1
|
Loke YH, Yildiran IN, Capuano F, Balaras E, Olivieri L. Tetralogy of Fallot regurgitation energetics and kinetics: an intracardiac flow analysis of the right ventricle using computational fluid dynamics. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1135-1147. [PMID: 38668927 DOI: 10.1007/s10554-024-03084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 06/05/2024]
Abstract
Repaired Tetralogy of Fallot (rTOF) patients suffer from pulmonary regurgitation and may require pulmonary valve replacement (PVR). Cardiac magnetic resonance imaging (cMRI) guides therapy, but conventional measurements do not quantify the intracardiac flow effects from pulmonary regurgitation or PVR. This study investigates intracardiac flow parameters of the right ventricle (RV) of rTOF by computational fluid dynamics (CFD). cMRI of rTOF patients and controls were retrospectively included. Feature-tracking captured RV endocardial contours from long-axis/short-axis cine. Ventricular motion was reconstructed via diffeomorphic mapping, serving as domain boundary for CFD simulations. Vorticity (1/s), viscous energy loss (ELoss, mJ/L) and turbulent kinetic energy (TKE, mJ/L) were quantified in RV outflow tract (RVOT) and RV inflow. These parameters were normalized against total RV kinetic energy (KE) and RV inflow vorticity to derive dimensionless metrics. Vorticity contours by Q-criterion were qualitatively compared. rTOF patients (n = 15) had mean regurgitant fraction 38 ± 12% and RV size 162 ± 35 mL/m2. Compared to controls (n = 12), rTOF had increased RVOT vorticity (142.6 ± 75.6/s vs. 40.4 ± 11.8/s, p < 0.0001), Eloss (55.6 ± 42.5 vs. 5.2 ± 4.4 mJ/L, p = 0.0004), and TKE (5.7 ± 5.9 vs. 0.84 ± 0.46 mJ/L, p = 0.0003). After PVR, there was decrease in normalized RVOT Eloss/TKE (p = 0.0009, p = 0.029) and increase in normalized tricuspid inflow vorticity/KE (p = 0.0136, p = 0.043), corresponding to reorganization of the "donut"-shaped tricuspid ring-vortex. The intracardiac flow in rTOF patients can be simulated to determine the impact of PVR and improve the clinical indications guided by cardiac imaging.
Collapse
Affiliation(s)
- Yue-Hin Loke
- Department of Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Ibrahim N Yildiran
- Laboratory for Computational Physics and Fluid Mechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| | - Francesco Capuano
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya . BarcelonaTech (UPC), Barcelona, Spain
| | - Elias Balaras
- Laboratory for Computational Physics and Fluid Mechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| | - Laura Olivieri
- The Heart and Vascular Institute, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Brown AL, Sexton ZA, Hu Z, Yang W, Marsden AL. Computational approaches for mechanobiology in cardiovascular development and diseases. Curr Top Dev Biol 2024; 156:19-50. [PMID: 38556423 DOI: 10.1016/bs.ctdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The cardiovascular development in vertebrates evolves in response to genetic and mechanical cues. The dynamic interplay among mechanics, cell biology, and anatomy continually shapes the hydraulic networks, characterized by complex, non-linear changes in anatomical structure and blood flow dynamics. To better understand this interplay, a diverse set of molecular and computational tools has been used to comprehensively study cardiovascular mechanobiology. With the continual advancement of computational capacity and numerical techniques, cardiovascular simulation is increasingly vital in both basic science research for understanding developmental mechanisms and disease etiologies, as well as in clinical studies aimed at enhancing treatment outcomes. This review provides an overview of computational cardiovascular modeling. Beginning with the fundamental concepts of computational cardiovascular modeling, it navigates through the applications of computational modeling in investigating mechanobiology during cardiac development. Second, the article illustrates the utility of computational hemodynamic modeling in the context of treatment planning for congenital heart diseases. It then delves into the predictive potential of computational models for elucidating tissue growth and remodeling processes. In closing, we outline prevailing challenges and future prospects, underscoring the transformative impact of computational cardiovascular modeling in reshaping cardiovascular science and clinical practice.
Collapse
Affiliation(s)
- Aaron L Brown
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Zachary A Sexton
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Zinan Hu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
3
|
Avesani M, Jalal Z, Friedberg MK, Villemain O, Venet M, Di Salvo G, Thambo JB, Iriart X. Adverse remodelling in tetralogy of Fallot: From risk factors to imaging analysis and future perspectives. Hellenic J Cardiol 2024; 75:48-59. [PMID: 37495104 DOI: 10.1016/j.hjc.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Although contemporary outcomes of initial surgical repair of tetralogy of Fallot (TOF) are excellent, the survival of adult patients remains significantly lower than that of the normal population due to the high incidence of heart failure, ventricular arrhythmias, and sudden cardiac death. The underlying mechanisms are only partially understood but involve an adverse biventricular response, so-called remodelling, to key stressors such as right ventricular (RV) pressure-and/or volume-overload, myocardial fibrosis, and electro-mechanical dyssynchrony. In this review, we explore risk factors and mechanisms of biventricular remodelling, from histological to electro-mechanical aspects, and the role of imaging in their assessment. We discuss unsolved challenges and future directions to better understand and treat the long-term sequelae of this complex congenital heart disease.
Collapse
Affiliation(s)
- Martina Avesani
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France; Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Zakaria Jalal
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Mark K Friedberg
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maeyls Venet
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanni Di Salvo
- Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Jean-Benoît Thambo
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Xavier Iriart
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France.
| |
Collapse
|
4
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
5
|
Brown AL, Gerosa FM, Wang J, Hsiai T, Marsden AL. Recent advances in quantifying the mechanobiology of cardiac development via computational modeling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100428. [PMID: 36583220 PMCID: PMC9794182 DOI: 10.1016/j.cobme.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mechanical forces are essential for coordinating cardiac morphogenesis, but much remains to be discovered about the interactions between mechanical forces and the mechanotransduction pathways they activate. Due to the elaborate and fundamentally multi-physics and multi-scale nature of cardiac mechanobiology, a complete understanding requires multiple experimental and analytical techniques. We identify three fundamental tools used in the field to probe these interactions: high resolution imaging, genetic and molecular analysis, and computational modeling. In this review, we focus on computational modeling and present recent studies employing this tool to investigate the mechanobiological pathways involved with cardiac development. These works demonstrate that understanding the detailed spatial and temporal patterns of biomechanical forces is crucial to building a comprehensive understanding of mechanobiology during cardiac development, and that computational modeling is an effective and efficient tool for obtaining such detail. In this context, multidisciplinary studies combining all three tools present the most compelling results.
Collapse
Affiliation(s)
- Aaron L. Brown
- Stanford University, Department of Mechanical Engineering, Stanford, USA, CA, 94305
| | - Fannie M. Gerosa
- Stanford University, Department of Pediatrics, Stanford, USA, CA 94305
- Stanford University, Institute for Computational & Mathematical Engineering, Stanford, USA, CA 94305
| | - Jing Wang
- University of California Los Angeles, Department of Bioengineering, Los Angeles, CA 90095
| | - Tzung Hsiai
- University of California Los Angeles, Department of Bioengineering, Los Angeles, CA 90095
- University of California Los Angeles, Division of Cardiology, Los Angeles, CA 90095
| | - Alison L. Marsden
- Stanford University, Department of Mechanical Engineering, Stanford, USA, CA, 94305
- Stanford University, Department of Pediatrics, Stanford, USA, CA 94305
- Stanford University, Institute for Computational & Mathematical Engineering, Stanford, USA, CA 94305
- Stanford University, Department of Bioengineering, Stanford, USA, CA 94305
| |
Collapse
|
6
|
Fluid Mechanical Effects of Fetal Aortic Valvuloplasty for Cases of Critical Aortic Stenosis with Evolving Hypoplastic Left Heart Syndrome. Ann Biomed Eng 2023:10.1007/s10439-023-03152-x. [PMID: 36780051 DOI: 10.1007/s10439-023-03152-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023]
Abstract
Fetuses with critical aortic stenosis (FAS) are at high risk of progression to HLHS by the time of birth (and are thus termed "evolving HLHS"). An in-utero catheter-based intervention, fetal aortic valvuloplasty (FAV), has shown promise as an intervention strategy to circumvent the progression, but its impact on the heart's biomechanics is not well understood. We performed patient-specific computational fluid dynamic (CFD) simulations based on 4D fetal echocardiography to assess the changes in the fluid mechanical environment in the FAS left ventricle (LV) directly before and 2 days after FAV. Echocardiograms of five FAS cases with technically successful FAV were retrospectively analysed. FAS compromised LV stroke volume and ejection fraction, but FAV rescued it significantly. Calculations to match simulations to clinical measurements showed that FAV approximately doubled aortic valve orifice area, but it remained much smaller than in healthy hearts. Diseased LVs had mildly stenotic mitral valves, which generated fast and narrow diastolic mitral inflow jet and vortex rings that remained unresolved directly after FAV. FAV further caused aortic valve damage and high-velocity regurgitation. The high-velocity aortic regurgitation jet and vortex ring caused a chaotic flow field upon impinging the apex, which drastically exacerbated the already high energy losses and poor flow energy efficiency of FAS LVs. Two days after the procedure, FAV did not alter wall shear stress (WSS) spatial patterns of diseased LV but elevated WSS magnitudes, and the poor blood turnover in pre-FAV LVs did not significantly improve directly after FAV. FAV improved FAS LV's flow function, but it also led to highly chaotic flow patterns and excessively high energy losses due to the introduction of aortic regurgitation directly after the intervention. Further studies analysing the effects several weeks after FAV are needed to understand the effects of such biomechanics on morphological development.
Collapse
|
7
|
Gómez O, Nogué L, Soveral I, Guirado L, Izquierdo N, Pérez-Cruz M, Masoller N, Escobar MC, Sanchez-de-Toledo J, Martínez-Crespo JM, Bennasar M, Crispi F. Cord blood cardiovascular biomarkers in tetralogy of fallot and D-transposition of great arteries. Front Pediatr 2023; 11:1151814. [PMID: 37187588 PMCID: PMC10175815 DOI: 10.3389/fped.2023.1151814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Previous reports suggest that cord blood biomarkers could serve as a prognostic tool for conotruncal congenital heart defects (CHD). We aimed to describe the cord blood profile of different cardiovascular biomarkers in a prospective series of fetuses with tetralogy of Fallot (ToF) and D-transposition of great arteries (D-TGA) and to explore their correlation with fetal echocardiography and perinatal outcome. Methods A prospective cohort study (2014-2019), including fetuses with isolated ToF and D-TGA and healthy controls, was conducted at two tertiary referral centers for CHD in Barcelona. Obstetric ultrasound and fetal echocardiography were performed in the third trimester and cord blood was obtained at delivery. Cord blood concentrations of N-terminal precursor of B-type natriuretic peptide, Troponin I, transforming growth factorβ (TGFβ), placental growth factor, and soluble fms-like tyrosine kinase-1 were determined. Results Thirty-four fetuses with conotruncal-CHD (22 ToF and 12 D-TGA) and 36 controls were included. ToF-fetuses showed markedly increased cord blood TGFβ (24.9 ng/ml (15.6-45.3) vs. normal heart 15.7 ng/ml (7.2-24.3) vs. D-TGA 12.6 ng/ml (8.7-37.9); P = 0.012). These results remained statistically significant even after adjusting for maternal body mass index, birth weight and mode of delivery. TGFß levels showed a negative correlation with the pulmonary valve diameter z-score at fetal echocardiography (r = -0.576, P = 0.039). No other differences were found in the rest of cord blood biomarkers among the study populations. Likewise, no other significant correlations were identified between cardiovascular biomarkers, fetal echocardiography and perinatal outcome. Conclusions This study newly describes increased cord blood TGFβ concentrations in ToF compared to D-TGA and normal fetuses. We also demonstrate that TGFβ levels correlate with the severity of right ventricle outflow obstruction. These novel findings open a window of research opportunities on new prognostic and potential preventive strategies.
Collapse
Affiliation(s)
- Olga Gómez
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Fetal Medicine Department, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Correspondence: Olga Gómez
| | - Laura Nogué
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Iris Soveral
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- Department of Obstetrics, Hospital General de Hospitalet, Barcelona, Spain
| | - Laura Guirado
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Nora Izquierdo
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Miriam Pérez-Cruz
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- Sant Joan de Déu Research Institute (IRSJD), Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network, Carlos III Health Institute, Madrid, Spain
| | - Narcís Masoller
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - María Clara Escobar
- Sant Joan de Déu Research Institute (IRSJD), Barcelona, Spain
- Pediatric Cardiology Department, Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
| | - Joan Sanchez-de-Toledo
- Sant Joan de Déu Research Institute (IRSJD), Barcelona, Spain
- Pediatric Cardiology Department, Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
| | - Josep Maria Martínez-Crespo
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Fetal Medicine Department, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mar Bennasar
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Fàtima Crispi
- BCNatal Fetal Medicine Research Center, Sant Joan de Déu Hospital, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Fetal Medicine Department, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
8
|
Althali NJ, Hentges KE. Genetic insights into non-syndromic Tetralogy of Fallot. Front Physiol 2022; 13:1012665. [PMID: 36277185 PMCID: PMC9582763 DOI: 10.3389/fphys.2022.1012665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 10/17/2023] Open
Abstract
Congenital heart defects (CHD) include structural abnormalities of the heart or/and great vessels that are present at birth. CHD affects around 1% of all newborns worldwide. Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital cardiac abnormality, affecting three out of every 10,000 live infants with a prevalence rate of 5-10% of all congenital cardiac defects. The four hallmark characteristics of TOF are: right ventricular hypertrophy, pulmonary stenosis, ventricular septal defect, and overriding aorta. Approximately 20% of cases of TOF are associated with a known disease or chromosomal abnormality, with the remaining 80% of TOF cases being non-syndromic, with no known aetiology. Relatively few TOF patients have been studied, and little is known about critical causative genes for non-syndromic TOF. However, rare genetic variants have been identified as significant risk factors for CHD, and are likely to cause some cases of TOF. Therefore, this review aims to provide an update on well-characterized genes and the most recent variants identified for non-syndromic TOF.
Collapse
Affiliation(s)
- Nouf J. Althali
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Biology Department, Science College, King Khalid University, Abha, Saudi Arabia
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Wong HS, Wiputra H, Tulzer A, Tulzer G, Yap CH. Fluid Mechanics of Fetal Left Ventricle During Aortic Stenosis with Evolving Hypoplastic Left Heart Syndrome. Ann Biomed Eng 2022; 50:1158-1172. [PMID: 35731342 PMCID: PMC9363377 DOI: 10.1007/s10439-022-02990-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
In cases of fetal aortic stenosis and evolving Hypoplastic Left Heart Syndrome (feHLHS), aortic stenosis is associated with specific abnormalities such as retrograde or bidirectional systolic transverse arch flow. Many cases progressed to hypoplastic left heart syndrome (HLHS) malformation at birth, but fetal aortic valvuloplasty can prevent the progression in many cases. Since both disease and intervention involve drastic changes to the biomechanical environment, in-vivo biomechanics likely play a role in inducing and preventing disease progression. However, the fluid mechanics of feHLHS is not well-characterized. Here, we conduct patient-specific echocardiography-based flow simulations of normal and feHLHS left ventricles (LV), to understand the essential fluid dynamics distinction between the two cohorts. We found high variability across feHLHS cases, but also the following unifying features. Firstly, feHLHS diastole mitral inflow was in the form of a narrowed and fast jet that impinged onto the apical region, rather than a wide and gentle inflow in normal LVs. This was likely due to a malformed mitral valve with impaired opening dynamics. This altered inflow caused elevated vorticity dynamics and wall shear stresses (WSS) and reduced oscillatory shear index at the apical zone rather than mid-ventricle. Secondly, feHLHS LV also featured elevated systolic and diastolic energy losses, intraventricular pressure gradients, and vortex formation numbers, suggesting energy inefficiency of flow and additional burden on the LV. Thirdly, feHLHS LV had poor blood turnover, suggesting a hypoxic environment, which could be associated with endocardial fibroelastosis that is often observed in these patients.
Collapse
Affiliation(s)
- Hong Shen Wong
- Department of Bioengineering, Imperial College London, London, UK
| | - Hadi Wiputra
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Andreas Tulzer
- Department of Pediatric Cardiology, Children's Heart Center Linz, Kepler University Hospital, Linz, Austria
| | - Gerald Tulzer
- Department of Pediatric Cardiology, Children's Heart Center Linz, Kepler University Hospital, Linz, Austria
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
10
|
Salman HE, Kamal RY, Hijazi ZM, Yalcin HC. Hemodynamic and Structural Comparison of Human Fetal Heart Development Between Normally Growing and Hypoplastic Left Heart Syndrome-Diagnosed Hearts. Front Physiol 2022; 13:856879. [PMID: 35399257 PMCID: PMC8984126 DOI: 10.3389/fphys.2022.856879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital heart defects (CHDs) affect a wide range of societies with an incidence rate of 1.0–1.2%. These defects initiate at the early developmental stage and result in critical health disorders. Although genetic factors play a role in the formation of CHDs, the occurrence of cases in families with no history of CHDs suggests that mechanobiological forces may also play a role in the initiation and progression of CHDs. Hypoplastic left heart syndrome (HLHS) is a critical CHD, which is responsible for 25–40% of all prenatal cardiac deaths. The comparison of healthy and HLHS hearts helps in understanding the main hemodynamic differences related to HLHS. Echocardiography is the most common imaging modality utilized for fetal cardiac assessment. In this study, we utilized echocardiographic images to compare healthy and HLHS human fetal hearts for determining the differences in terms of heart chamber dimensions, valvular flow rates, and hemodynamics. The cross-sectional areas of chamber dimensions are determined from 2D b-mode ultrasound images. Valvular flow rates are measured via Doppler echocardiography, and hemodynamic quantifications are performed with the use of computational fluid dynamics (CFD) simulations. The obtained results indicate that cross-sectional areas of the left and right sides of the heart are similar for healthy fetuses during gestational development. The left side of HLHS heart is underdeveloped, and as a result, the hemodynamic parameters such as flow velocity, pressure, and wall shear stress (WSS) are significantly altered compared to those of healthy hearts.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Reema Yousef Kamal
- Pediatric Cardiology Division, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ziyad M. Hijazi
- Sidra Heart Center, Sidra Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Huseyin Cagatay Yalcin
- Biomedical Research Center, Qatar University, Doha, Qatar
- *Correspondence: Huseyin Cagatay Yalcin,
| |
Collapse
|
11
|
Song X, Cao H, Hong L, Zhang L, Li M, Shi J, Liu J, Ma J, Cui L, Zhang Y, Li Y, Lv Q, Xie M. Ventricular Myocardial Deformation in Fetuses With Tetralogy of Fallot: A Necessary Field of Investigation. Front Cardiovasc Med 2021; 8:764676. [PMID: 34957253 PMCID: PMC8708933 DOI: 10.3389/fcvm.2021.764676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Tetralogy of Fallot (TOF) is one of the most common cyanotic congenital heart defects (CHDs). The patterns of fetal myocardial deformations in TOF have not been well-studied. This study aimed to assess biventricular myocardial deformations in fetuses with TOF compared with normal fetuses. Methods: A retrospective cohort study of fetuses with TOF and gestational age (GA)-matched controls was conducted at a single tertiary referral center from 2014 to 2020. All enrolled fetuses underwent detailed echocardiography, and four-chamber video-clips were recorded and analyzed offline for deformation assessment by using two-dimensional speckle tracking echocardiography (2D-STE). Comparisons for baseline characteristics, cardiac morphological measurements (ventricular, atrial, and great arterial diameters or ratios, global sphericity index), systolic function parameters [ejection fraction (EF), fractional area change (FAC)], and strain parameters [global longitudinal strain (GLS), global longitudinal strain rate in systole and diastole (GLSRs, GLSRd)] were performed between fetuses with TOF and GA-matched controls. Results: Fifty-two fetuses with TOF and 52 GA-matched controls were enrolled in this study. Fetuses with TOF exhibited similar left ventricular (LV) EF (58.51 ± 5.11% vs. 57.59 ± 5.38%, P = 0.16) and right ventricular (RV) FAC (43.64 ± 2.89% vs. 44.27 ± 3.04%, P = 0.25), compared to normal fetuses. While, in deformational analysis, TOF fetuses demonstrated significantly lower LV and RV GLS values (−22.57 ± 2.91% vs. −27.39 ± 4.38%, P < 0.001 for LV GLS; −24.27 ± 3.18% vs. −28.71 ± 4.48%, P < 0.001 for RV GLS). Both LV GLS (r = −0.518, P < 0.001) and RV GLS (r = −0.534, P < 0.001) were found negatively correlated with the aortic valve-to-pulmonary valve diameter ratio (AV:PV ratio). Z-scores of PV annulus and main pulmonary artery (MPA) also had positive correlation with LV and RV GLS, respectively. Conclusions: Decreased biventricular myocardial deformations can appear even in fetuses with TOF with normal systolic ventricular function. Both LV and RV GLS values are correlated with the severity of right ventricular outflow tract obstruction. It indicates 2D-STE may be a more sensitive tool to assess fetal cardiac function than the conventional echocardiographic methods.
Collapse
Affiliation(s)
- Xiaoyan Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Haiyan Cao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liu Hong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Meng Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Juanjuan Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Ma
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Cui
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yi Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
12
|
Salman HE, Kamal RY, Yalcin HC. Numerical Investigation of the Fetal Left Heart Hemodynamics During Gestational Stages. Front Physiol 2021; 12:731428. [PMID: 34566694 PMCID: PMC8458957 DOI: 10.3389/fphys.2021.731428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Flow-driven hemodynamic forces on the cardiac tissues have critical importance, and have a significant role in the proper development of the heart. These mechanobiological mechanisms govern the cellular responses for the growth and remodeling of the heart, where the altered hemodynamic environment is believed to be a major factor that is leading to congenital heart defects (CHDs). In order to investigate the mechanobiological development of the normal and diseased hearts, identification of the blood flow patterns and wall shear stresses (WSS) on these tissues are required for an accurate hemodynamic assessment. In this study, we focus on the left heart hemodynamics of the human fetuses throughout the gestational stages. Computational fetal left heart models are created for the healthy fetuses using the ultrasound images at various gestational weeks. Realistic inflow boundary conditions are implemented in the models using the Doppler ultrasound measurements for resolving the specific blood flow waveforms in the mitral valve. Obtained results indicate that WSS and vorticity levels in the fetal left heart decrease with the development of the fetus. The maximum WSS around the mitral valve is determined around 36 Pa at the gestational week of 16. This maximum WSS decreases to 11 Pa at the gestational week of 27, indicating nearly three-times reduction in the peak shear stress. These findings reveal the highly dynamic nature of the left heart hemodynamics throughout the development of the human fetus and shed light into the relevance of hemodynamic environment and development of CHDs.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Reema Yousef Kamal
- Pediatric Cardiology Division, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
13
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
14
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
15
|
Wiputra H, Lim M, Yap CH. A transition point for the blood flow wall shear stress environment in the human fetal left ventricle during early gestation. J Biomech 2021; 120:110353. [PMID: 33730564 DOI: 10.1016/j.jbiomech.2021.110353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022]
Abstract
Development of the fetal heart is a fascinating process that involves a tremendous amount of growth. Here, we performed image-based flow simulations of 3 human fetal left ventricles (LV), and investigated the hypothetical scenario where the sizes of the hearts are scaled down, leading to reduced Reynolds number, to emulate earlier fetal stages. The shape and motion of the LV were retained over the scaling to isolate and understand the effects of length scaling on its fluid dynamics. We observed an interesting cut-off point in Reynolds number (Re), across which the dependency of LV wall shear stress (WSS) on Re changed. This was in line with classical fluid mechanic theory where skin friction coefficient exhibited first a decreasing trend and then a plateauing trend with increasing Re. Below this cut-off point, viscous effects dominated, stifling the formation of LV diastolic vorticity structures, and WSS was roughly independent of Reynolds number. However, above this cut-off, inertial effects dominated to cause diastolic vortex ring formation and detachment, and to cause WSS to scale linearly with Reynolds number. Results suggested that this transition point is found at approximately 11 weeks of gestation. Since WSS is thought to be a biomechanical stimuli for growth, this may have implications on normal fetal heart growth and malformation diseases like Hypoplastic Left Heart Syndrome.
Collapse
Affiliation(s)
- Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Morgan Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
16
|
Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8020014. [PMID: 33572675 PMCID: PMC7912127 DOI: 10.3390/jcdd8020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The heart is the first functional organ in a developing embryo. Cardiac development continues throughout developmental stages while the heart goes through a serious of drastic morphological changes. Previous animal experiments as well as clinical observations showed that disturbed hemodynamics interfere with the development of the heart and leads to the formation of a variety of defects in heart valves, heart chambers, and blood vessels, suggesting that hemodynamics is a governing factor for cardiogenesis, and disturbed hemodynamics is an important source of congenital heart defects. Therefore, there is an interest to image and quantify the flowing blood through a developing heart. Flow measurement in embryonic fetal heart can be performed using advanced techniques such as magnetic resonance imaging (MRI) or echocardiography. Computational fluid dynamics (CFD) modeling is another approach especially useful when the other imaging modalities are not available and in-depth flow assessment is needed. The approach is based on numerically solving relevant physical equations to approximate the flow hemodynamics and tissue behavior. This approach is becoming widely adapted to simulate cardiac flows during the embryonic development. While there are few studies for human fetal cardiac flows, many groups used zebrafish and chicken embryos as useful models for elucidating normal and diseased cardiogenesis. In this paper, we explain the major steps to generate CFD models for simulating cardiac hemodynamics in vivo and summarize the latest findings on chicken and zebrafish embryos as well as human fetal hearts.
Collapse
|
17
|
Wiputra H, Chan WX, Foo YY, Ho S, Yap CH. Cardiac motion estimation from medical images: a regularisation framework applied on pairwise image registration displacement fields. Sci Rep 2020; 10:18510. [PMID: 33116206 PMCID: PMC7595231 DOI: 10.1038/s41598-020-75525-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022] Open
Abstract
Accurate cardiac motion estimation from medical images such as ultrasound is important for clinical evaluation. We present a novel regularisation layer for cardiac motion estimation that will be applied after image registration and demonstrate its effectiveness. The regularisation utilises a spatio-temporal model of motion, b-splines of Fourier, to fit to displacement fields from pairwise image registration. In the process, it enforces spatial and temporal smoothness and consistency, cyclic nature of cardiac motion, and better adherence to the stroke volume of the heart. Flexibility is further given for inclusion of any set of registration displacement fields. The approach gave high accuracy. When applied to human adult Ultrasound data from a Cardiac Motion Analysis Challenge (CMAC), the proposed method is found to have 10% lower tracking error over CMAC participants. Satisfactory cardiac motion estimation is also demonstrated on other data sets, including human fetal echocardiography, chick embryonic heart ultrasound images, and zebrafish embryonic microscope images, with the average Dice coefficient between estimation motion and manual segmentation at 0.82-0.87. The approach of performing regularisation as an add-on layer after the completion of image registration is thus a viable option for cardiac motion estimation that can still have good accuracy. Since motion estimation algorithms are complex, dividing up regularisation and registration can simplify the process and provide flexibility. Further, owing to a large variety of existing registration algorithms, such an approach that is usable on any algorithm may be useful.
Collapse
Affiliation(s)
- Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Rykiel G, López CS, Riesterer JL, Fries I, Deosthali S, Courchaine K, Maloyan A, Thornburg K, Rugonyi S. Multiscale cardiac imaging spanning the whole heart and its internal cellular architecture in a small animal model. eLife 2020; 9:e58138. [PMID: 33078706 PMCID: PMC7595733 DOI: 10.7554/elife.58138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac pumping depends on the morphological structure of the heart, but also on its subcellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three-dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.
Collapse
Affiliation(s)
- Graham Rykiel
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Jessica L Riesterer
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Ian Fries
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Sanika Deosthali
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | | | - Alina Maloyan
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Kent Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
19
|
Ultrasound Based Computational Fluid Dynamics Assessment of Brachial Artery Wall Shear Stress in Preeclamptic Pregnancy. Cardiovasc Eng Technol 2020; 11:760-768. [PMID: 33025370 DOI: 10.1007/s13239-020-00488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Preeclampsia (PE) is a pregnancy complication of abnormally elevated blood pressure and organ damage where endothelial function is impaired. Wall shear stress (WSS) strongly effects endothelial cell morphology and function but in PE the WSS values are unknown. WSS calculations from ultrasound inaccurately assume cylindrical arteries and patient specific computational fluid dynamics (CFD) typically require time-consuming 3D imaging such as CT or MRI. METHODS Two-dimensional (2D) B-mode ultrasound images were lofted together to create simplified three-dimensional (3D) geometries of the brachial artery (BA) that incorporate artery curvature and non-circular cross sections. This process was efficient and on average took 120 ± 10 s. Patient specific CFD was then performed to quantify BA WSS for a small cohort of PE (n = 5) and normotensive pregnant patients (n = 5) and compared against WSS calculations assuming a cylindrical artery. RESULTS For several WSS metrics (time averaged WSS (TAWSS), peak systolic WSS, oscillatory shear index (OSI), OSI/TAWSS and relative residence time) CFD on the simplified arterial geometries calculated large spatial differences in WSS that assuming a cylindrical artery cannot calculate. Bland-Altman and intra-class correlation (ICC) analyses found assuming a cylindrical artery both underestimated (p < 0.05) and had poor agreement (ICC < 0.5) with the maximum WSS values from CFD. WSS values that were abnormal compared to the normotensive patients (OSI = 0.014 ± 0.026) appear related to the pregnancy complications fetal growth restriction (n = 2, OSI = 0.14, 0.25) and gestational diabetes (n = 1, OSI = 0.23). CONCLUSION Creating 3D artery geometries from 2D ultrasound images can be used for CFD simulations to calculate WSS from ultrasound without assuming cylindrical arteries. This approach requires minimal time for both medical imaging and CFD analysis.
Collapse
|
20
|
Zebhi B, Wiputra H, Howley L, Cuneo B, Park D, Hoffman H, Gilbert L, Yap CH, Bark D. Right ventricle in hypoplastic left heart syndrome exhibits altered hemodynamics in the human fetus. J Biomech 2020; 112:110035. [PMID: 32971490 DOI: 10.1016/j.jbiomech.2020.110035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) represents approximately 9% of all congenital heart defects and is one of the most complex, with the left side of the heart being generally underdeveloped. Numerous studies demonstrate that intracardiac fluid flow patterns in the embryonic and fetal circulation can impact cardiac structural formation and remodeling. This highlights the importance of quantifying the altered hemodynamic environment in congenital heart defects, like HLHS, relative to a normal heart as it relates to cardiac development. Therefore, to study human cardiovascular fetal flow, computational fluid dynamic simulations were performed using 4D patient-specific ultrasound scans in normal and HLHS hearts. In these simulations, we find that the HLHS right ventricle exhibits a greater cardiac output than normal; yet, hemodynamics are relatively similar between normal and HLHS right ventricles. Overall, this study provides detailed quantitative flow patterns for HLHS, which has the potential to guide future prevention and therapeutic interventions, while more immediately providing additional functional detail to cardiologists to aid in decision making.
Collapse
Affiliation(s)
- Banafsheh Zebhi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Lisa Howley
- The Children's Heart Clinic at the Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Bettina Cuneo
- The Colorado Fetal Care Center, Children's Hospital Colorado and the University of Colorado, Aurora, CO, USA
| | - Dawn Park
- The Colorado Fetal Care Center, Children's Hospital Colorado and the University of Colorado, Aurora, CO, USA
| | - Hilary Hoffman
- The Colorado Fetal Care Center, Children's Hospital Colorado and the University of Colorado, Aurora, CO, USA
| | - Lisa Gilbert
- The Colorado Fetal Care Center, Children's Hospital Colorado and the University of Colorado, Aurora, CO, USA
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, UK
| | - David Bark
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
21
|
Truong BL, Jouk PS, Auriau J, Michalowicz G, Usson Y. Polarized Light Imaging of the Myoarchitecture in Tetralogy of Fallot in the Perinatal Period. Front Pediatr 2020; 8:503054. [PMID: 33072668 PMCID: PMC7536283 DOI: 10.3389/fped.2020.503054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The pathognomonic feature of tetralogy of Fallot (ToF) is the antero-cephalad deviation of the outlet septum in combination with an abnormal arrangement of the septoparietal trabeculations. Aims: The aim of this article was to study perinatal hearts using Polarized Light Imaging (PLI) in order to investigate the deep alignment of cardiomyocytes that bond the different components of the ventricular outflow tracts both together and to the rest of the ventricular mass, thus furthering the classic description of ToF. Methods and Materials: 10 perinatal hearts with ToF and 10 perinatal hearts with no detectable cardiac anomalies (control) were studied using PLI. The orientation of the myocardial cells was extracted and studied at high resolution. Virtual dissections in multiple section planes were used to explore each ventricular structure. Results and Conclusions: Contrary to the specimens of the control group, for all ToF specimens studied, the deep latitudinal alignment of the cardiomyocytes bonds together the left part of the Outlet septum (OS) S to the anterior wall of the left ventricle. In addition, the right end of the muscular OS bonds directly on the right ventricular wall (RVW) superior to the attachment of the ventriculo infundibular fold (VIF). Thus, the OS is a bridge between the lateral RVW and the anterior left ventricular wall. The VIF, RVW, and OS define an "inverted U" that roofs the cone between the interventricular communication and the overriding aorta. The opening angle and the length of the branches of this "inverted U" depend however on three components: the size of the OS, the size of the VIF, and the distance between the points of insertion of the OS and VIF into the RVW. The variation of these three components accounts for a significant part of the diversity observed in the anatomical presentations of ToF in the perinatal period.
Collapse
Affiliation(s)
- Ba Luu Truong
- Centre National de la Recherche Scientifique (CNRS), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Grenoble, France.,Department of Pediatric Cardiac Surgery, Necker Sick Children Hospital, Paris, France.,Department of Pediatric Cardiology, Nhi Dong 2 Children Hospital, Ho Chi Minh City, Vietnam
| | - Pierre-Simon Jouk
- Centre National de la Recherche Scientifique (CNRS), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Grenoble, France.,Department of Genetics and Procreation, Grenoble-Alpes University Hospital, Grenoble, France
| | - Johanne Auriau
- Department of Cardiology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Gabrielle Michalowicz
- Centre National de la Recherche Scientifique (CNRS), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Grenoble, France
| | - Yves Usson
- Centre National de la Recherche Scientifique (CNRS), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Grenoble, France
| |
Collapse
|