3
|
Veerman CC, Podliesna S, Tadros R, Lodder EM, Mengarelli I, de Jonge B, Beekman L, Barc J, Wilders R, Wilde AAM, Boukens BJ, Coronel R, Verkerk AO, Remme CA, Bezzina CR. The Brugada Syndrome Susceptibility Gene HEY2 Modulates Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity. Circ Res 2017. [PMID: 28637782 DOI: 10.1161/circresaha.117.310959] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near HEY2) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved. OBJECTIVE We used an integrative approach entailing transcriptomic studies in human hearts and electrophysiological studies in Hey2+/- (Hey2 heterozygous knockout) mice to dissect the underpinnings of the 6q22.31 association with Brugada syndrome. METHODS AND RESULTS We queried expression quantitative trait locus data acquired in 190 human left ventricular samples from the genotype-tissue expression consortium for cis-expression quantitative trait locus effects of rs9388451, which revealed an association between Brugada syndrome risk allele dosage and HEY2 expression (β=+0.159; P=0.0036). In the same transcriptomic data, we conducted genome-wide coexpression analysis for HEY2, which uncovered KCNIP2, encoding the β-subunit of the channel underlying the transient outward current (Ito), as the transcript most robustly correlating with HEY2 expression (β=+1.47; P=2×10-34). Transcript abundance of Hey2 and the Ito subunits Kcnip2 and Kcnd2, assessed by quantitative reverse transcription-polymerase chain reaction, was higher in subepicardium versus subendocardium in both left and right ventricles, with lower levels in Hey2+/- mice compared with wild type. Surface ECG measurements showed less prominent J waves in Hey2+/- mice compared with wild-type. In wild-type mice, patch-clamp electrophysiological studies on cardiomyocytes from right ventricle demonstrated a shorter action potential duration and a lower Vmax in subepicardium compared with subendocardium cardiomyocytes, which was paralleled by a higher Ito and a lower sodium current (INa) density in subepicardium versus subendocardium. These transmural differences were diminished in Hey2+/- mice because of changes in subepicardial cardiomyocytes. CONCLUSIONS This study uncovers a role of HEY2 in the normal transmural electrophysiological gradient in the ventricle and provides compelling evidence that genetic variation at 6q22.31 (rs9388451) is associated with Brugada syndrome through a HEY2-dependent alteration of ion channel expression across the cardiac ventricular wall.
Collapse
Affiliation(s)
- Christiaan C Veerman
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Svitlana Podliesna
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Rafik Tadros
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Elisabeth M Lodder
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Isabella Mengarelli
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Berend de Jonge
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Leander Beekman
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Julien Barc
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Ronald Wilders
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Arthur A M Wilde
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Bastiaan J Boukens
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Ruben Coronel
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Arie O Verkerk
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Carol Ann Remme
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.)
| | - Connie R Bezzina
- From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.).
| |
Collapse
|
6
|
Sorrentino A, Borghetti G, Zhou Y, Cannata A, Meo M, Signore S, Anversa P, Leri A, Goichberg P, Qanud K, Jacobson JT, Hintze TH, Rota M. Hyperglycemia induces defective Ca2+ homeostasis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2016; 312:H150-H161. [PMID: 27881388 DOI: 10.1152/ajpheart.00737.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023]
Abstract
Diabetes and other metabolic conditions characterized by elevated blood glucose constitute important risk factors for cardiovascular disease. Hyperglycemia targets myocardial cells rendering ineffective mechanical properties of the heart, but cellular alterations dictating the progressive deterioration of cardiac function with metabolic disorders remain to be clarified. In the current study, we examined the effects of hyperglycemia on cardiac function and myocyte physiology by employing mice with high blood glucose induced by administration of streptozotocin, a compound toxic to insulin-producing β-cells. We found that hyperglycemia initially delayed the electrical recovery of the heart, whereas cardiac function became defective only after ~2 mo with this condition and gradually worsened with time. Prolonged hyperglycemia was associated with increased chamber dilation, thinning of the left ventricle (LV), and myocyte loss. Cardiomyocytes from hyperglycemic mice exhibited defective Ca2+ transients before the appearance of LV systolic defects. Alterations in Ca2+ transients involved enhanced spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), reduced cytoplasmic Ca2+ clearance, and declined SR Ca2+ load. These defects have important consequences on myocyte contraction, relaxation, and mechanisms of rate adaptation. Collectively, our data indicate that hyperglycemia alters intracellular Ca2+ homeostasis in cardiomyocytes, hindering contractile activity and contributing to the manifestation of the diabetic cardiomyopathy. NEW & NOTEWORTHY We have investigated the effects of hyperglycemia on cardiomyocyte physiology and ventricular function. Our results indicate that defective Ca2+ handling is a critical component of the progressive deterioration of cardiac performance of the diabetic heart.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giulia Borghetti
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu Zhou
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonio Cannata
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marianna Meo
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sergio Signore
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Piero Anversa
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Fondazione Cardiocentro Ticino, University of Zurich, Lugano, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Fondazione Cardiocentro Ticino, University of Zurich, Lugano, Switzerland
| | - Polina Goichberg
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khaled Qanud
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York; and.,Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Marcello Rota
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; .,Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|