1
|
Feitoza LFBB, White BJ, Drouillard JS. Molasses-Based Block Supplements for Cattle Fed Endophyte-Infected Tall Fescue ( Festuca arundinacea) Seed: Effects on Growth Performance, Circulating Biomarkers, Heat Stress, and Coccygeal Artery Diameter. Animals (Basel) 2025; 15:717. [PMID: 40076001 PMCID: PMC11899331 DOI: 10.3390/ani15050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Ergot alkaloids present in endophyte-infected tall fescue can cause a series of negative effects in exposed cattle. This study evaluated the effectiveness of molasses-based block supplements (MBSs) in alleviating vasoconstriction, which leads to reduced peripheral blood flow, heat stress, and impaired growth performance in cattle. A total of 100 crossbred steers were assigned to five treatment groups: a negative control with no tall fescue seed; a positive control with ergot-infected tall fescue seeds; and three MBS treatments, including a control block, a block containing menthol, and a block containing capsaicin. Blood flow was assessed through ultrasound imaging of the coccygeal artery, while thermal imaging was used to monitor body temperature regulation. Growth performance, feed intake, and blood biomarkers were also measured. Cattle consuming MBS had improved weight gain, greater arterial diameters, and enhanced thermoregulation compared to those without supplements. No significant differences were observed between the different MBS formulations. These results suggest that molasses-based block supplementation can help mitigate heat stress and poor growth performance associated with ergot alkaloid consumption, potentially providing a practical nutritional strategy for cattle producers managing cattle exposed to ergot alkaloids.
Collapse
Affiliation(s)
- Luis F. B. B. Feitoza
- Beef Cattle Institute, Kansas State University, Manhattan, KS 66506, USA; (L.F.B.B.F.); (B.J.W.)
| | - Brad J. White
- Beef Cattle Institute, Kansas State University, Manhattan, KS 66506, USA; (L.F.B.B.F.); (B.J.W.)
| | - James S. Drouillard
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
3
|
Zholos AV, Dryn DO, Melnyk MI. General anaesthesia-related complications of gut motility with a focus on cholinergic mechanisms, TRP channels and visceral pain. Front Physiol 2023; 14:1174655. [PMID: 37275228 PMCID: PMC10232893 DOI: 10.3389/fphys.2023.1174655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
General anesthesia produces multiple side effects. Notably, it temporarily impairs gastrointestinal motility following surgery and causes the so-called postoperative ileus (POI), a multifactorial and complex condition that develops secondary to neuromuscular failure and mainly affects the small intestine. There are currently limited medication options for POI, reflecting a lack of comprehensive understanding of the mechanisms involved in this complex condition. Notably, although acetylcholine is one of the major neurotransmitters initiating excitation-contraction coupling in the gut, cholinergic stimulation by prokinetic drugs is not very efficient in case of POI. Acetylcholine when released from excitatory motoneurones of the enteric nervous system binds to and activates M2 and M3 types of muscarinic receptors in smooth muscle myocytes. Downstream of these G protein-coupled receptors, muscarinic cation TRPC4 channels act as the major focal point of receptor-mediated signal integration, causing membrane depolarisation accompanied by action potential discharge and calcium influx via L-type Ca2+ channels for myocyte contraction. We have recently found that both inhalation (isoflurane) and intravenous (ketamine) anesthetics significantly inhibit this muscarinic cation current (termed mI CAT) in ileal myocytes, even when G proteins are activated directly by intracellular GTPγS, i.e., bypassing muscarinic receptors. Here we aim to summarize Transient Receptor Potential channels and calcium signalling-related aspects of the cholinergic mechanisms in the gut and visceral pain, discuss exactly how these may be negatively impacted by general anaesthetics, while proposing the receptor-operated TRPC4 channel as a novel molecular target for the treatment of POI.
Collapse
Affiliation(s)
- Alexander V. Zholos
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dariia O. Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mariia I. Melnyk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Dryn DO, Melnyk MI, Melanaphy D, Kizub IV, Johnson CD, Zholos AV. Bidirectional TRP/L Type Ca 2+ Channel/RyR/BK Ca Molecular and Functional Signaloplex in Vascular Smooth Muscles. Biomolecules 2023; 13:biom13050759. [PMID: 37238629 DOI: 10.3390/biom13050759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
TRP channels are expressed both in vascular myocytes and endothelial cells, but knowledge of their operational mechanisms in vascular tissue is particularly limited. Here, we show for the first time the biphasic contractile reaction with relaxation followed by a contraction in response to TRPV4 agonist, GSK1016790A, in a rat pulmonary artery preconstricted with phenylephrine. Similar responses were observed both with and without endothelium, and these were abolished by the TRPV4 selective blocker, HC067047, confirming the specific role of TRPV4 in vascular myocytes. Using selective blockers of BKCa and L-type voltage-gated Ca2+ channels (CaL), we found that the relaxation phase was inducted by BKCa activation generating STOCs, while subsequent slowly developing TRPV4-mediated depolarisation activated CaL, producing the second contraction phase. These results are compared to TRPM8 activation using menthol in rat tail artery. Activation of both types of TRP channels produces highly similar changes in membrane potential, namely slow depolarisation with concurrent brief hyperpolarisations due to STOCs. We thus propose a general concept of bidirectional TRP-CaL-RyR-BKCa molecular and functional signaloplex in vascular smooth muscles. Accordingly, both TRPV4 and TRPM8 channels enhance local Ca2+ signals producing STOCs via TRP-RyR-BKCa coupling while simultaneously globally engaging BKCa and CaL channels by altering membrane potential.
Collapse
Affiliation(s)
- Dariia O Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Mariia I Melnyk
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Donal Melanaphy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Igor V Kizub
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, Queen's University Belfast, Whitla Medical Building, Belfast BT9 7BL, UK
| | - Alexander V Zholos
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| |
Collapse
|
5
|
Li D, Li J, Hu J, Tang M, Xiu P, Guo Y, Chen T, Mu N, Wang L, Zhang X, Liang G, Wang H, Fan C. Nanomechanical Profiling of Aβ42 Oligomer-Induced Biological Changes in Single Hippocampus Neurons. ACS NANO 2023; 17:5517-5527. [PMID: 36881017 DOI: 10.1021/acsnano.2c10861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding how Aβ42 oligomers induce changes in neurons from a mechanobiological perspective has important implications in neuronal dysfunction relevant to neurodegenerative diseases. However, it remains challenging to profile the mechanical responses of neurons and correlate the mechanical signatures to the biological properties of neurons given the structural complexity of cells. Here, we quantitatively investigate the nanomechanical properties of primary hippocampus neurons upon exposure to Aβ42 oligomers at the single neuron level by using atomic force microscopy (AFM). We develop a method termed heterogeneity-load-unload nanomechanics (HLUN), which exploits the AFM force spectra in the whole loading-unloading cycle, allowing comprehensive profiling of the mechanical properties of living neurons. We extract four key nanomechanical parameters, including the apparent Young's modulus, cell spring constant, normalized hysteresis, and adhesion work, that serve as the nanomechanical signatures of neurons treated with Aβ42 oligomers. These parameters are well-correlated with neuronal height increase, cortical actin filament strengthening, and calcium concentration elevation. Thus, we establish an HLUN method-based AFM nanomechanical analysis tool for single neuron study and build an effective correlation between the nanomechanical profile of the single neurons and the biological effects triggered by Aβ42 oligomers. Our finding provides useful information on the dysfunction of neurons from the mechanobiological perspective.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiao Hu
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Mingjie Tang
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yunchang Guo
- Yihuang (Wuxi) Spectrum Measurement & Control Co., Ltd., Wuxi 214024, Jiangsu, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G1H9, Alberta, Canada
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Huabin Wang
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
6
|
Pagano E, Romano B, Cicia D, Iannotti FA, Venneri T, Lucariello G, Nanì MF, Cattaneo F, De Cicco P, D'Armiento M, De Luca M, Lionetti R, Lama S, Stiuso P, Zoppoli P, Falco G, Marchianò S, Fiorucci S, Capasso R, Di Marzo V, Borrelli F, Izzo AA. TRPM8 indicates poor prognosis in colorectal cancer patients and its pharmacological targeting reduces tumour growth in mice by inhibiting Wnt/β-catenin signalling. Br J Pharmacol 2023; 180:235-251. [PMID: 36168728 PMCID: PMC10092658 DOI: 10.1111/bph.15960] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential melastatin type-8 (TRPM8) is a cold-sensitive cation channel protein belonging to the TRP superfamily of ion channels. Here, we reveal the molecular mechanism of TRPM8 and its clinical relevance in colorectal cancer (CRC). EXPERIMENTAL APPROACH TRPM8 expression and its correlation with the survival rate of CRC patients was analysed. To identify the key pathways and genes related to TRPM8 high expression, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted in CRC patients. TRPM8 functional role was assessed by using Trpm8-/- mice in models of sporadic and colitis-associated colon cancer. TRPM8 pharmacological targeting by WS12 was evaluated in murine models of CRC. KEY RESULTS TRPM8 is overexpressed in colon primary tumours and in CD326+ tumour cell fraction. TRPM8 high expression was related to lower survival rate of CRC patients, Wnt-Frizzled signalling hyperactivation and adenomatous polyposis coli down-regulation. In sporadic and colitis-associated models of colon cancer, either absence or pharmacological desensitization of TRPM8 reduced tumour development via inhibition of the oncogenic Wnt/β-catenin signalling. TRPM8 pharmacological blockade reduced tumour growth in CRC xenograft mice by reducing the transcription of Wnt signalling regulators and the activation of β-catenin and its target oncogenes such as C-Myc and Cyclin D1. CONCLUSION AND IMPLICATIONS Human data provide valuable insights to propose TRPM8 as a prognostic marker with a negative predictive value for CRC patient survival. Animal experiments demonstrate TRPM8 involvement in colon cancer pathophysiology and its potential as a drug target for CRC.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio A Iannotti
- Institute of Biomolecular Chemistry ICB, CNR, Pozzuoli, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria D'Armiento
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marcello De Luca
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ruggiero Lionetti
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Stefania Lama
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Geppino Falco
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry ICB, CNR, Pozzuoli, Naples, Italy.,Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, Canada.,Centre de Recherche de l'Institut de Pneumologie et Cardiologie de l'Université Laval, Faculté de Médecine, Université Laval, Québec, Canada.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Philyppov IB, Sotkis GV, Sharopov BR, Danshyna AO, Yelyashov SI, Naidenov VG, Lyubanova OP, Shuba YM. Temperature-dependent contractility of rat tunica dartos muscle: contribution of cold, menthol-sensitive TRPM8. BBA ADVANCES 2022; 3:100069. [PMID: 37082258 PMCID: PMC10074839 DOI: 10.1016/j.bbadva.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tunica dartos smooth muscle (TDSM) lies beneath the scrotal skin, and its contraction leads to scrotum wrinkling upon cooling. However, neither the nature of TDSM cold-sensitivity nor the underlying molecular sensors are well understood. Here we have investigated the role of cold/menthol-sensitive TRPM8 channel in TDSM temperature-dependent contractility. The contraction of isolated male rat TDSM strips was studied by tensiometry. TRPM8 expression was assayed by RT-PCR and fluorescence immunochemistry. Isolated TDSM strips responded to cooling from 33 °C to 20 °C by enhancement of basal tension, and increase of the amplitude and duration of electric field stimulated (EFS) contractions. The effects of cold on basal tension, but not on EFS-contractions, could be 80% inhibited by TRPM8 blockers, capsazepine and BCTC [N-(4‑tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide], and could be partially mimicked by menthol. RT-PCR and immunolabeling showed TRPM8 mRNA and protein expression in TDSM cells with protein labelling being predominantly localized to intracellular compartments. Chemical castration of male rats consequent to the treatment with androgen receptor blocker, flutamide, led to the abrogation of cold effects on TDSM basal tension, but not on EFS-contractions, and to the disappearance of TRPM8 protein expression. We conclude that TRPM8 is involved in the maintenance of basal cold-induced TDSM tonus, but not in sympathetic nerve-mediated contractility, by acting as endoplasmic reticulum Ca2+ release channel whose expression in TDSM cells requires the presence of a functional androgen receptor. Thus, TRPM8 plays a crucial role in scrotal thermoregulation which is important for maintaining normal spermatogenesis and male fertility.
Collapse
|
8
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
9
|
Thapa D, Barrett B, Argunhan F, Brain SD. Influence of Cold-TRP Receptors on Cold-Influenced Behaviour. Pharmaceuticals (Basel) 2021; 15:ph15010042. [PMID: 35056099 PMCID: PMC8781072 DOI: 10.3390/ph15010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) channels, TRPA1 and TRPM8, are thermo-receptors that detect cold and cool temperatures and play pivotal roles in mediating the cold-induced vascular response. In this study, we investigated the role of TRPA1 and TRPM8 in the thermoregulatory behavioural responses to environmental cold exposure by measuring core body temperature and locomotor activity using a telemetry device that was surgically implanted in mice. The core body temperature of mice that were cooled at 4 °C over 3 h was increased and this was accompanied by an increase in UCP-1 and TRPM8 level as detected by Western blot. We then established an effective route, by which the TRP antagonists could be administered orally with palatable food. This avoids the physical restraint of mice, which is crucial as that could influence the behavioural results. Using selective pharmacological antagonists A967079 and AMTB for TRPA1 and TRPM8 receptors, respectively, we show that TRPM8, but not TRPA1, plays a direct role in thermoregulation response to whole body cold exposure in the mouse. Additionally, we provide evidence of increased TRPM8 levels after cold exposure which could be a protective response to increase core body temperature to counter cold.
Collapse
|
10
|
Fedinec AL, Liu J, Zhang R, Harsono M, Pourcyrous M, Parfenova H. The cold receptor TRPM8 activation leads to attenuation of endothelium-dependent cerebral vascular functions during head cooling. J Cereb Blood Flow Metab 2021; 41:2897-2906. [PMID: 34013806 PMCID: PMC8756482 DOI: 10.1177/0271678x211018035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Parfenova
- Helena Parfenova, Department of Physiology, University of Tennessee Health Science Center, 956 Court Avenue, Suite E332, Memphis, TN 38163, USA.
| |
Collapse
|
11
|
Wang G. Ligand-stereoselective allosteric activation of cold-sensing TRPM8 channels by an H-bonded homochiral menthol dimer with head-to-head or head-to-tail. Chirality 2021; 33:783-796. [PMID: 34596287 DOI: 10.1002/chir.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/07/2022]
Abstract
Both menthol and its analog WS-12 share the same hydrophobic intra-subunit binding pocket between a voltage-sensor-like domain and a TRP domain in a cold-sensing TRPM8 channel. However, unlike WS-12, menthol upregulates TRPM8 with a low efficacy but a high coefficient of a dose response at membrane hyperpolarization and with ligand stereoselectivity at membrane depolarization. The underlying mechanisms are unknown. Here, this in silico research suggested that the ligand-stereoselective sequential cooperativity between two menthol molecules in the WS-12 pocket is required for allosteric activation of TRPM8. Furthermore, two H-bonded homochiral menthol dimers with both head-to-head and head-to-tail can compete for the WS-12 site via non-covalent interactions. Although both dimers can form an H-bonding network with a voltage sensor S4 to disrupt a S3-S4 salt bridge in the voltage-sensor-like domain to release a "parking brake," only one dimer may drive channel opening by pushing a "gas pedal" in the TRP domain away from the S6 gate against S4. In this way, the efficacy is decreased, but the cooperativity is increased for the menthol effect at membrane hyperpolarization. Therefore, this review may extend a new pathway for ligand-stereoselective allosteric regulation of other voltage- and ligand-gated ion channels by menthol.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Drug Research and Development, Institute of Biophysical Medico-chemistry, Reno, NV, USA
| |
Collapse
|
12
|
TRPM8 facilitates proliferation and immune evasion of esophageal cancer cells. Biosci Rep 2020; 39:BSR20191878. [PMID: 31519770 PMCID: PMC6822499 DOI: 10.1042/bsr20191878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is seen with increasing incidence, but the underlying mechanism of esophageal cancer is still unknown. Transient receptor potential melastatin (TRPM) is non-selective cation channels. It has been verified that TRPM channels play crucial roles in development and progression of multiple tumors. Increasing studies have shown that TRPM8, a member of TRPM channels, promotes growth of tumors. However, it is still unclear whether TRPM8 has biological effect on esophageal cancer. In the current work, we found that TRPM8 was overexpressed in esophageal cancer samples and cell lines. Further investigation revealed that TRPM8 promoted proliferation of esophageal cancer cells. Next, the co-incubation assay including EC109 cells and CD8+ T cells revealed that TRPM8 overexpression and TRPM8 agonist reduced the cytotoxic effect of CD8+ T cell on esophageal cancer cells. Finally, we explored the mechanism and found that calcineurin-nuclear factor of activated T cells 3 (NFATc3) pathway contributed to the expression of programmed death ligand 1 (PD-L1) induced by TRPM8 overexpression and TRPM8 agonist, which might lead to immune evasion of esophageal cancer cells. These findings uncovered the crucial role of TRPM8 in the pathogenesis of esophageal cancer.
Collapse
|
13
|
Silva H. Current Knowledge on the Vascular Effects of Menthol. Front Physiol 2020; 11:298. [PMID: 32317987 PMCID: PMC7154148 DOI: 10.3389/fphys.2020.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Menthol is a monoterpene alcohol, widely used in several food and healthcare products for its particular odor and flavor. For some decades, menthol has been known to act on the vasculature directly in the endothelium and vascular smooth muscle, with recent studies showing that it also evokes an indirect vascular response via sensory fibers. The mechanisms underlying menthol's vascular action are complex due to the diversity of cellular targets, to the interplay between signaling pathways and to the variability in terms of response. Menthol can evoke either a perfusion increase or decrease in vivo in different vascular territories, an observation that warrants a critical discussion. Menthol vascular actions in vivo seem to depend on whether the vascular territory under analysis has been directly provoked with menthol or is located deep/distant to the application site. Menthol increases perfusion of directly provoked skin regions due to a complex interplay of increased nitric oxide (NO), endothelium-derived hyperpolarization factors (EDHFs) and sensory nerve responses. In non-provoked vascular beds menthol decreases perfusion which might be attributed to heat-conservation sympathetically-mediated vasoconstriction, although an increase in tissue evaporative heat loss due the formulation ethanol may also play a role. There is increasing evidence that several of menthol's cellular targets are involved in cardiovascular diseases, such as hypertension. Thus menthol and pharmacologically-similar drugs can play important preventive and therapeutic roles, which merits further investigation.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS - Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Lisboa, Portugal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
1,8-Cineole blocks voltage-gated L-type calcium channels in tracheal smooth muscle. Pflugers Arch 2018; 470:1803-1813. [DOI: 10.1007/s00424-018-2201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
15
|
Mu YP, Lin DC, Zheng SY, Jiao HX, Sham JSK, Lin MJ. Transient Receptor Potential Melastatin-8 Activation Induces Relaxation of Pulmonary Artery by Inhibition of Store-Operated Calcium Entry in Normoxic and Chronic Hypoxic Pulmonary Hypertensive Rats. J Pharmacol Exp Ther 2018; 365:544-555. [PMID: 29622593 DOI: 10.1124/jpet.117.247320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by enhanced vasoconstriction and vascular remodeling, which are attributable to the alteration of Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). It is well established that store-operated Ca2+ entry (SOCE) is augmented in PASMCs during PH and that it plays a crucial role in PH development. Our previous studies showed that the melastatin-related transient receptor potential 8 (TRPM8) is down-regulated in PASMCs of PH animal models, and activation of TRPM8 causes relaxation of pulmonary arteries (PAs). However, the mechanism of TRPM8-induced PA relaxation is unclear. Here we examined the interaction of TRPM8 and SOCE in PAs and PASMCs of normoxic and chronic hypoxic pulmonary hypertensive (CHPH) rats, a model of human group 3 PH. We found that TRPM8 was down-regulated and TRPM8-mediated cation entry was reduced in CHPH-PASMCs. Activation of TRPM8 with icilin caused concentration-dependent relaxation of cyclopiazonic acid (CPA) and endothelin-1 contracted endothelium-denuded PAs, and the effect was abolished by the SOCE antagonist Gd3+ Application of icilin to PASMCs suppressed CPA-induced Mn2+ quenching and Ca2+ entry, which was reversed by the TRPM8 antagonist N-(3-aminopropyl)-2-([(3-methylphenyl)methyl])-oxy-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB). Moreover, the inhibitory effects of icilin on SOCE in PA and PASMCs of CHPH rats were significantly augmented due to enhanced SOCE activity in PH. Our results, therefore, demonstrated a novel mechanism of TRPM8-mediated inhibition of SOCE in pulmonary vasculature. Because SOCE is important for vascular remodeling and enhanced vasoconstriction, down-regulation of TRPM8 in PASMCs of CHPH rats may minimize its inhibitory influence to allow unimpeded SOCE activity for PH development.
Collapse
Affiliation(s)
- Yun-Ping Mu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Si-Yi Zheng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Hai-Xia Jiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - James S K Sham
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| |
Collapse
|
16
|
Gunaratne GS, Yahya NA, Dosa PI, Marchant JS. Activation of host transient receptor potential (TRP) channels by praziquantel stereoisomers. PLoS Negl Trop Dis 2018; 12:e0006420. [PMID: 29668703 PMCID: PMC5927461 DOI: 10.1371/journal.pntd.0006420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/30/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
The anthelmintic praziquantel (±PZQ) serves as a highly effective antischistosomal therapy. ±PZQ causes a rapid paralysis of adult schistosome worms and deleterious effects on the worm tegument. In addition to these activities against the parasite, ±PZQ also modulates host vascular tone in blood vessels where the adult worms reside. In resting mesenteric arteries ±PZQ causes a constriction of basal tone, an effect mediated by (R)-PZQ activation of endogenous serotoninergic G protein coupled receptors (GPCRs). Here, we demonstrate a novel vasodilatory action of ±PZQ in mesenteric vessels that are precontracted by high potassium-evoked depolarization, an effect previously reported to be associated with agonists of the transient receptor potential melastatin 8 channel (TRPM8). Pharmacological profiling a panel of 17 human TRPs demonstrated ±PZQ activity against a subset of human TRP channels. Several host TRP channels (hTRPA1, hTRPC3, hTRPC7) were activated by both (R)-PZQ and (S)-PZQ over a micromolar range whereas hTRPM8 showed stereoselective activation by (S)-PZQ. The relaxant effect of ±PZQ in mesenteric arteries was caused by (S)-PZQ, and mimicked by TRPM8 agonists. However, persistence of both (S)-PZQ and TRPM8 agonist evoked vessel relaxation in TRPM8 knockout tissue suggested that canonical TRPM8 does not mediate this (S)-PZQ effect. We conclude that (S)-PZQ is vasoactive over the micromolar range in mesenteric arteries although the molecular mediators of this effect remain to be identified. These data expand our knowledge of the polypharmacology and host vascular efficacy of this clinically important anthelmintic.
Collapse
Affiliation(s)
- Gihan S. Gunaratne
- Department of Pharmacology, University of Minnesota, Minneapolis, United States of America
| | - Nawal A. Yahya
- Department of Pharmacology, University of Minnesota, Minneapolis, United States of America
| | - Peter I. Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, United States of America
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States of America
| |
Collapse
|
17
|
Li C, Li J, Xiong X, Liu Y, Lv Y, Qin S, Liu D, Wei R, Ruan X, Zhang J, Xu L, Wang X, Chen J, Zhang Y, Zheng L. TRPM8 activation improves energy expenditure in skeletal muscle and exercise endurance in mice. Gene 2018; 641:111-116. [DOI: 10.1016/j.gene.2017.10.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
18
|
Ewanchuk BW, Allan ERO, Warren AL, Ramachandran R, Yates RM. The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the T-cell response. FASEB J 2017; 32:1236-1249. [PMID: 29114087 DOI: 10.1096/fj.201700552r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthetic supercooling drug, icilin, and its primary receptor target, the cation channel transient receptor potential (TRP) melastatin-8 (TRPM8), have been described as potent negative regulators of inflammation in the colon. The aim of this study was to determine whether the anti-inflammatory action of icilin could potentially be used to treat autoimmune neuroinflammatory disorders, such as multiple sclerosis (MS). During experimental autoimmune encephalomyelitis (EAE)-a CD4+ T cell-driven murine model of MS-we found that both wild-type (WT) and TRPM8-deficient EAE mice were protected from disease progression during icilin treatment, as evidenced by delays in clinical onset and reductions in neuroinflammation. In vitro, icilin potently inhibited the proliferation of murine and human CD4+ T cells, with the peripheral expansion of autoantigen-restricted T cells similarly diminished by the administration of icilin in mice. Attenuation of both TRPM8-/- and TRP ankyrin-1-/- T-cell proliferation by icilin was consistent with the WT phenotype, which suggests a mechanism that is independent of these channels. In addition, icilin treatment altered the expressional profile of activated CD4+ T cells to one that was indicative of restricted effector function and limited neuroinflammatory potential. These findings identify a potent anti-inflammatory role for icilin in lymphocyte-mediated neuroinflammation and highlight clear pleiotropic effects of the compound beyond classic TRP channel activation.-Ewanchuk, B. W., Allan, E. R. O., Warren, A. L., Ramachandran, R., Yates, R. M. The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the T-cell response.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Euan R O Allan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy L Warren
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Oz M, El Nebrisi EG, Yang KHS, Howarth FC, Al Kury LT. Cellular and Molecular Targets of Menthol Actions. Front Pharmacol 2017; 8:472. [PMID: 28769802 PMCID: PMC5513973 DOI: 10.3389/fphar.2017.00472] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 02/04/2023] Open
Abstract
Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Department of Basic Medical Sciences, College of Medicine, Qatar UniversityDoha, Qatar
| | - Eslam G El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Keun-Hang S Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman UniversityOrange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed UniversityAbu Dhabi, United Arab Emirates
| |
Collapse
|