville, Australia
| | - Sally G. Hood
- Howard Florey Institute, University of Melbourne, Parkville, Australia
| | - Robert Frithiof
- Howard Florey Institute, University of Melbourne, Parkville, Australia
| | - Rinaldo Bellomo
- Howard Florey Institute, University of Melbourne, Parkville, Australia
| | - Clive N. May
- Howard Florey Institute, University of Melbourne, Parkville, Australia
| |
Collapse
|
48
|
Guild SJ, Barrett CJ, McBryde FD, Van Vliet BN, Head GA, Burke SL, Malpas SC. Quantifying sympathetic nerve activity: problems, pitfalls and the need for standardization. Exp Physiol 2009; 95:41-50. [DOI: 10.1113/expphysiol.2008.046300] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
May CN, Frithiof R, Hood SG, McAllen RM, McKinley MJ, Ramchandra R. Specific control of sympathetic nerve activity to the mammalian heart and kidney. Exp Physiol 2009; 95:34-40. [DOI: 10.1113/expphysiol.2008.046342] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Ramchandra R, Hood SG, Frithiof R, May CN. Discharge properties of cardiac and renal sympathetic nerves and their impaired responses to changes in blood volume in heart failure. Am J Physiol Regul Integr Comp Physiol 2009; 297:R665-74. [PMID: 19535677 DOI: 10.1152/ajpregu.00191.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic nerve activity (SNA) consists of discharges that vary in amplitude and frequency, reflecting the level of recruitment of nerve fibers and the rhythmic generation and entrainment of activity by the central nervous system. It is unknown whether selective changes in these amplitude and frequency components account for organ-specific changes in SNA in response to alterations in blood volume or for the impaired SNA responses to volume changes in heart failure (HF). To address these questions, we measured cardiac SNA (CSNA) and renal SNA (RSNA) simultaneously in conscious, normal sheep and sheep in HF induced by rapid ventricular pacing. Volume expansion decreased CSNA (-62 +/- 10%, P < 0.05) and RSNA (-59 +/- 10%, P < 0.05) equally (n = 6). CSNA decreased as a result of a reduction in burst frequency, whereas RSNA fell because of falls in burst frequency and amplitude. Hemorrhage increased CSNA (+74 +/- 9%, P < 0.05) more than RSNA (+21 +/- 5%, P < 0.09), in both cases because of increased burst frequency, whereas burst amplitude decreased. In HF, burst frequency of CSNA (from 26 +/- 3 to 75 +/- 3 bursts/min) increased more than that of RSNA (from 63 +/- 4 to 79 +/- 4 bursts/min). In HF, volume expansion caused no change in CSNA and an attenuated decrease in RSNA, due entirely to decreased burst amplitude. Hemorrhage did not significantly increase SNA in either nerve in HF. These findings support the concept that the number of sympathetic fibers recruited and their firing frequency are controlled independently. Furthermore, afferent stimuli, such as changes in blood volume, cause organ-specific responses in each of these components, which are also selectively altered in HF.
Collapse
Affiliation(s)
- R Ramchandra
- Howard Florey Institute, Univ. of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|