1
|
Wong SA, Drovandi A, Jones R, Golledge J. Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis. Biomedicines 2023; 11:1859. [PMID: 37509499 PMCID: PMC10376856 DOI: 10.3390/biomedicines11071859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This systematic review pooled evidence from randomised controlled trials (RCTs) on the effectiveness of dietary upregulators of nitric oxide (NO) in improving the walking and quality of life of patients with peripheral artery disease (PAD). RCTs examining the effect of dietary upregulators of NO in patients with PAD were included. The primary outcome was the maximum walking distance. Secondary outcomes were the initial claudication distance, the six-minute walking distance, quality of life, the ankle-brachial pressure index (ABI), adverse events and risk of mortality, revascularisation or amputation. Meta-analyses were performed using random effects models. The risk of bias was assessed using Cochrane's ROB-2 tool. Leave-one-out and subgroup analyses were conducted to assess the effect of individual studies, the risk of bias and intervention type on pooled estimates. Thirty-four RCTs involving 3472 participants were included. Seven trials tested NO donors, nineteen tested antioxidants, three tested NO synthase inducers and five tested enhancers of NO availability. Overall, the dietary supplements significantly improved the initial claudication (SMD 0.34; 95%CI 0.04, 0.64; p = 0.03) but not maximum walking (SMD 0.13; 95%CI -0.17, 0.43; p = 0.39) distances. Antioxidant supplements significantly increased both the maximum walking (SMD 0.36; 95%CI 0.14, 0.59; p = 0.001) and initial claudication (SMD 0.58; 95%CI 0.26, 0.90; p < 0.001) distances. The dietary interventions did not improve the physical function domain of the Short Form-36 (SMD -0.16; 95%CI -0.32, 0.00; p = 0.38), ABI or risk of adverse events, mortality, revascularisation or amputation. Dietary NO upregulators, especially antioxidants, appear to improve the initial claudication distance in patients with PAD. Larger high-quality RCTs are needed to fully examine the benefits and risks of these treatments. PROSPERO Registration: CRD42022256653.
Collapse
Affiliation(s)
- Shannon A Wong
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Aaron Drovandi
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Rhondda Jones
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia
| |
Collapse
|
2
|
da Silva ND, Andrade-Lima A, Chehuen MR, Leicht AS, Brum PC, Oliveira EM, Wolosker N, Pelozin BRA, Fernandes T, Forjaz CLM. Walking Training Increases microRNA-126 Expression and Muscle Capillarization in Patients with Peripheral Artery Disease. Genes (Basel) 2022; 14:genes14010101. [PMID: 36672843 PMCID: PMC9858623 DOI: 10.3390/genes14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Patients with peripheral artery disease (PAD) have reduced muscle capillary density. Walking training (WT) is recommended for PAD patients. The goal of the study was to verify whether WT promotes angiogenesis in PAD-affected muscle and to investigate the possible role of miRNA-126 and the vascular endothelium growth factor (VEGF) angiogenic pathways on this adaptation. Thirty-two men with PAD were randomly allocated to two groups: WT (n = 16, 2 sessions/week) and control (CO, n = 16). Maximal treadmill tests and gastrocnemius biopsies were performed at baseline and after 12 weeks. Histological and molecular analyses were performed by blinded researchers. Maximal walking capacity increased by 65% with WT. WT increased the gastrocnemius capillary-fiber ratio (WT = 109 ± 13 vs. 164 ± 21 and CO = 100 ± 8 vs. 106 ± 6%, p < 0.001). Muscular expression of miRNA-126 and VEGF increased with WT (WT = 101 ± 13 vs. 130 ± 5 and CO = 100 ± 14 vs. 77 ± 20%, p < 0.001; WT = 103 ± 28 vs. 153 ± 59 and CO = 100 ± 36 vs. 84 ± 41%, p = 0.001, respectively), while expression of PI3KR2 decreased (WT = 97 ± 23 vs. 75 ± 21 and CO = 100 ± 29 vs. 105 ± 39%, p = 0.021). WT promoted angiogenesis in the muscle affected by PAD, and miRNA-126 may have a role in this adaptation by inhibiting PI3KR2, enabling the progression of the VEGF signaling pathway.
Collapse
Affiliation(s)
- Natan D. da Silva
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence: ; Tel.: +55-1130918792
| | - Aluisio Andrade-Lima
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Marcel R. Chehuen
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Anthony S. Leicht
- Sport & Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Patricia C. Brum
- Cellular Molecular Exercise Physiology Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Edilamar M. Oliveira
- Laboratory of the Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Nelson Wolosker
- Albert Einstein Israelite Hospital, São Paulo 05652-900, Brazil
| | - Bruno R. A. Pelozin
- Laboratory of the Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Tiago Fernandes
- Laboratory of the Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cláudia L. M. Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
3
|
Schmid M, Martins HC, Schratt G, Kröpfl JM, Spengler CM. MiRNA126 - RGS16 - CXCL12 Cascade as a Potential Mechanism of Acute Exercise-Induced Precursor Cell Mobilization. Front Physiol 2021; 12:780666. [PMID: 34955891 PMCID: PMC8696198 DOI: 10.3389/fphys.2021.780666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Acute exercise enhances circulating stem and precursor cells (CPCs) in the peripheral blood. The responsible mechanisms and molecular pathways, however, have not been fully identified. The aim of the present study was to investigate a pathway related to elevated levels of apoptotic peripheral blood mononuclear cells (MNCs) and their secretome. An increased uptake of miRNA126 in MNCs was suggested to lead to reduced levels of RGS16 mRNA and, in turn, an enhanced translation and secretion of CXCL12. Eighteen healthy, young men underwent two identical incremental cycling exercises of which the first served as control while the second was preceded by a 7-day-long antioxidative supplementation. Blood samples were collected at baseline (−10min) and several time points after exercise (0, 30, 90, 180, and 270min). Relative concentrations of miRNA126 in MNCs and CXCL12 levels in plasma were determined at all time points while RGS16 mRNA was assessed in MNCs at baseline and 30min after exercise. CXCL12 increased after exercise and strongly correlated with CPC numbers. MiRNA126 increased 30min and, to a lesser extent, also 180 and 270min after exercise but only with supplementation. RGS16 mRNA decreased 30min after exercise independent of the intervention. The amount of RGS16 mRNA inversely correlated with levels of miRNA126, but not with plasma CXCL12. In conclusion, even though plasma CXCL12 correlated with CPC numbers, the increase in CXCL12 cannot be explained by the increased concentration of miRNA126 and lower RGS16 mRNA in MNCs that would have allowed for an enhanced translation of CXCL12. Clinical Trial Registration: ClinicalTrials.gov, NCT03747913. Registered 20 November 2018, https://clinicaltrials.gov/ct2/show/NCT03747913.
Collapse
Affiliation(s)
- Michelle Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Helena Caria Martins
- Systems Neuroscience, Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Gerhard Schratt
- Systems Neuroscience, Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Chehuen M, Andrade-Lima A, Silva Junior N, Miyasato R, Souza RWAD, Leicht A, Brum PC, Oliveira EM, Wolosker N, Forjaz CLDM. Physiological Responses to Maximal and Submaximal Walking in Patients with Symptomatic Peripheral Artery Disease. Arq Bras Cardiol 2021; 117:309-316. [PMID: 34495225 PMCID: PMC8395785 DOI: 10.36660/abc.20200156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
Fundamento: Embora a caminhada máxima e submáxima sejam recomendadas para pacientes com doença arterial periférica (DAP), a realização desses exercícios pode induzir diferentes respostas fisiológicas. Objetivos: Comparar os efeitos agudos de caminhada máxima e submáxima na função cardiovascular, a regulação e os processos fisiopatológicos associados pós-exercício em pacientes com DAP sintomática. Métodos: Trinta pacientes do sexo masculino foram submetidos a 2 sessões: caminhada máxima (protocolo de Gardner) e caminhada submáxima (15 períodos de 2 minutos de caminhada separados por 2 minutos de repouso ereto). Em cada sessão, foram medidos a pressão arterial (PA), a frequência cardíaca (FC), a modulação autonômica cardíaca (variabilidade da FC), os fluxos sanguíneos (FS) do antebraço e da panturrilha, a capacidade vasodilatadora (hiperemia reativa), o óxido nítrico (ON), o estresse oxidativo (a peroxidação lipídica) e a inflamação (quatro marcadores), pré e pós-caminhada. ANOVAs foram empregadas e p < 0,05 foi considerado significativo. Resultados: A PA sistólica e a PA média diminuíram após a sessão submáxima, mas aumentaram após a sessão máxima (interações, p < 0,001 para ambas). A PA diastólica não foi alterada após a sessão submáxima (p > 0,05), mas aumentou após a caminhada máxima (interação, p < 0,001). A FC, o equilíbrio simpatovagal e os FS aumentaram de forma semelhante após as duas sessões (momento, p < 0,001, p = 0,04 e p < 0,001, respectivamente), enquanto a capacidade vasodilatadora, o ON e o estresse oxidativo permaneceram inalterados (p > 0,05). As moléculas de adesão vascular e intercelular aumentaram de forma semelhante após as sessões de caminhada máxima e submáxima (momento, p = 0,001). Conclusões: Nos pacientes com a DAP sintomática, a caminhada submáxima, mas não a máxima, reduziu a PA pós-exercício, enquanto a caminhada máxima manteve a sobrecarga cardíaca elevada durante o período de recuperação. Por outro lado, as sessões de caminhada máxima e submáxima aumentaram a FC, o equilíbrio simpatovagal cardíaco e a inflamação pós-exercício de forma semelhante, enquanto não alteraram a biodisponibilidade de ON e o estresse oxidativo pós-exercício.
Collapse
Affiliation(s)
- Marcel Chehuen
- Universidade de São Paulo - Escola de Educação Física e Esportes, São Paulo, SP - Brasil
| | | | - Natan Silva Junior
- Universidade de São Paulo - Escola de Educação Física e Esportes, São Paulo, SP - Brasil
| | - Roberto Miyasato
- Universidade de São Paulo - Escola de Educação Física e Esportes, São Paulo, SP - Brasil
| | | | - Anthony Leicht
- James Cook University, Townsville, Queensland - Austrália
| | - Patricia Chakur Brum
- Universidade de São Paulo - Escola de Educação Física e Esportes, São Paulo, SP - Brasil
| | - Edilamar M Oliveira
- Universidade de São Paulo - Escola de Educação Física e Esportes, São Paulo, SP - Brasil
| | | | | |
Collapse
|
5
|
Local and Systemic Inflammation and Oxidative Stress After a Single Bout of Maximal Walking in Patients With Symptomatic Peripheral Artery Disease. J Cardiovasc Nurs 2021; 36:498-506. [DOI: 10.1097/jcn.0000000000000686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Da Silva FC, Rode MP, Vietta GG, Iop RDR, Creczynski-Pasa TB, Martin AS, Da Silva R. Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson's disease. Mol Med Rep 2021; 24:618. [PMID: 34184078 PMCID: PMC8258464 DOI: 10.3892/mmr.2021.12257] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
There is a consensus regarding the efficacy of physical exercise in maintaining or improving human health; however, there are few studies examining the effect of physical exercise on the expression levels of microRNAs (miRNA/miRs) in Parkinson's disease (PD). The aim of the present study was to investigate the effects of an interval training program on a cycle ergometer on the expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in serum samples from men with PD. This was a quasi‑experimental study with pre‑ and post‑testing and with a non‑equivalent group design. The participants were selected based on the eligibility criteria and subsequently classified into two groups: Experimental group and control group. The evaluations were performed at the beginning of the study (week 0) and after 8 weeks of the intervention program (week 9). The interval training program was performed on a cycle ergometer for 30 min, three times a week during an 8‑week period. The expression levels of miR‑106a‑5p, miR‑103a‑3p and miR‑29a‑3p in the experimental group were increased after physical exercise and were associated with cognitive improvement in men with PD. However, further studies are required to clarify the potential use of these circulating miRNAs as markers of adaptation to physical exercise. Collectively, the present results indicated that these three miRNAs may be associated with the exercise response and cognitive improvement in men with PD.
Collapse
Affiliation(s)
- Franciele Cascaes Da Silva
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Michele Patrícia Rode
- Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil
| | - Giovanna Grunewald Vietta
- Nucleus of Epidemiology, University of Southern Santa Catarina, Palhoça, Santa Catarina 88137‑270, Brazil
| | - Rodrigo Da Rosa Iop
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Pharmaceutical Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88010‑970, Brazil
| | - Alessandra Swarowsky Martin
- Center for Health and Sport Sciences, Physical Therapy Department, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| | - Rudney Da Silva
- Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, Santa Catarina State University, Florianópolis, Santa Catarina 88080‑350, Brazil
| |
Collapse
|
7
|
Foudi N, Legeay S. Effects of physical activity on cell-to-cell communication during type 2 diabetes: A focus on miRNA signaling. Fundam Clin Pharmacol 2021; 35:808-821. [PMID: 33675090 DOI: 10.1111/fcp.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (TD2) is a progressive disease characterized by hyperglycemia that results from alteration in insulin secretion, insulin resistance, or both. A number of alterations involving different tissues and organs have been reported to the development and the progression of T2D, and more relevantly, through cell-to-cell communication pathways. Recent studies demonstrated that miRNAs are considerably implicated to cell-to-cell communication during T2D. Physical activity (PA) is associated with decreasing risks of developing T2D and acts as insulin-like factor. Cumulative evidence suggests that this effect could be mediated in part through improving insulin sensitivity in T2D and obese patients and modulating miRNAs synthesis and release in healthy patients. Therefore, the practice of PA should ideally be established before the initiation of T2D. This review describes cell-to-cell communications involved in the pathophysiology of T2D during PA.
Collapse
Affiliation(s)
- Nabil Foudi
- Department of Pharmacy, UNIV Angers, Angers, France.,Faculty of Medicine, Department of Pharmacy, University Ferhat Abbas Setif 1, Setif, Algeria
| | - Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, Angers, France
| |
Collapse
|
8
|
Askari M, Faryabi R, Mozaffari H, Darooghegi Mofrad M. The effects of N-Acetylcysteine on serum level of inflammatory biomarkers in adults. Findings from a systematic review and meta-analysis of randomized clinical trials. Cytokine 2020; 135:155239. [PMID: 32799012 DOI: 10.1016/j.cyto.2020.155239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Randomized Clinical Trials (RCTs) have provided varied and conflicting findings regarding the effect of N-acetylcysteine (NAC) on inflammatory biomarkers. This study was conducted to review existing literature to determine whether NAC supplementation can affect inflammatory biomarkers in adults. METHODS Bibliographic databases of Scopus, and PubMed were used for relevant papers published until October 2019. Results were reported as weighted mean differences (WMD) with 95% confidence intervals (CI) using multi-level models. Cochrane's Q and I-squared (I2) tests were used to determine heterogeneity among studies. RESULTS Twenty-four RCTs which include 1057 sample size were entered to analysis. NAC doses and intervention duration ranged from 400 to 2000 mg/d, and 1 to 80 weeks, respectively. Oral supplementation of NAC reduced serum level of C-reactive protein (CRP) [WMD: -0.61 mg/L, 95% CI: -1.18 to -0.03, P = 0.039, I2 = 79.6%], and interleukin-6 (IL-6) [WMD: -0.43 pg/mL, 95% CI: -0.69 to -0.17, P = 0.001, I2 = 89.3%]. However, the effect of oral NAC supplementation on other inflammatory biomarkers was nonsignificant. Dose-response investigation showed a non-linear association between oral NAC supplementation with CRP. CONCLUSION Oral NAC supplementation reduced serum level of CRP and IL-6, but did not affect other inflammatory biomarkers. Nevertheless, more RCTs seems to be required to explore how NAC in different dosage and different routes of administration can affect inflammatory biomarkers.
Collapse
Affiliation(s)
- Mohammadreza Askari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roghaye Faryabi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Mozaffari
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - Manije Darooghegi Mofrad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
9
|
Silva FCD, Iop RDR, Andrade A, Costa VP, Gutierres Filho PJB, Silva RD. Effects of Physical Exercise on the Expression of MicroRNAs: A Systematic Review. J Strength Cond Res 2020; 34:270-280. [PMID: 31877120 DOI: 10.1519/jsc.0000000000003103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silva, FCd, Iop, RdR, Andrade, A, Costa, VP, Gutierres Filho, PJB, and Silva, Rd. Effects of physical exercise on the expression of microRNAs: A systematic review 34(1): 270-280, 2020-Studies have detected changes in the expression of miRNAs after physical exercise, which brings new insight into the molecular control of adaptation to exercise. Therefore, the objective of the current systematic review of experimental and quasiexperimental studies published in the past 10 years was to assess evidence related to acute effects, chronic effects, and both acute and chronic effects of physical exercise on miRNA expression in humans, as well as its functions, evaluated in serum, plasma, whole blood, saliva, or muscle biopsy. For this purpose, the following electronic databases were selected: MEDLINE by Pubmed, SCOPUS, Web of Science, and also a manual search in references of the selected articles to April 2017. Experimental and quasiexperimental studies were included. Results indicate that, of the 345 studies retrieved, 40 studies met the inclusion criteria and two articles were included as a result of the manual search. The 42 studies were analyzed, and it can be observed acute and chronic effects of physical exercises (aerobic and resistance) on the expression of several miRNAs in healthy subjects, athletes, young, elderly and in patients with congestive heart failure, chronic kidney disease, diabetes mellitus type 2 associated with morbid obesity, prediabetic, and patients with intermittent claudication. It is safe to assume that miRNA changes, both in muscle tissues and bodily fluids, are presumably associated with the benefits induced by acute and chronic physical exercise. Thus, a better understanding of changes in miRNAs as a response to physical exercise might contribute to the development of miRNAs as therapeutic targets for the improvement of exercise capacity in individuals with any given disease. However, additional studies are necessary to draw accurate conclusions.
Collapse
Affiliation(s)
- Franciele Cascaes da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo da Rosa Iop
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Alexandro Andrade
- Laboratory of Psychology of Sport and Exercise, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| | - Vitor Pereira Costa
- Exercise Physiology Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil; and
| | | | - Rudney da Silva
- Adapted Physical Activity Laboratory, Center for Health Sciences and Sports, University of State of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
10
|
Abdel-Wahab WM, Moussa FI. Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug Des Devel Ther 2019; 13:1155-1162. [PMID: 31043768 PMCID: PMC6469471 DOI: 10.2147/dddt.s191240] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurotoxicity is a major obstacle to the effectiveness of cisplatin (CDDP) in cancer chemotherapy. Oxidative stress and inflammation are considered to be the major mechanisms involved in CDDP-induced neurotoxicity. The rationale of our study was to investigate the efficacy of N-acetylcysteine (NAC) at two different doses in the management of CDDP-induced toxicity in rat brain by monitoring its antioxidant and anti-inflammatory effects. METHODS Thirty-five male rats were divided into five groups (n=7) as follows: control group (0.5 mL saline), NAC100 group (100 mg/kg), CDDP group (8 mg/kg), NAC50-CDDP group (50 mg/kg NAC and 8 mg/kg CDDP), and NAC100-CDDP group (100 mg/kg NAC and 8 mg/kg CDDP). NAC was administered for 20 consecutive days, while CDDP was injected once on day 15 of the treatment protocol. RESULTS The neurotoxicity of CDDP was evidenced by a marked increase in acetylcholinesterase and monoamine oxidase activities. It also induced oxidative stress as indicated by increased levels of lipid peroxidation, nitric oxide, and protein carbonyl with a concomitant decline in reduced glutathione, glutathione peroxidase, glutathione S-transferase, superoxide dismutase, and catalase in the brain. Moreover, CDDP enhanced the synthesis of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6. Treatment with NAC at the two selected doses significantly attenuated CDDP-induced changes in the brain cholinergic function, improved the brain oxidant/antioxidant status, and also reversed the overproduction of pro-inflammatory cytokines in brain and serum. CONCLUSION NAC could serve as an appropriate and safe complementary therapeutic agent to attenuate the toxicity of CDDP in the brain and therefore improve its outcomes in chemotherapy.
Collapse
Affiliation(s)
- Wessam M Abdel-Wahab
- Department of Zoology, Faculty of Science, University of Alexandria, Alexandria, Egypt,
- Department of Basic Sciences/Biology Unit, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia,
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, University of Alexandria, Alexandria, Egypt,
| |
Collapse
|
11
|
Rhodes K, Braakhuis A. Performance and Side Effects of Supplementation with N-Acetylcysteine: A Systematic Review and Meta-Analysis. Sports Med 2018; 47:1619-1636. [PMID: 28102488 DOI: 10.1007/s40279-017-0677-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND N-Acetylcysteine (NAC) is a promising antioxidant supplement with potential as an acute strategy to enhance performance in elite sport, but there are concerns about its side effects with high doses. OBJECTIVE To review the current literature and evaluate the effects of NAC supplementation on sport performance and the risk of adverse effects. METHODS The literature up to May 2016 was searched on MEDLINE (PubMed), EMBASE, SPORTDiscus, Google Scholar and Scopus databases to identify all studies investigating the effects of NAC supplementation on exercise performance and/or side effects experienced. Performance outcomes from each study were converted to the percent effect equivalent to mean power output in a time trial. All pooled analyses were based on random-effects models generated by Review Manager (RevMan) [Computer program], version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014). RESULTS A total of seven studies met criteria for inclusion in the sport performance meta-analysis, and 17 for inclusion in the side effects meta-analysis. The typical daily dose of NAC reported was 5.8 g·d-1; with a range between 1.2 and 20.0 g·d-1. The mean increase in performance was 0.29% (95% confidence interval -0.67 to 1.25). The difference in the odds ratio of side effects on NAC compared with placebo was 1.11 (95% confidence interval 0.88-1.39). The sub-analysis of NAC dose suggested an increase in side effects as the dosage of NAC increased; however, this observation requires further investigation. CONCLUSIONS Despite initial research publications reporting positive performance effects with NAC, at this stage it cannot be recommended further. The risk of side effects from NAC supplementation also remains unclear owing to significant variations in effects. Suboptimal reporting and documentation in the literature creates difficulties when meta-analysing outcomes and generating conclusions.
Collapse
Affiliation(s)
- Kate Rhodes
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Andrea Braakhuis
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
12
|
Matsuzaki J, Ochiya T. Extracellular microRNAs and oxidative stress in liver injury: a systematic mini review. J Clin Biochem Nutr 2018; 63:6-11. [PMID: 30087537 PMCID: PMC6064810 DOI: 10.3164/jcbn.17-123] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Recent evidence has suggested that extracellular microRNAs have crucial roles in intercellular communications and are promising as minimally invasive biomarkers for various diseases including cancers. Oxidative stress also plays an essential role in homeostasis and disease development. This systematic review aims to clarify the current evidence on the interaction between oxidative stress and extracellular microRNAs. We identified 32 studies that provided information regarding the association between oxidative stress and extracellular microRNAs: 9 focused on the central nervous system, 11 focused on cardiovascular diseases, and 4 focused on liver injury. Endothelial cell-specific miR-126-3p was the most studied extracellular miRNA associated with oxidative stress. In addition, we highlight some reports that describe the mechanisms of how oxidative stress affects extracellular microRNA profiles in liver injury. In liver injury, the levels of miR-122-5p, miR-192-5p, miR-223-3p, and miR-1224-5p were reported to be elevated in the sera. The release of miR-122-5p, miR-192-5p, and miR-1224-5p from hepatocytes may be attributed to oxidative stress. miR-223-3p could be released from neutrophils and suppress oxidative stress in the liver. Elucidation of the mechanisms of the interaction between extracellular microRNAs and oxidative stress would improve our pathophysiological understanding as well as future medical practice.
Collapse
Affiliation(s)
- Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
13
|
Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, Cloyd JC, Terpstra M. Repeated-Dose Oral N-Acetylcysteine in Parkinson's Disease: Pharmacokinetics and Effect on Brain Glutathione and Oxidative Stress. J Clin Pharmacol 2017; 58:158-167. [PMID: 28940353 DOI: 10.1002/jcph.1008] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is associated with oxidative stress and decreased nigral glutathione (GSH), suggesting that therapies that boost GSH may have a disease-modifying effect. Intravenous administration of a high dose of N-acetylcysteine (NAC), a well-known antioxidant and GSH precursor, increases blood and brain GSH in individuals with PD and with Gaucher disease and in healthy controls. To characterize the pharmacokinetics of repeated high oral doses of NAC and their effect on brain and blood oxidative stress measures, we conducted a 4-week open-label prospective study of oral NAC in individuals with PD (n = 5) and in healthy controls (n = 3). Brain GSH was measured in the occipital cortex using 1 H-MRS at 3 and 7 tesla before and after 28 days of 6000 mg NAC/day. Blood was collected prior to dosing and at predetermined collection times before and after the last dose to assess NAC, cysteine, GSH, catalase, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) concentrations and the reduced-to-oxidized GSH ratio (GSH/ glutathione disulfide [GSSG]). Symptomatic adverse events were reported by 3 of the 5 subjects with PD. NAC plasma concentration-time profiles were described by a first-order absorption, 1-compartment pharmacokinetic model. Although peripheral antioxidant measures (catalase and GSH/GSSG) increased significantly relative to baseline, indicators of oxidative damage, that is, measures of lipid peroxidation (4-HNE and MDA) were unchanged. There were no significant increases in brain GSH, which may be related to low oral NAC bioavailability and small fractional GSH/GSSG blood responses. Additional studies are needed to further characterize side effects and explore the differential effects of NAC on measures of antioxidant defense and oxidative damage.
Collapse
Affiliation(s)
- Lisa D Coles
- Center for Orphan Drug Research, Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Paul J Tuite
- Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Usha R Mishra
- Center for Orphan Drug Research, Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen M Sullivan
- Center for Orphan Drug Research, Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - James C Cloyd
- Center for Orphan Drug Research, Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Terpstra
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Lejay A, Laverny G, Paradis S, Schlagowski AI, Charles AL, Singh F, Zoll J, Thaveau F, Lonsdorfer E, Dufour S, Favret F, Wolff V, Metzger D, Chakfe N, Geny B. Moderate Exercise Allows for shorter Recovery Time in Critical Limb Ischemia. Front Physiol 2017; 8:523. [PMID: 28790926 PMCID: PMC5524729 DOI: 10.3389/fphys.2017.00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
Whether and how moderate exercise might allow for accelerated limb recovery in chronic critical limb ischemia (CLI) remains to be determined. Chronic CLI was surgically induced in mice, and the effect of moderate exercise (training five times per week over a 3-week period) was investigated. Tissue damages and functional scores were assessed on the 4th, 6th, 10th, 20th, and 30th day after surgery. Mice were sacrificed 48 h after the last exercise session in order to assess muscle structure, mitochondrial respiration, calcium retention capacity, oxidative stress and transcript levels of genes encoding proteins controlling mitochondrial functions (PGC1α, PGC1β, NRF1) and anti-oxidant defenses markers (SOD1, SOD2, catalase). CLI resulted in tissue damages and impaired functional scores. Mitochondrial respiration and calcium retention capacity were decreased in the ischemic limb of the non-exercised group (Vmax = 7.11 ± 1.14 vs. 9.86 ± 0.86 mmol 02/min/g dw, p < 0.001; CRC = 7.01 ± 0.97 vs. 11.96 ± 0.92 microM/mg dw, p < 0.001, respectively). Moderate exercise reduced tissue damages, improved functional scores, and restored mitochondrial respiration and calcium retention capacity in the ischemic limb (Vmax = 9.75 ± 1.00 vs. 9.82 ± 0.68 mmol 02/min/g dw; CRC = 11.36 ± 1.33 vs. 12.01 ± 1.24 microM/mg dw, respectively). Exercise also enhanced the transcript levels of PGC1α, PGC1β, NRF1, as well as SOD1, SOD2, and catalase. Moderate exercise restores mitochondrial respiration and calcium retention capacity, and it has beneficial functional effects in chronic CLI, likely by stimulating reactive oxygen species-induced biogenesis and anti-oxidant defenses. These data support further development of exercise therapy even in advanced peripheral arterial disease.
Collapse
Affiliation(s)
- Anne Lejay
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Gilles Laverny
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U964, Université de StrasbourgStrasbourg, France
| | - Stéphanie Paradis
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Anna-Isabel Schlagowski
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Anne-Laure Charles
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - François Singh
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Fabien Thaveau
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Evelyne Lonsdorfer
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Stéphane Dufour
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Faculté des Sciences du Sport, Université de StrasbourgStrasbourg, France
| | - Fabrice Favret
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Faculté des Sciences du Sport, Université de StrasbourgStrasbourg, France
| | - Valérie Wolff
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Unité Neurovasculaire, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Daniel Metzger
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U964, Université de StrasbourgStrasbourg, France
| | - Nabil Chakfe
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| |
Collapse
|
15
|
Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, Fernandes BS, Berk M, Marriott A. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review. Neurosci Biobehav Rev 2017; 78:44-56. [PMID: 28438466 DOI: 10.1016/j.neubiorev.2017.04.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress, neuroinflammation and neurogenesis are commonly implicated as cognitive modulators across a range of disorders. N-acetylcysteine (NAC) is a glutathione precursor with potent antioxidant, pro-neurogenesis and anti-inflammatory properties and a favourable safety profile. A systematic review of the literature specifically examining the effect of NAC administration on human cognition revealed twelve suitable articles for inclusion: four examining Alzheimer's disease; three examining healthy participants; two examining physical trauma; one examining bipolar disorder, one examining schizophrenia, and one examining ketamine-induced psychosis. Heterogeneity of studies, insufficiently powered studies, infrequency of cognition as a primary outcome, heterogeneous methodologies, formulations, co-administered treatments, administration regimes, and assessment confounded the drawing of firm conclusions. The available data suggested statistically significant cognitive improvements following NAC treatment, though the paucity of NAC-specific research makes it difficult to determine if this effect is meaningful. While NAC may have a positive cognitive effect in a variety of contexts; larger, targeted studies are warranted, specifically evaluating its role in other clinical disorders with cognitive sequelae resulting from oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia
| | - Stephen Lane
- Deakin University, School of Medicine, Geelong, Australia; Biostatistics Unit, Barwon Health, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Brisa S Fernandes
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
16
|
Hirai DM, Jones JH, Zelt JT, da Silva ML, Bentley RF, Edgett BA, Gurd BJ, Tschakovsky ME, O'Donnell DE, Neder JA. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. J Appl Physiol (1985) 2017; 122:1351-1361. [PMID: 28255088 DOI: 10.1152/japplphysiol.00990.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
Heightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with N-acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD. Thirteen patients [forced expiratory volume in 1 s (FEV1)-to-forced vital capacity ratio < lower limit of normal (LLN) and FEV1 ≥ LLN) were enrolled in a double-blind, randomized crossover study to receive NAC (1,800 mg/day) or placebo for 4 days. Severe-intensity constant-load exercise tests were performed with noninvasive measurements of central hemodynamics (stroke volume, heart rate, and cardiac output via impedance cardiography), arterial blood pressure, pulmonary ventilation and gas exchange, quadriceps muscle oxygenation (near-infrared spectroscopy), and estimated capillary blood flow. Nine patients completed the study with no major adverse clinical effects. Although NAC elevated plasma glutathione by ~27% compared with placebo (P < 0.05), there were no differences in exercise tolerance (placebo: 325 ± 47 s, NAC: 336 ± 51 s), central hemodynamics, arterial blood pressure, pulmonary ventilation or gas exchange, locomotor muscle oxygenation, or capillary blood flow from rest to exercise between conditions (P > 0.05 for all). In conclusion, modulation of plasma redox status with oral NAC treatment was not translated into beneficial effects on central or peripheral components of the oxygen transport pathway, thereby failing to improve exercise tolerance in nonhypoxemic patients with mild COPD.NEW & NOTEWORTHY Acute antioxidant treatment with N-acetylcysteine (NAC) elevated plasma glutathione but did not modulate central or peripheral components of the O2 transport pathway, thereby failing to improve exercise tolerance in patients with mild chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Daniel M Hirai
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada; .,Pulmonary Function and Clinical Exercise Physiology Unit, Respiratory Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Joshua H Jones
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Joel T Zelt
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Marianne L da Silva
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Division of Physical Therapy, University of Brasilia, Brasilia, Brazil
| | - Robert F Bentley
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brittany A Edgett
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; and
| | - Brendon J Gurd
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; and
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
17
|
Sapp RM, Shill DD, Roth SM, Hagberg JM. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol (1985) 2016; 122:702-717. [PMID: 28035018 DOI: 10.1152/japplphysiol.00982.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that influence biological processes by regulating gene expression after transcription. It was recently discovered that miRNAs are released into the circulation (ci-miRNAs) where they are highly stable and can act as intercellular messengers to affect physiological processes. This review provides a comprehensive summary of the studies to date that have investigated the effects of acute exercise and exercise training on ci-miRNAs in humans. Findings indicate that specific ci-miRNAs are altered in response to different protocols of acute and chronic exercise in both healthy and diseased populations. In some cases, altered ci-miRNAs correlate with fitness and health parameters, suggesting causal mechanisms by which ci-miRNAs may facilitate adaptations to exercise training. However, strong data supporting such mechanisms are lacking. Thus, a purpose of this review is to guide future studies by discussing current and novel proposed roles for ci-miRNAs in adaptations to exercise training. In addition, substantial, fundamental gaps in the field need to be addressed. The ultimate goal of this research is that an understanding of the roles of ci-miRNAs in physiological adaptations to exercise training will one day translate to therapeutic interventions.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Daniel D Shill
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Stephen M Roth
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - James M Hagberg
- Department of Kinesiology, University of Maryland, College Park, Maryland
| |
Collapse
|
18
|
Miller SJ, Unthank JL. Understanding the role of antioxidant therapy for intermittent claudication; good, bad, or both? Am J Physiol Heart Circ Physiol 2015; 309:H734-6. [PMID: 26163447 DOI: 10.1152/ajpheart.00518.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Steven J Miller
- Departments of Surgery, Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph L Unthank
- Departments of Surgery, Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|