1
|
Gounder SK, Chuturgoon AA, Ghazi T. Exploring the cardiotoxic potential of fumonisin B1 through inflammatory pathways and epigenetic modifications: A mini review. Toxicon 2025; 261:108374. [PMID: 40286825 DOI: 10.1016/j.toxicon.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This review is centered around the cardiotoxic effects of fumonisin B1 (FB1), particularly its impact on sphingolipid metabolism, inflammation, and epigenetics. FB1 is a mycotoxin produced by Fusarium fungi, which mainly contaminates cereal grains and poses an adverse health risk to both humans and animals; however, its disease-causing capabilities remain to be uncovered, specifically its ability to exacerbate and cause cardiovascular disease. It disrupts sphingolipid metabolism by inhibiting ceramide synthase, leading to cellular dysfunction and contributes to conditions such as hypertension and eventual heart failure. FB1 is responsible for an altered inflammatory response, whereby it increases pro-inflammatory cytokines such as IL-6 and IL-1β, which contribute to cardiovascular diseases. Moreover, FB1 induces significant epigenetic changes, including DNA hypermethylation, histone modifications such as increased H3K9me2 and H3K9me3, inhibition of histone acetyltransferase activity, and changes in microRNA expression profiles. These epigenetic alterations can silence or activate inflammatory genes, exacerbating disease progression. This review thus highlights the need for further research to elucidate the connections between FB1, inflammation, epigenetic modifications, and cardiotoxicity, which could lead to better strategies for managing FB1-related adverse health risks.
Collapse
Affiliation(s)
- Selwyn Kyle Gounder
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
2
|
Amdanee N, Shao M, Hu X, Fang X, Zhou C, Chen J, Ridwan Chattun M, Wen L, Pan X, Zhang X, Xu Y. Serum Metabolic Profile in Schizophrenia Patients With Antipsychotic-Induced Constipation and Its relationship With Gut Microbiome. Schizophr Bull 2023; 49:646-658. [PMID: 36723169 PMCID: PMC10154739 DOI: 10.1093/schbul/sbac202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND HYPOTHESIS Antipsychotics (APs), the cornerstone of schizophrenia treatment, confer a relatively high risk of constipation. However, the mechanisms underpinning AP-induced constipation are poorly understood. Thus, we hypothesized that (1) schizophrenia patients with AP-induced constipation have distinct metabolic patterns; (2) there is more than one mechanism at play in producing this adverse drug effect; and (3) AP-associated changes in the gut microbiome are related to the altered metabolic profiles. STUDY DESIGN Eighty-eight schizophrenia patients, including 44 with constipation (C) and 44 matched patients without constipation (NC), were enrolled in this study. Constipation was diagnosed by Rome IV criteria for constipation and colonic transit time using radiopaque markers (ROMs) while severity was evaluated with the Bristol Stool Form Scale (BSS) and Constipation Assessment Scale (CAS). Fasting blood samples were drawn from all participants and were subjected to non-targeted liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. STUDY RESULTS Eleven metabolites were significantly altered in AP-induced constipation which primarily disturbed sphingolipid metabolism, choline metabolism, and sphingolipid signaling pathway (P value < .05, FDR < 0.05). In the C group, changes in the gut bacteria showed a certain degree of correlation with 2 of the significantly altered serum metabolites and were associated with alterations in choline metabolism. CONCLUSIONS Our findings indicated that there were disturbances in distinct metabolic pathways that were associated with AP-induced constipation. In addition, this study presents evidence of a link between alterations in the gut microbiome and host metabolism which provides additional mechanistic insights on AP-induced constipation.
Collapse
Affiliation(s)
- Nousayhah Amdanee
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Miaomiao Shao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Psychiatry, The Second People’s Hospital of Jiangning District, Nanjing, Jiangsu, China
| | - Xiuxiu Hu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Psychiatry, The Second People’s Hospital of Jiangning District, Nanjing, Jiangsu, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wen
- Department of Psychiatry, The Second People’s Hospital of Jiangning District, Nanjing, Jiangsu, China
| | - Xinming Pan
- Department of Psychiatry, The Second People’s Hospital of Jiangning District, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Xu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021; 26:molecules26175238. [PMID: 34500671 PMCID: PMC8434385 DOI: 10.3390/molecules26175238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisin B1 (FB1), belonging to the member of fumonisins, is one of the most toxic mycotoxins produced mainly by Fusarium proliferatum and Fusarium verticillioide. FB1 has caused extensive contamination worldwide, mainly in corn, rice, wheat, and their products, while it also poses a health risk and is toxic to animals and human. It has been shown to cause oxidative stress, endoplasmic reticulum stress, cellular autophagy, and apoptosis. This review focuses on the current stage of FB1 contamination, its toxic effects of acute toxicity, immunotoxicity, organ toxicity, and reproductive toxicity on animals and humans. The potential toxic mechanisms of FB1 are discussed. One of the main aims of the work is to provide a reliable reference strategy for understanding the occurrence and toxicity of FB1.
Collapse
|
4
|
Munkvold GP, Proctor RH, Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:373-402. [PMID: 34077240 DOI: 10.1146/annurev-phyto-020620-102825] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
Collapse
Affiliation(s)
- Gary P Munkvold
- Department of Plant Pathology and Microbiology and Seed Science Center, Iowa State University, Ames, Iowa 50010, USA;
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, USA;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy;
| |
Collapse
|
5
|
Molino S, Tate E, McKillop WM, Medin JA. Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy 2017; 9:1185-1198. [DOI: 10.2217/imt-2017-0089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingolipids (SLs) are a class of essential, bioactive lipids. The SL family includes over 4000 distinct molecules, characterized by their sphingoid base (long-chain aliphatic amine) backbone. SLs are key components of cell membranes, yet their roles go well beyond structure. SLs are involved in many cellular processes including cell differentiation, apoptosis, growth arrest and senescence. As cancer cells routinely display increased growth properties and escape from cell death, it has been suggested that enzymes involved in SL synthesis or catabolism may be altered in cancer cells. In this review, we discuss the role of SL pathway enzymes in cancer, and in acquired resistance to therapy. The use of inhibitors and gene silencing approaches targeting these SL pathways is also explored. Finally, we elaborate on the role of SL pathway enzymes in the tumor microenvironment and their effect on immune cell function.
Collapse
Affiliation(s)
- S Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - E Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - WM McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - JA Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medical Biophysics & the Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Abstract
The genus Fusarium includes numerous toxigenic species that are pathogenic to plants or humans, and are able to colonize a wide range of environments on earth. The genus comprises around 70 well-known species, identified by using a polyphasic approach, and as many as 300 putative species, according to phylogenetic species concepts; many putative species do not yet have formal names. Fusarium is one of the most economically important fungal genera because of yield loss due to plant pathogenic activity; mycotoxin contamination of food and feed products which often render them unaccep for marketing; and health impacts to humans and livestock, due to consumption of mycotoxins. Among the most important mycotoxins produced by species of Fusarium are the trichothecenes and the fumonisins. Fumonisins cause fatal livestock diseases and are considered potentially carcinogenic mycotoxins for humans, while trichothecenes are potent inhibitors of protein synthesis. This chapter summarizes the main aspects of morphology, pathology, and toxigenicity of the main Fusarium species that colonize different agricultural crops and environments worldwide, and cause mycotoxin contamination of food and feed.
Collapse
|
7
|
Morsy FA, Badawy MA, Farrag ARH. The Protective Effect of Melatonin against Fumonisin-Induced Renal Damage in Rats. Int J Toxicol 2016; 25:523-9. [PMID: 17132610 DOI: 10.1080/10915810600961648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the potential protective effect of melatonin against the renal toxicity of fumonisin in female rats. Six groups of animals were used in this study. The first group served as control. The second group was given melatonin only at a dose level of 10 mg/kg. The third group was fed ration contaminated with fumonisin (100 mg/kg diet). The fourth group was fed ration contaminated with fumonisin (200 mg/kg diet). The fifth group was given daily interperitoneal injection (IP) 10 mg/kg melatonin and fed ration contaminated with fumonisin (100 mg/kg diet). The sixth group was given daily interperitoneal injection of 10 mg/kg melatonin and fed ration contaminated with fumonisin (200 mg/kg diet). The rats were treated for 1 month. Histopathological and histochemical changes in the kidney were investigated. In addition, DNA ploidy was measured in the kidney. Fumonisin administration (100 or 200 mg/Kg diet) to unpretreated control rats caused extensive renal damage as evaluated by histopathology, histochemistry, and/or DNA ploidy measurement. No apparent changes following administration of melatonin. Melatonin coadministration to the fumonisin-administered rats reduced kidney damage and the tissues appeared more or less like the normal. The present study indicates that melatonin has a protective effect in fumonisin-induced renal damage.
Collapse
Affiliation(s)
- Fatma A Morsy
- Pathology Department, Medical Division Research, National Research Center, Dokki, Egypt
| | | | | |
Collapse
|
8
|
Pierron A, Alassane-Kpembi I, Oswald IP. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag 2016; 2:21. [PMID: 28405447 PMCID: PMC5382503 DOI: 10.1186/s40813-016-0041-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are secondary metabolites of fungi that grow on a variety of substrates. Due to their high consumption of cereals and their sensitivity, pigs are highly impacted by the presence of mycotoxins. At the European level, regulations and recommendations exist for several mycotoxins in pig feed. Among these toxins, fumonisin B1 (FB1), and deoxynivalenol (DON) have a great impact on the intestine and the immune system. Indeed, the intestine is the first barrier to food contaminants and can be exposed to high concentrations of mycotoxins upon ingestion of contaminated feed. FB1 and DON alter the intestinal barrier, impair the immune response, reduce feed intake and weight gain. Their presence in feed increases the translocation of bacteria; mycotoxins can also impair the immune response and enhance the susceptibility to infectious diseases. In conclusion, because of their effect on the intestine, FB1 and DON are a major threat to pig health, welfare and performance.
Collapse
Affiliation(s)
- Alix Pierron
- ToxAlim Research Centre in Food Toxicology, INRA, UMR 1331, ENVT, INP Purpan, 180 chemin de Tournefeuille, BP93173, 31027 Toulouse, Cedex 03 France.,BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Imourana Alassane-Kpembi
- ToxAlim Research Centre in Food Toxicology, INRA, UMR 1331, ENVT, INP Purpan, 180 chemin de Tournefeuille, BP93173, 31027 Toulouse, Cedex 03 France
| | - Isabelle P Oswald
- ToxAlim Research Centre in Food Toxicology, INRA, UMR 1331, ENVT, INP Purpan, 180 chemin de Tournefeuille, BP93173, 31027 Toulouse, Cedex 03 France
| |
Collapse
|
9
|
Russo SB, Ross JS, Cowart LA. Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol 2013:373-401. [PMID: 23563667 DOI: 10.1007/978-3-7091-1511-4_19] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic disease, including obesity and type 2 diabetes, constitutes a major emerging health crisis in Western nations. Although the symptoms and clinical pathology and physiology of these conditions are well understood, the molecular mechanisms underlying the disease process have largely remained obscure. Sphingolipids, a lipid class with both signaling and structural properties, have recently emerged as key players in most major tissues affected by diabetes and are required components in the molecular etiology of this disease. Indeed, sphingolipids have been shown to mediate loss of insulin sensitivity, to promote the characteristic diabetic proinflammatory state, and to induce cell death and dysfunction in important organs such as the pancreas and heart. Furthermore, plasma sphingolipid levels are emerging as potential biomarkers for the decompensation of insulin resistance to frank type 2 diabetes. Despite these discoveries, the roles of specific sphingolipid species and sphingolipid metabolic pathways remain obscure, and newly developed experimental approaches must be employed to elucidate the detailed molecular mechanisms necessary for rational drug development and other clinical applications.
Collapse
Affiliation(s)
- S B Russo
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
10
|
Dutton MF. The African Fusarium/maize disease. Mycotoxin Res 2009; 25:29-39. [PMID: 23604934 DOI: 10.1007/s12550-008-0005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
There is a general but rather vague feeling that the use of maize (corn) as a staple foodstuff by black rural Africans is somehow a factor in, or is linked to, chronic disease found in these populations. An attempt is made in this review to consider the evidence for this connection and to identify what is actually the root of the problem. The main thrust of the argument to explain this perception is that maize is routinely contaminated with fungi and of these Fusarium verticillioides is found in maize throughout the world. Evidence is presented to this effect and, further, of the mycotoxins found in maize, the fumonisins are the most common and at the highest levels. Various animal chronic diseases arising from the consumption of contaminated maize are reviewed and possible human conditions listed, in some cases related to the known animal ones. A brief overview of the complicated cellular mechanisms of fumonisin B1 is given and it is concluded that the prime suspect in what might be called "the maize disease" can be attributed to the ingestion of this mycotoxin, sometimes in combination with other synergist mycotoxins and other disease factors, such as smoking and drinking.
Collapse
Affiliation(s)
- Michael F Dutton
- Food, Environment & Health Research Group, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, Gauteng, South Africa,
| |
Collapse
|
11
|
Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT. Maternal fumonisin exposure as a risk factor for neural tube defects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 56:145-181. [PMID: 19389609 DOI: 10.1016/s1043-4526(08)00605-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fumonisins are mycotoxins produced by the fungus F. verticillioides, a common contaminant of maize (corn) worldwide. Maternal consumption of fumonisin B(1)-contaminated maize during early pregnancy has recently been associated with increased risk for neural tube defects (NTDs) in human populations that rely heavily on maize as a dietary staple. Experimental administration of purified fumonisin to mice early in gestation also results in an increased incidence of NTDs in exposed offspring. Fumonisin inhibits the enzyme ceramide synthase in de novo sphingolipid biosynthesis, resulting in an elevation of free sphingoid bases and depletion of downstream glycosphingolipids. Increased sphingoid base metabolites (i.e., sphinganine-1-phosphate) may perturb signaling cascades involved in embryonic morphogenesis by functioning as ligands for sphingosine-1-P (S1P) receptors, a family of G-protein-coupled receptors that regulate key biological processes such as cell survival/proliferation, differentiation and migration. Fumonisin-induced depletion of glycosphingolipids impairs expression and function of the GPI-anchored folate receptor (Folr1), which may also contribute to adverse pregnancy outcomes. NTDs appear to be multifactorial in origin, involving complex gene-nutrient-environment interactions. Vitamin supplements containing folic acid have been shown to reduce the occurrence of NTDs, and may help protect the developing fetus from environmental teratogens. Fumonisins appear to be an environmental risk factor for birth defects, although other aspects of maternal nutrition and genetics play interactive roles in determining pregnancy outcome. Minimizing exposures to mycotoxins through enhanced agricultural practices, identifying biomarkers of exposure, characterizing mechanisms of toxicity, and improving maternal nutrition are all important strategies for reducing the NTD burden in susceptible human populations.
Collapse
Affiliation(s)
- J Gelineau-van Waes
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
12
|
Wu F, Munkvold GP. Mycotoxins in ethanol co-products: modeling economic impacts on the livestock industry and management strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3900-3911. [PMID: 18444660 DOI: 10.1021/jf072697e] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The rapidly expanding U.S. ethanol industry is generating a growing supply of co-products, mostly in the form of dried distillers' grain and solubles (DDGS) or wet distillers' grains (WDG). In the United States, 90% of the co-products of maize-based ethanol are fed to livestock. An unintended consequence is that animals are likely to be fed higher levels of mycotoxins, which are concentrated up to three times in DDGS compared to grain. The model developed in this study estimates current losses to the swine industry from weight gain reduction due to fumonisins in added DDGS at $9 million ($2-18 million) annually. If there is complete market penetration of DDGS in swine feed with 20% DDGS inclusion in swine feed and fumonisins are not controlled, losses may increase to $147 million ($29-293 million) annually. These values represent only those losses attributable to one mycotoxin on one adverse outcome on one species. The total loss due to mycotoxins in DDGS could be significantly higher due to additive or multiplicative effects of multiple mycotoxins on animal health. If mycotoxin surveillance is implemented by ethanol producers, losses are shifted among multiple stakeholders. Solutions to this problem include methods to reduce mycotoxin contamination in both pre- and postharvest maize.
Collapse
Affiliation(s)
- Felicia Wu
- Department of Environmental and Occupational Health, University of Pittsburgh, Bridgeside Point 560, Pittsburgh, PA 15219, USA.
| | | |
Collapse
|
13
|
|
14
|
Soriano JM, González L, Catalá AI. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Prog Lipid Res 2005; 44:345-56. [PMID: 16266752 DOI: 10.1016/j.plipres.2005.09.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fumonisins are a group of mycotoxins produced primarily by Fusarium moniliforme. Several fumonisins have been isolated through out the years but only fumonisin B1, B2 and B3 are the ones present in naturally contaminated foods, with B1 being the most toxic between them. The structural similarity between sphinganine and fumonisin B1 suggests that the mechanism of action of this mycotoxin is mainly via disruption of sphingolipid metabolism, this is an important step in the cascade of events leading to altered cell growth, differentiation and cell injury. Sphingolipids are a second type of lipid found in cell membranes, particularly nerve cells and brain tissues. Toxicity of fumonisin B1 is given via inhibition of ceramide synthase that catalyzes the formation of dihydroceramide from sphingosine. This mechanism of action may explain the wide variety of health effects observed when this mycotoxin is ingested like high rate of human oesophageal cancer and promotion of primary liver cancer.
Collapse
Affiliation(s)
- J M Soriano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | | | | |
Collapse
|
15
|
Hsiao SH, Constable PD, Smith GW, Haschek WM. Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. Toxicol Sci 2005; 86:194-9. [PMID: 15829618 DOI: 10.1093/toxsci/kfi167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fumonisin mycotoxicosis in pigs causes a decrease in mean aortic pressure, an increase in mean pulmonary arterial pressure, and increases in serum concentrations of sphinganine (3.2 microM) and sphingosine (1.4 microM). To determine a causal relationship between the hemodynamic changes and sphingolipid alterations, we examined the in vitro effects of sphinganine, sphingosine, and sphingosine-1-phosphate on porcine aortic and pulmonary arterial rings. Both sphinganine and sphingosine relaxed un-contracted and phenylephrine-contracted aortic rings at > or = 10 microM and > or = 1 microM, respectively. Sphingosine (> or = 10 microM) relaxed un-contracted and phenylephrine-contracted pulmonary arterial rings, whereas sphingosine-1-phosphate (10 microM) contracted pulmonary arterial rings. Sphingosine (3 microM) also impaired the contractile response of pulmonary artery rings to 60 mM KCl. The results suggested that the systemic hypotension caused by fumonisin is mediated, in part, by increases in serum sphinganine and sphingosine concentrations, and the pulmonary hypertension is mediated, in part, by increased sphingosine-1-phosphate concentrations.
Collapse
Affiliation(s)
- Shih-Hsuan Hsiao
- Department of Veterinary Pathobiology College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
| | | | | | | |
Collapse
|
16
|
Summers SA, Nelson DH. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 2005; 54:591-602. [PMID: 15734832 DOI: 10.2337/diabetes.54.3.591] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic syndrome X and type 2 diabetes share many metabolic and morphological similarities with Cushing's syndrome, a rare disorder caused by systemic glucocorticoid excess. Pathologies frequently associated with these diseases include insulin resistance, atherosclerosis, susceptibility to infection, poor wound healing, and hypertension. The similarity of the clinical profiles associated with these disorders suggests the influence of a common molecular mechanism for disease onset. Interestingly, numerous studies identify ceramides and other sphingolipids as potential contributors to these sequelae. Herein we review studies demonstrating that aberrant ceramide accumulation contributes to the development of the deleterious clinical manifestations associated with these diseases.
Collapse
Affiliation(s)
- Scott A Summers
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|