1
|
Noradrenergic activation induced by yohimbine decreases interoceptive accuracy in healthy individuals with childhood adversity. Dev Psychopathol 2021; 34:1013-1024. [PMID: 33446284 DOI: 10.1017/s0954579420001613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute stress affects interoception, but it remains unclear if this is due to activation of the sympatho-adreno-medullary (SAM) or hypothalamic-pituitary-adrenocortical axis. This study aimed to investigate the effect of SAM axis activation on interoceptive accuracy (IAcc). Central alpha2-adrenergic receptors represent a negative feedback mechanism of the SAM axis. Major depressive disorder and adverse childhood experiences (ACE) are associated with alterations in the biological stress systems, including central alpha2-adrenergic receptors. Here, healthy individuals with and without ACE as well as depressive patients with and without ACE (n = 114; all without antidepressant medication) were tested after yohimbine (alpha2-adrenergic antagonist) and placebo. We assessed IAcc and sensibility in a heartbeat counting task. Increases in systolic and diastolic blood pressure after yohimbine confirmed successful SAM axis activation. IAcc decreased after yohimbine only in the healthy group with ACE, but remained unchanged in all other groups (Group × Drug interaction). This effect may be due to selective upregulation of alpha2-adrenergic receptors after childhood trauma, which reduces capacity for attention focus on heartbeats. The sympathetic neural pathway including alpha2-adrenergic circuitries may be essential for mediating interoceptive signal transmission. Suppressed processing of physical sensations in stressful situations may represent an adaptive response in healthy individuals who experienced ACE.
Collapse
|
2
|
Tian L, Tang G, Liu Q, Yin Y, Li Y, Zhong Y. Blockade of adenosine A1 receptor in nucleus tractus solitarius attenuates baroreflex sensitivity response to dexmedetomidine in rats. Brain Res 2020; 1743:146949. [PMID: 32522627 DOI: 10.1016/j.brainres.2020.146949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
The α2-adrenergic receptor (α2-AR) agonist dexmedetomidine increases baroreflex sensitivity (BRS). In the current study, we examined the potential role of adenosine A1 receptor (A1R) within the nucleus tractus solitaries (NTS) in such a response. Briefly, adult male Sprague-Dawley rats were anesthetized and randomly received microinjection of selective A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.1 pmol/1 μl) or saline vehicle into the right NTS. Ten min after the microinjection, dexmedetomidine infusion started at a rate of 30 μg/kg over 15 min followed by infusion at 15 μg·kg-1·h-1 for 105 min, or 100 μg/kg over 15 min followed by infusion at 50 μg·kg-1·h-1 for 105 min. BRS was examined using a standard phenylephrine method prior to infusion (T0), 60 min (T1) and 120 min (T2) after dexmedetomidine infusion started. Adenosine concentration in plasma and brainstem was measured with high-performance liquid chromatography with vs. without α2-AR antagonist atipamezole pretreatment (0.5 mg/kg, i.p.). Dexmedetomidine increased BRS at both 30 (T0: 0.55 ± 0.25 vs. T1: 2.45 ± 0.37, T2: 2.26 ± 0.56 ms/mmHg, P < 0.05) and 100 μg/kg (T0: 0.63 ± 0.24 vs. T1: 6.21 ± 1.87, T2: 6.30 ± 2.12 ms/mmHg, P < 0.05). DPCPX pretreatment obliterated BRS response to 100-μg/kg dexmedetomidine. At 100 μg/kg, dexmedetomidine increased adenosine concentration in plasma (0.23 ± 0.11 to 0.45 ± 0.07 μg/ml, P < 0.05) and brainstem (1.46 ± 0.30 to 2.52 ± 0.22 μg/ml, P < 0.05); such effect was blocked by atipamezole pretreatment. Western blot analysis showed α2-AR up-regulation by 100-μg/kg dexmedetomidine, which can be prevented by DPCPX. Double-labeling with glial fibrillary acidic protein showed α2-AR up-regulation in astrocytes in the NTS. These results suggest that dexmedetomidine enhances baroreflex sensitivity, possibly by increasing adenosine in NTS and α2-AR expression in astrocytes.
Collapse
Affiliation(s)
- Lei Tian
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Guoqiang Tang
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Yongqiang Yin
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiping Li
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
3
|
Sun GC, Ho WY, Chen BR, Cheng PW, Cheng WH, Hsu MC, Yeh TC, Hsiao M, Lu PJ, Tseng CJ. GPCR dimerization in brainstem nuclei contributes to the development of hypertension. Br J Pharmacol 2015; 172:2507-18. [PMID: 25573074 PMCID: PMC4409903 DOI: 10.1111/bph.13074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/20/2014] [Accepted: 12/29/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE μ-Opioid receptors, pro-opiomelanocortin and pro-enkephalin are highly expressed in the nucleus tractus solitarii (NTS) and μ receptor agonists given to the NTS dose-dependently increased BP. However, the molecular mechanisms of this process remain unclear. In vitro, μ receptors heterodimerize with α2A -adrenoceptors. We hypothesized that α2A -adrenoceptor agonists would lose their depressor effects when their receptors heterodimerize in the NTS with μ receptors. EXPERIMENTAL APPROACH We microinjected μ-opioid agonists and antagonists into the NTS of rats and measured changes in BP. Formation of μ receptor/α2A -adrenoceptor heterodimers was assessed with immunofluorescence and co-immunoprecipitation methods, along with proximity ligation assays. KEY RESULTS Immunofluorescence staining revealed colocalization of α2A -adrenoceptors and μ receptors in NTS neurons. Co-immunoprecipitation revealed interactions between α2A -adrenoceptors and μ receptors. In situ proximity ligation assays confirmed the presence of μ receptor/α2A -adrenoceptor heterodimers in the NTS. Higher levels of endogenous endomorphin-1 and μ receptor/α2A -adrenoceptor heterodimers were found in the NTS of hypertensive rats, than in normotensive rats. Microinjection of the μ receptor agonist [D-Ala(2) , MePhe(4) , Gly(5) -ol]-enkephalin (DAMGO), but not that of the α2A -adrenoceptor agonist guanfacine, into the NTS of normotensive rats increased μ receptor/α2A -adrenoceptor heterodimer formation and BP elevation. The NO-dependent BP-lowering effect of α2A -adrenoceptor agonists was blunted following increased formation of μ receptor/α2A -adrenoceptor heterodimers in the NTS of hypertensive rats and DAMGO-treated normotensive rats. CONCLUSIONS AND IMPLICATIONS Increases in endogenous μ receptor agonists in the NTS induced μ receptor/α2A -adrenoceptor heterodimer formation and reduced the NO-dependent depressor effect of α2A -adrenoceptor agonists. This process could contribute to the pathogenesis of hypertension.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Agonists/administration & dosage
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Blood Pressure/drug effects
- Brain Stem/drug effects
- Brain Stem/metabolism
- Dimerization
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Hypertension/chemically induced
- Hypertension/metabolism
- Male
- Microinjections
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Oligopeptides/metabolism
- Protein Multimerization
- Rats
- Rats, Inbred SHR
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Solitary Nucleus/drug effects
- Solitary Nucleus/metabolism
Collapse
Affiliation(s)
- Gwo-Ching Sun
- Institute of Clinical Medicine, National Cheng-Kung UniversityTainan, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General HospitalKaohsiung, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Pharmacology, National Defense Medical CenterTaipei, Taiwan
| | - Bo-Rung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General HospitalKaohsiung, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General HospitalKaohsiung, Taiwan
- Department of Pharmacology, National Defense Medical CenterTaipei, Taiwan
| | - Wen-Han Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General HospitalKaohsiung, Taiwan
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan
| | - Mei-Chi Hsu
- Department of Nursing, I-Shou UniversityKaohsiung, Taiwan
| | - Tung-Chen Yeh
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General HospitalKaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia SinicaTaipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng-Kung UniversityTainan, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General HospitalKaohsiung, Taiwan
- Department of Pharmacology, National Defense Medical CenterTaipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
4
|
Santiago FE, Fior-Chadi DR, Carrettiero DC. Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development. Auton Neurosci 2014; 187:36-44. [PMID: 25466830 DOI: 10.1016/j.autneu.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 02/07/2023]
Abstract
Alpha2-adrenoceptor and A1 adenosine receptor systems within the nucleus tractus solitarii (NTS) play an important role in cardiovascular control. Deregulation of these systems may result in an elevated sympathetic tone, one of the root causes of neurogenic hypertension. The dorsomedial/dorsolateral and subpostremal NTS subnuclei of spontaneously hypertensive rats (SHR) show density changes in both receptors, even at 15 days of age, prior to the onset of hypertension. In addition, adenosine A1 receptors have been specifically reported to modulate alpha2-adrenoceptors in several brain regions, including the NTS, via a PLC-dependent pathway involving cross regulation between sympathetic neurons and astrocytes. The physiological cross talk between these receptor systems is also deregulated in SHR suggesting that alpha2-adrenoceptor and A1 adenosine receptor might be germane to the development of hypertension. In this review, we will focus on these systems within the NTS during development, pointing out some interesting modulations in processes, and chemical changes within specific subnuclei of NTS circuitry, that might have implications for neurogenic hypertension.
Collapse
Affiliation(s)
- Fernando E Santiago
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil
| | - Débora R Fior-Chadi
- Universidade de São Paulo (USP), Departamento de Fisiologia, Instituto de Biociências, São Paulo, SP, Brazil
| | - Daniel C Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil.
| |
Collapse
|
5
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Suppression of the cough reflex by α 2-adrenergic receptor agonists in the rabbit. Physiol Rep 2013; 1:e00122. [PMID: 24400133 PMCID: PMC3871446 DOI: 10.1002/phy2.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 01/26/2023] Open
Abstract
The α2-adrenergic receptor agonist clonidine has been shown to inhibit citric acid-induced cough responses in guinea pigs when administered by aerosol, but not orally. In contrast, oral or inhaled clonidine had no effect on capsaicin-induced cough and reflex bronchoconstriction in humans. In addition, intravenous administration of clonidine has been shown to depress fentanyl-induced cough in humans. We investigated the effects of the α2-adrenergic receptor agonists, clonidine and tizanidine, on cough responses induced by mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nL) into the caudal nucleus tractus solitarii (cNTS) and the caudal ventral respiratory group (cVRG) as well as administered intravenously in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections of clonidine into the cNTS or the cVRG reduced cough responses at 0.5 mmol/L and abolished the cough reflex at 5 mmol/L. Bilateral microinjections of 0.5 mmol/L tizanidine into the cNTS completely suppressed cough responses, whereas bilateral microinjections of 5 mmol/L into the cVRG only caused mild reductions in them. Depressant effects on the cough reflex of clonidine and tizanidine were completely reverted by microinjections of 10 mmol/L yohimbine. Intravenous administration of clonidine (80–120 μg/kg) or tizanidine (150–300 μg/kg) strongly reduced or completely suppressed cough responses. These effects were reverted by intravenous administration of yohimbine (300 μg/kg). The results demonstrate that activation of α2-adrenergic receptors in the rabbit exerts potent inhibitory effects on the central mechanism generating the cough motor pattern with a clear action at the level of the cNTS and the cVRG.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze Viale G.B. Morgagni 63, 50134, Firenze, Italy
| |
Collapse
|
6
|
Carrettiero DC, Ferrari MF, Fior-Chadi DR. Alpha2-adrenergic receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats during development. Auton Neurosci 2012; 166:39-46. [DOI: 10.1016/j.autneu.2011.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 02/07/2023]
|
7
|
Pintérová M, Kuneš J, Zicha J. Altered neural and vascular mechanisms in hypertension. Physiol Res 2011; 60:381-402. [PMID: 21615201 DOI: 10.33549/physiolres.932189] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Essential hypertension is a multifactorial disorder which belongs to the main risk factors responsible for renal and cardiovascular complications. This review is focused on the experimental research of neural and vascular mechanisms involved in the high blood pressure control. The attention is paid to the abnormalities in the regulation of sympathetic nervous system activity and adrenoceptor alterations as well as the changes of membrane and intracellular processes in the vascular smooth muscle cells of spontaneously hypertensive rats. These abnormalities lead to increased vascular tone arising from altered regulation of calcium influx through L-VDCC channels, which has a crucial role for excitation-contraction coupling, as well as for so-called "calcium sensitization" mediated by the RhoA/Rho-kinase pathway. Regulation of both pathways is dependent on the complex interplay of various vasodilator and vasoconstrictor stimuli. Two major antagonistic players in the regulation of blood pressure, i.e. sympathetic nervous system (by stimulation of adrenoceptors coupled to stimulatory and inhibitory G proteins) and nitric oxide (by cGMP signaling pathway), elicit their actions via the control of calcium influx through L-VDCC. However, L-type calcium current can also be regulated by the changes in membrane potential elicited by the activation of potassium channels, the impaired function of which was detected in hypertensive animals. The dominant role of enhanced calcium influx in the pathogenesis of high blood pressure of genetically hypertensive animals is confirmed not only by therapeutic efficacy of calcium antagonists but especially by the absence of hypertension in animals in which L-type calcium current was diminished by pertussis toxin-induced inactivation of inhibitory G proteins. Although there is considerable information on the complex neural and vascular alterations in rats with established hypertension, the detailed description of their appearance during the induction of hypertension is still missing.
Collapse
Affiliation(s)
- M Pintérová
- Cardiovascular Research Center and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
8
|
Yao ST. Alpha-adrenergic receptors in the nucleus tractus solitarii: fitting a new piece to a complex puzzle. Exp Physiol 2009; 94:771-2. [PMID: 19535613 DOI: 10.1113/expphysiol.2009.048009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Song T Yao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Heart Institute, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| |
Collapse
|
9
|
Chung OY, Bruehl S, Diedrich L, Diedrich A, Chont M, Robertson D. Baroreflex sensitivity associated hypoalgesia in healthy states is altered by chronic pain. Pain 2008; 138:87-97. [DOI: 10.1016/j.pain.2007.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/08/2007] [Accepted: 11/19/2007] [Indexed: 12/18/2022]
|
10
|
Silva de Oliveira LC, Bonagamba LGH, Machado BH. Noradrenergic inhibitory modulation in the caudal commissural NTS of the pressor response to chemoreflex activation in awake rats. Auton Neurosci 2007; 136:63-8. [PMID: 17512262 DOI: 10.1016/j.autneu.2007.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 04/12/2007] [Accepted: 04/18/2007] [Indexed: 11/22/2022]
Abstract
In the present study we evaluated the possible modulatory role of noradrenaline on the neurotransmission of the peripheral chemoreflex afferents in the caudal commissural NTS of awake rats. To reach this goal we performed a dose-response curve to microinjection of increasing dose of noradrenaline into the caudal commissural NTS of awake rats and then the threshold dose, which produces minor changes in the baseline mean arterial pressure, was selected to be used in the chemoreflex experiment. The peripheral chemoreflex was activated with KCN before and after bilateral microinjections of noradrenaline (5 nMol/50 nL, threshold dose) into the NTS. The data show that microinjection of noradrenaline into the caudal NTS produced a significant reduction in the pressor response to the chemoreflex 30 s after the injection when compared to the control response (30+/-6 vs. 49+/-3 mm Hg) but no significant changes in the bradycardic response. The data indicate that noradrenaline in the caudal commissural NTS of awake rats may play an important inhibitory neuromodulatory role on the processing of the pressor/sympathoexcitatory component of the chemoreflex.
Collapse
Affiliation(s)
- Luciana C Silva de Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
11
|
Salgado HC, Barale AR, Castania JA, Machado BH, Chapleau MW, Fazan R. Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol 2006; 292:H593-600. [PMID: 16951050 DOI: 10.1152/ajpheart.00181.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Baroreflex responses to changes in arterial pressure are impaired in spontaneously hypertensive rats (SHR). Mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances were measured before and during electrical stimulation (5-90 Hz) of the left aortic depressor nerve (ADN) in conscious SHR and normotensive control rats (NCR). The protocol was repeated after beta-adrenergic-receptor blockade with atenolol. SHR exhibited higher basal MAP (150 +/- 5 vs. 103 +/- 2 mmHg) and HR (393 +/- 9 vs. 360 +/- 5 beats/min). The frequency-dependent hypotensive response to ADN stimulation was preserved or enhanced in SHR. The greater absolute fall in MAP at higher frequencies (-68 +/- 5 vs. -38 +/- 3 mmHg at 90-Hz stimulation) in SHR was associated with a preferential decrease in hindquarter (-43 +/- 5%) vs. mesenteric (-27 +/- 3%) resistance. In contrast, ADN stimulation decreased hindquarter and mesenteric resistances equivalently in NCR (-33 +/- 7% and -30 +/- 7%). Reflex bradycardia was also preserved in SHR, although its mechanism differed. Atenolol attenuated the bradycardia in SHR (-88 +/- 14 vs. -129 +/- 18 beats/min at 90-Hz stimulation) but did not alter the bradycardia in NCR (-116 +/- 16 vs. -133 +/- 13 beats/min). The residual bradycardia under atenolol (parasympathetic component) was reduced in SHR. MAP and HR responses to ADN stimulation were also preserved or enhanced in SHR vs. NCR after deafferentation of carotid sinuses and contralateral right ADN. The results demonstrate distinct differences in central baroreflex control in conscious SHR vs. NCR. Inhibition of cardiac sympathetic tone maintains reflex bradycardia during ADN stimulation in SHR despite impaired parasympathetic activation, and depressor responses to ADN stimulation are equivalent or even greater in SHR due to augmented hindquarter vasodilation.
Collapse
Affiliation(s)
- Helio C Salgado
- Dept. of Physiology, School of Medicine of Ribeirão Preto, Univ. of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The respiratory effects of stimulation of alpha2-adrenergic receptors were studied in spontaneously breathing anaesthetized rats that were neurally intact, or bilaterally vagotomized, or subjected to bilateral combined midcervical vagotomy and section of the carotid sinus nerves. An intravenous clonidine bolus (15 microg kg(-1)) evoked a prolonged slowing of the respiratory rate in all the neural states explored. Vagotomy reduced the early clonidine-evoked decline, but not the augmentation of tidal volume that followed the decline. After section of the carotid sinus nerves, clonidine challenge continued to decrease the respiratory rate, but not the tidal volume. Blockade of alpha2-adrenergic receptors with intravenous doses of SKF 86466 (200 microg kg(-1)) abolished all respiratory effects of the clonidine challenge. In all the neural states studied, clonidine evoked a significant short-lived rise in mean arterial blood pressure followed by a decrease below the respective prechallenge value. The SKF 86466 pretreatment lowered mean arterial blood pressure control values and reduced the magnitude of postclonidine changes. These results indicate that: (i) clonidine-evoked activation of alpha2-adrenergic receptors affects the two components of the breathing pattern differently, and this occurs beyond the lung vagi; and (ii) changes in tidal volume result from excitation of the carotid bodies and are coupled with centrally mediated slowing of the respiratory rhythm.
Collapse
Affiliation(s)
- Katarzyna Kaczyñska
- Laboratory of Respiratory Reflexes, Polish Academy of Sciences Medical Research Centre, 5 Pawiñski Street, 02-106 Warsaw, Poland.
| | | |
Collapse
|
13
|
Li G, Wang X, Abdel-Rahman AA. Brainstem norepinephrine neurons mediate ethanol-evoked pressor response but not baroreflex dysfunction. Alcohol Clin Exp Res 2005; 29:639-47. [PMID: 15834230 DOI: 10.1097/01.alc.0000160083.72579.ec] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ethanol elicits strain-dependent blood pressure and baroreflex sensitivity responses in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats; the mechanisms underlying these divergent effects are not clear. The authors tested the hypothesis that differential neuronal actions of ethanol may account for these strain-dependent responses. To this end, the authors investigated the direct effects of ethanol on norepinephrine (NE)-containing neurons in the rostral ventrolateral medulla (RVLM), which modulate sympathetic neuronal activity, and on c-Jun-expressing neurons in the nucleus tractus solitarius (NTS), whose activity is inversely correlated with baroreflex sensitivity. METHODS In a newly developed model system in conscious, freely moving rats, the effect of intra-RVLM or intra-NTS ethanol was investigated on neuronal NE at the microinjection site (in vivo electrochemistry), blood pressure, heart rate, spontaneous baroreflex sensitivity, and c-Jun expression in the NTS. RESULTS Ethanol (1, 5, or 10 microg) microinjection into the RVLM elicited dose-dependent increases in RVLM NE and blood pressure in SHRs but not in WKY rats. Ethanol had no effect on the activity of the NE-containing neurons in the NTS of either strain. However, baroreflex dysfunction elicited by intra-NTS ethanol in conscious WKY rats was associated with enhanced expression of c-Jun in the NTS. CONCLUSIONS (1) Ethanol activation of the NE-containing neurons in the RVLM of SHRs contributes to the centrally mediated pressor response, (2) the NE-containing neurons in the NTS are not involved in ethanol-induced baroreflex dysfunction, and (3) direct activation of the c-Jun-containing neurons in the NTS is implicated in baroreflex dysfunction elicited by ethanol in normotensive rats.
Collapse
Affiliation(s)
- Guichu Li
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, 27858, USA
| | | | | |
Collapse
|
14
|
Vitela M, Herrera-Rosales M, Haywood JR, Mifflin SW. Baroreflex regulation of renal sympathetic nerve activity and heart rate in renal wrap hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R856-62. [PMID: 15793039 DOI: 10.1152/ajpregu.00620.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite its usefulness as a nongenetic model of hypertension, little information is available regarding baroreflex function in the Grollman, renal wrap model of hypertension in the rat. Baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) were studied in male, Sprague-Dawley rats hypertensive (HT) for 1 or 4-6 wk after unilateral nephrectomy and figure-8 ligature around the remaining kidney or normotensive (NT) after sham surgery. Rats were anesthetized with Inactin and RSNA, and HR was recorded during intravenous infusions of sodium nitroprusside or phenylephrine to lower or raise mean arterial pressure (MAP). Response curves were analyzed using a logistic sigmoid function. In 1- and 4-wk HT rats the midpoints of RSNA and HR reflex curves were shifted to the right (P < 0.05). Comparing NT to 1- or 4-wk HT rats, the gain of RSNA-MAP curves was no different; however, gain was reduced in the HR-MAP curves at both 1 and 4 wk in HT rats (P < 0.05). In anesthetized rats the HR range was small; therefore, MAP and HR were measured in conscious rats during intravenous injections of three doses of phenylephrine and three doses of sodium nitroprusside. Linear regressions revealed a reduced slope in both 1- and 4-wk HT rats compared with NT rats (P < 0.05). The results indicate that baroreflex curves are shifted to the right, to higher pressures, in hypertension. After 1-4 wk of hypertension the gain of baroreflex regulation of RSNA is not altered; however, the gain of HR regulation is reduced.
Collapse
Affiliation(s)
- M Vitela
- Dept. of Pharmacology, Mail Code 7764, Univ. of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
15
|
Hermann GE, Nasse JS, Rogers RC. Alpha-1 adrenergic input to solitary nucleus neurones: calcium oscillations, excitation and gastric reflex control. J Physiol 2004; 562:553-68. [PMID: 15539398 PMCID: PMC1665513 DOI: 10.1113/jphysiol.2004.076919] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nucleus of the solitary tract (NST) processes substantial visceral afferent input and sends divergent projections to a wide array of CNS targets. The NST is essential to the maintenance of behavioural and autonomic homeostasis and is the source, as well as the recipient, of considerable noradrenergic (NE) projections. The significance of NE projections from the NST to other CNS regions has long been appreciated, but the nature of NE action on NST neurones themselves, especially on the alpha-1 receptor subtype, is controversial. We used a combination of methodologies to establish, systematically, the effects and cellular basis of action of the alpha-1 agonist, phenylephrine (PHE), to control NST neurones responsible for vago-vagal reflex regulation of the stomach. Immunocytochemical and retrograde tracing studies verified that the area postrema, A2, A5, ventrolateral medulla and locus coeruleus regions are sources of catecholaminergic input to the NST. In vivo electrophysiological recordings showed that PHE activates physiologically identified, second-order gastric sensory NST neurones. In vivo microinjection of PHE onto NST neurones caused a significant reduction in gastric tone. Finally, in vitro calcium imaging studies revealed that PHE caused dramatic cytosolic calcium oscillations in NST neurones. These oscillations are probably the result of an interplay between agonist-induced and inositol 1,4,5-trisphosphate (IP(3))-mediated intracellular calcium release and Ca(2+)-ATPase control of intracellular calcium storage pumps. The oscillations persisted even in perfusions of zero calcium-EGTA Krebs solution suggesting that the calcium oscillation is mediated principally by intracellular calcium release-reuptake mechanisms. Cyclical activation of the NST may function to increase the responsiveness of these neurones to incoming afferent input (i.e., elevate the "gain"). An increase in gain of afferent input may cause an amplification of the response part of the reflex and help explain the powerful effects that alpha-1 agonists have in suppressing gastric motility and producing anorexia.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
16
|
Bruehl S, Chung OY. Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev 2004; 28:395-414. [PMID: 15341037 DOI: 10.1016/j.neubiorev.2004.06.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 01/14/2023]
Abstract
Endogenous pain regulatory system dysfunction appears to play a role in the maintenance of chronic pain. An important component of the pain regulatory process is the functional interaction between the cardiovascular and pain regulatory systems, which results in an association between elevated resting blood pressure (BP) and diminished acute pain sensitivity. This BP/pain sensitivity relationship is proposed to reflect a homeostatic feedback loop helping restore arousal levels in the presence of painful stimuli. Evidence is emerging that this normally adaptive BP/pain sensitivity relationship is significantly altered in chronic pain conditions, affecting responsiveness to both acute and chronic pain stimuli. Several mechanisms that may underlie this adaptive relationship in healthy individuals are overviewed, including endogenous opioid, noradrenergic, and baroreceptor-related mechanisms. Theoretical models are presented regarding how chronic pain-related alterations in the mechanisms above and increased pain facilatory system activity (central sensitization) may contribute to altered BP/pain sensitivity interactions in chronic pain. Clinical implications are discussed.
Collapse
Affiliation(s)
- Stephen Bruehl
- Department of Anesthesiology, School of Medicine, Vanderbilt University, 1211 Twenty-First Avenue South, Nashville, TN 37212, USA.
| | | |
Collapse
|
17
|
Ohno N, Tanaka T, Kita T, Kubo K, Shimada K, Yonetani Y, Konishi N, Nakashima T. Changes of brain endothelin levels and peripheral endothelin receptors by chronic cigarette smoke in spontaneously hypertensive rats. J Pharmacol Sci 2004; 94:287-96. [PMID: 15037814 DOI: 10.1254/jphs.94.287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present study was conducted to evaluate the contribution of endothelin (ET) to the pharmacodynamic response to chronic cigarette smoke in spontaneously hypertensive rats (SHR). The contribution of ET was studied consequent to the hemodynamic response following 8 weeks of cigarette smoke by determining the changes in tissue ET-1 content and ET receptors. The blood pressure (BP) at the early phase of smoking and the heart rate (HR) 24 h later were apparently reduced in SHR, while the HR at the early phase was transiently elevated in normotensive Wistar Kyoto (WKY) rats. Tissue ET-1 levels in the hypothalamus, striatum, and cortex of SHR were higher than those in WKY rats, and these higher levels in SHR were reduced by exposure to chronic cigarette smoke. The ET-1 contents in the medulla oblongata and midbrain of both strains were clearly increased by smoke exposure, although the levels of SHR and WKY rats were not different. In addition, the immunoreactivity of the ET type A receptor in the adrenal glands and type B receptor in the kidneys of SHR showed a different response to smoke exposure as compared to WKY rats. Our present findings suggest that the changes of ETs may relate to the pharmacodynamic effects of chronic cigarette smoke.
Collapse
Affiliation(s)
- Norikazu Ohno
- Department of Pharmacology, Nara Medical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|