1
|
Efe OE, Aydos TR, Emre Aydingoz S. Mechanism of acitretin-induced relaxations in isolated rat thoracic aorta preparations. Can J Physiol Pharmacol 2022; 100:35-42. [PMID: 34411501 DOI: 10.1139/cjpp-2021-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acitretin is a member of vitamin A-derived retinoids, and its effect on vascular smooth muscle had not yet been studied. The aim of this study is to investigate the effect of acitretin, a retinoid, on vascular smooth muscle contractility. Thoracic aorta preparations obtained from 34 male Sprague-Dawley rats (355 ± 15 g) were studied in isolated organ baths containing Krebs-Henseleit solution. The relaxation responses were obtained with acitretin (10-12-10-4 M) in endothelium-preserved and endothelium-denuded aorta preparations precontracted with submaximal concentration of phenylephrine (10-6 M). The role of retinoic acid receptors (RARs), nitric oxide, adenylyl, and guanylyl cyclase enzymes, and potassium channels in these relaxation responses were investigated. Acitretin produced concentration-dependent relaxations, which were independent of its solvent dimethylsulfoxide (DMSO), in endothelium-denuded phenylephrine-precontracted thoracic aorta preparations. While incubation with the RAR antagonist (AGN193109, 10-5 M) had no effect on these relaxations; nitric oxide synthase inhibitor (L-NG-Nitro arginine methyl ester (L-NAME), 10-4 M), adenylyl cyclase inhibitor (SQ2253, 10-5 M), guanylyl cyclase inhibitor (oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), 10-6 M), and potassium channel blocker (tetraethylammonium (TEA), 10-2 M) significantly eliminated the relaxation responses induced by acitretin. Acitretin induces relaxation in rat isolated thoracic aorta preparations without endothelium, which may be mediated by nitric oxide, cyclic adenosine monophosphate, and cyclic guanosine monophosphate-dependent kinases and potassium channels.
Collapse
Affiliation(s)
- Oğuzhan Ekin Efe
- Baskent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
- Baskent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
| | - Tolga Reşat Aydos
- Baskent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
- Baskent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
| | - Selda Emre Aydingoz
- Baskent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
- Baskent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
2
|
Xiao J, Liu J, Lio I, Yang C, Chen X, Zhang H, Wang S, Wei Z. All-trans retinoic acid attenuates the progression of Ang II-induced abdominal aortic aneurysms in ApoE -/-mice. J Cardiothorac Surg 2020; 15:160. [PMID: 32615991 PMCID: PMC7331218 DOI: 10.1186/s13019-020-01208-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background To determine whether all-trans retinoic acid (ATRA) can influence the development of Angiotensin II (Ang II) induced experimental abdominal aortic aneurysms (AAAs). Methods Apolipoprotein E knock-out (ApoE−/−) mice were randomly assigned to 4 groups. Mice in the AAA and ATRA groups underwent continuous subcutaneous Ang II infusion for 28 days to induce AAA, while the Sham and Control groups were infused with saline. Systolic blood pressure was measured by the tail-cuff technique. The Control and ATRA groups received ATRA treatment. Aortic tissue samples were obtained at 28 days after surgery and evaluated by aortic diameter measurement, Western blotting, immunohistochemistry, and hematoxylin-eosin (H&E) and Verhoeff-Van Gieson (EVG) staining. Results The abdominal aortic diameter was significantly reduced in the ATRA group compared with the AAA group (3 of 12 (25%) vs 9 of 12 (75%), P < 0.05), and the ATRA group exhibited reduced blood pressure on days 7, 14, and 28. Low expression of angiotensin II receptor type 1 (AT1), matrix metalloproteinase 2 (MMP2), and matrix metalloproteinase 9 (MMP9) and EVG staining revealed a significant reduction in the disruption of elastic fibers in the abdominal aortic tissue of the ATRA group compared to the AAA group. Western blot analysis indicated that protein levels of retinoic acid receptor α (RARα), MMP2, MMP9, and AT1 were dramatically affected by ATRA treatment. Conclusions In conclusion, ATRA attenuates the progression of Ang II-induced AAAs, possibly by downregulating MMP2, MMP9, and AT-1 expression.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Iohang Lio
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanlei Yang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuxia Wang
- Department of Radiology, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Zhanjie Wei
- Department of General Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
3
|
Neutral endopeptidase inhibitors blunt kidney fibrosis by reducing myofibroblast formation. Clin Sci (Lond) 2019; 133:239-252. [PMID: 30617188 DOI: 10.1042/cs20180882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/02/2023]
Abstract
Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor β (TGF-β) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a 'deep serial analysis of gene expression (Deep SAGE)' transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.
Collapse
|
4
|
Marino A, Sakamoto T, Tang XH, Gudas LJ, Levi R. A Retinoic Acid β2-Receptor Agonist Exerts Cardioprotective Effects. J Pharmacol Exp Ther 2018; 366:314-321. [PMID: 29907698 PMCID: PMC6041952 DOI: 10.1124/jpet.118.250605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
We previously discovered that oral treatment with AC261066, a synthetic selective agonist for the retinoic acid β2-receptor, decreases oxidative stress in the liver, pancreas, and kidney of mice fed a high-fat diet (HFD). Since hyperlipidemic states are causally associated with myocardial ischemia and oxidative stress, we have now investigated the effects of AC261066 in an ex vivo ischemia/reperfusion (I/R) injury model in hearts of two prototypic dysmetabolic mice. We found that a 6-week oral treatment with AC261066 in both genetically hypercholesterolemic (ApoE-/-) and obese (HFD-fed) wild-type mice exerts protective effects when their hearts are subsequently subjected to I/R ex vivo in the absence of added drug. In ApoE-/- mice this cardioprotection ensued without hyperlipidemic changes. Cardioprotection consisted of attenuation of infarct size, diminution of norepinephrine (NE) spillover, and alleviation of reperfusion arrhythmias. This cardioprotection was associated with a reduction in oxidative stress and mast cell (MC) degranulation. We suggest that the reduction in myocardial injury and adrenergic activation, and the antiarrhythmic effects, result from decreased formation of oxygen radicals and toxic aldehydes known to elicit the release of MC-derived renin, promoting the activation of the local renin-angiotensin system leading to enhanced NE release and reperfusion arrhythmias. Because these beneficial effects of AC261066 occurred at the ex vivo level following oral drug treatment, our data suggest that AC261066 could be viewed as a therapeutic means to reduce I/R injury of the heart, and potentially also be considered in the treatment of other cardiovascular ailments such as chronic arrhythmias and cardiac failure.
Collapse
Affiliation(s)
- Alice Marino
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Takuya Sakamoto
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Lind T, Lugano R, Gustafson AM, Norgård M, van Haeringen A, Dimberg A, Melhus H, Robertson SP, Andersson G. Bones in human CYP26B1 deficiency and rats with hypervitaminosis A phenocopy Vegfa overexpression. Bone Rep 2018; 9:27-36. [PMID: 30003121 PMCID: PMC6039751 DOI: 10.1016/j.bonr.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/05/2018] [Accepted: 06/16/2018] [Indexed: 01/03/2023] Open
Abstract
Angulated femurs are present prenatally both in CYP26B1 deficient humans with a reduced capacity to degrade retinoic acid (RA, the active metabolite of vitamin A), and mice overexpressing vascular endothelial growth factor a (Vegfa). Since excessive ingestion of vitamin A is known to induce spontaneous fractures and as the Vegfa-induced femur angulation in mice appears to be caused by intrauterine fractures, we analyzed bones from a CYP26B1 deficient human and rats with hypervitaminosis A to further explore Vegfa as a mechanistic link for the effect of vitamin A on bone. We show that bone from a human with CYP26B1 mutations displayed periosteal osteoclasts in piles within deep resorption pits, a pathognomonic sign of hypervitaminosis A. Analysis of the human angulated fetal femur revealed excessive bone formation in the marrow cavity and abundant blood vessels. Normal human endothelial cells showed disturbed cell-cell junctions and increased CYP26B1 and VEGFA expression upon RA exposure. Studies in rats showed increased plasma and tissue Vegfa concentrations and signs of bone marrow microhemorrhage on the first day of excess dietary vitamin A intake. Subsequently hypervitaminosis A rats displayed excess bone formation, fibrosis and an increased number of megakaryocytes in the bone marrow, which are known characteristics of Vegfa overexpression. This study supports the notion that the skeletal phenotype in CYP26B1 deficient human bone is caused by excess RA. Our findings suggest that an initial part of the vitamin A mechanism causing bone alterations is mediated by excess Vegfa and disturbed bone marrow microvessel integrity. Human CYP26B1 deficit and rat hypervitaminosis A phenocopy Vegf bone overexpression Hypervitaminosis A cause rapid microhemorrhage in rat bone marrow. Retinoic acid treatment disrupt cell-cell junction integrity between endothelial cells. Hypervitaminosis A have a persistent negative effect on rat bone marrow perfusion. Hypervitaminosis A rat bones resemble bones of patients with myelofibrotic disorders.
Collapse
Affiliation(s)
- Thomas Lind
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-14152 Huddinge, Sweden
| | - Arie van Haeringen
- Department of Human and Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine University of Otago, 9054 Dunedin, New Zealand
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-14152 Huddinge, Sweden
| |
Collapse
|
6
|
Magvanjav O, Gong Y, McDonough CW, Chapman AB, Turner ST, Gums JG, Bailey KR, Boerwinkle E, Beitelshees AL, Tanaka T, Kubo M, Pepine CJ, Cooper-DeHoff RM, Johnson JA. Genetic Variants Associated With Uncontrolled Blood Pressure on Thiazide Diuretic/β-Blocker Combination Therapy in the PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) and INVEST (International Verapamil-SR Trandolapril Study) Trials. J Am Heart Assoc 2017; 6:e006522. [PMID: 29097388 PMCID: PMC5721751 DOI: 10.1161/jaha.117.006522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The majority of hypertensive individuals require combination antihypertensive therapy to achieve adequate blood pressure (BP) control. This study aimed to identify genetic variants associated with uncontrolled BP on combination therapy with a thiazide diuretic and a β-blocker. METHODS AND RESULTS A genome-wide association study of uncontrolled BP on combination therapy was conducted among 314 white participants of the PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) trial. Multivariable logistic regression analysis was used. Genetic variants meeting a suggestive level of significance (P<1.0E-05) were tested for replication in an external cohort, INVEST (International Verapamil-SR Trandolapril study). We also examined genome-wide variant associations with systolic and diastolic BP response on combination therapy and tested for replication. We discovered a single nucleotide polymorphism, the rs261316 major allele, at chromosome 15 in the gene ALDH1A2 associated with an increased odds of having uncontrolled BP on combination therapy (odds ratio: 2.56, 95% confidence interval, 1.69-3.88, P=8.64E-06). This single nucleotide polymorphism replicated (odds ratio: 1.86, 95% confidence interval, 1.35-2.57, P=0.001) and approached genome-wide significance in the meta-analysis between discovery and replication cohorts (odds ratio: 2.16, 95% confidence interval, 1.63-2.86, P=8.60E-08). Other genes in the region surrounding rs261316 (ALDH1A2) include AQP9 and LIPC. CONCLUSIONS A single nucleotide polymorphism in the gene ALDH1A2 may be associated with uncontrolled BP following treatment with a thiazide diuretic/β-blocker combination. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT00246519.
Collapse
Affiliation(s)
- Oyunbileg Magvanjav
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
- College of Medicine, University of Florida, Gainesville, FL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
| | - Arlene B Chapman
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Eric Boerwinkle
- Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Amber L Beitelshees
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
7
|
Kumar P, Gogulamudi VR, Periasamy R, Raghavaraju G, Subramanian U, Pandey KN. Inhibition of HDAC enhances STAT acetylation, blocks NF-κB, and suppresses the renal inflammation and fibrosis in Npr1 haplotype male mice. Am J Physiol Renal Physiol 2017; 313:F781-F795. [PMID: 28566502 PMCID: PMC5625105 DOI: 10.1152/ajprenal.00166.2017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 11/22/2022] Open
Abstract
Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) plays a critical role in the regulation of blood pressure and fluid volume homeostasis. Mice lacking functional Npr1 (coding for GC-A/NPRA) exhibit hypertension and congestive heart failure. However, the underlying mechanisms remain largely less clear. The objective of the present study was to determine the physiological efficacy and impact of all-trans-retinoic acid (ATRA) and sodium butyrate (NaBu) in ameliorating the renal fibrosis, inflammation, and hypertension in Npr1 gene-disrupted haplotype (1-copy; +/-) mice (50% expression levels of NPRA). Both ATRA and NaBu, either alone or in combination, decreased the elevated levels of renal proinflammatory and profibrotic cytokines and lowered blood pressure in Npr1+/- mice compared with untreated controls. The treatment with ATRA-NaBu facilitated the dissociation of histone deacetylase (HDAC) 1 and 2 from signal transducer and activator of transcription 1 (STAT1) and enhanced its acetylation in the kidneys of Npr1+/- mice. The acetylated STAT1 formed a complex with nuclear factor-κB (NF-κB) p65, thereby inhibiting its DNA-binding activity and downstream proinflammatory and profibrotic signaling cascades. The present results demonstrate that the treatment of the haplotype Npr1+/- mice with ATRA-NaBu significantly lowered blood pressure and reduced the renal inflammation and fibrosis involving the interactive roles of HDAC, NF-κB (p65), and STAT1. The current findings will help in developing the molecular therapeutic targets and new treatment strategies for hypertension and renal dysfunction in humans.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Venkateswara R Gogulamudi
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Ramu Periasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Giri Raghavaraju
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Umadevi Subramanian
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
8
|
Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Sci Rep 2017; 7:43259. [PMID: 28230187 PMCID: PMC5322393 DOI: 10.1038/srep43259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/23/2017] [Indexed: 12/24/2022] Open
Abstract
Salusin-β is a bioactive peptide involved in vascular smooth muscle cell proliferation, vascular fibrosis and hypertension. The present study was designed to determine the effects of silencing salusin-β on hypertension and cardiovascular remodeling in spontaneously hypertensive rats (SHR). Thirteen-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were subjected to intravenous injection of PBS, adenoviral vectors encoding salusin-β shRNA (Ad-Sal-shRNA) or a scramble shRNA. Salusin-β levels in plasma, myocardium and mesenteric artery were increased in SHR. Silencing salusin-β had no significant effect on blood pressure in WKY, but reduced blood pressure in SHR. It reduced the ratio of left ventricle weight to body weight, cross-sectional areas of cardiocytes and perivascular fibrosis, and decreased the media thickness and the media/lumen ratio of arteries in SHR. Silencing salusin-β almost normalized plasma norepinephrine and angiotensin II levels in SHR. It prevented the upregulation of angiotensin II and AT1 receptors, and reduced the NAD(P)H oxidase activity and superoxide anion levels in myocardium and mesenteric artery of SHR. Knockdown of salusin-β attenuated cell proliferation and fibrosis in vascular smooth muscle cells from SHR. These results indicate that silencing salusin-β attenuates hypertension and cardiovascular remodeling in SHR.
Collapse
|
9
|
Xia T, Guan W, Fu J, Zou X, Han Y, Chen C, Zhou L, Zeng C, Wang WE. Tirofiban induces vasorelaxation of the coronary artery via an endothelium-dependent NO-cGMP signaling by activating the PI3K/Akt/eNOS pathway. Biochem Biophys Res Commun 2016; 474:599-605. [PMID: 27018249 DOI: 10.1016/j.bbrc.2016.03.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023]
Abstract
Tirofiban, a glycoprotein IIb/IIIa inhibitor, is an antiplatelet drug extensively used in patients with acute coronary syndrome (ACS) and exerts an therapeutic effect on no-reflow phenomenon during percutaneous coronary intervention (PCI). Previous studies elucidated the vasodilation caused by tirofiban in the peripheral artery. However, whether tirofiban exerts a vasodilator effect on the coronary artery is unclear. Our present study found that tirofiban induced endothelium-dependent vasodilation in a concentration- and time-dependent manner in the isolated rat coronary artery pre-constricted by 5-hydroxytryptamine (5-HT). Further study showed that incubation of human umbilical venous endothelial cells (HUVECs) with tirofiban increased NO production, which was ascribed to the increased eNOS phosphorylation. This was confirmed by the loss of the vasorelaxant effect of tirofiban in the presence of l-NAME (eNOS inhibitor) and L-NMMA (NOS inhibitor) but not SMT (iNOS inhibitor) on isolated rat coronary arteries. The vasorelaxation was also blocked by the PI3K inhibitors, wortmannin and LY294002, as well as the Akt inhibitor SH-5, indicating the role of PI3K and Akt in tirofiban-mediated vasodilation. Moreover, further study showed that soluble guanylyl cyclase (sGC) inhibitor ODQ, or blockers of potassium channel (big-conductance calcium-activated potassium channel) blocked tirofiban-induced vasodilation of the coronary artery. These findings suggest that tirofiban induces vasorelaxation via an endothelium-dependent NO-cGMP signaling through the activation of the Akt/eNOS/sGC pathway.
Collapse
Affiliation(s)
- Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Weiwei Guan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory of Hypertension Research, Chongqing, PR China.
| |
Collapse
|
10
|
Li C, Li J, Weng X, Lan X, Chi X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2015; 9:507-516.e7. [DOI: 10.1016/j.jash.2015.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/20/2022]
|
11
|
Sun HJ, Liu TY, Zhang F, Xiong XQ, Wang JJ, Chen Q, Li YH, Kang YM, Zhou YB, Han Y, Gao XY, Zhu GQ. Salusin-β contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1709-18. [PMID: 26001930 DOI: 10.1016/j.bbadis.2015.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and vascular fibrosis are closely linked with hypertension and atherosclerosis. Salusin-β is a bioactive peptide involved in the pathogenesis of atherosclerosis. However, it is still largely undefined whether salusin-β is a potential candidate in the VSMC proliferation and vascular fibrosis. Experiments were carried out in human vascular smooth muscle cells (VSMCs) and in rats with intravenous injection of lentivirus expressing salusin-β. In vitro, salusin-β promoted VSMCs proliferation, which was attenuated by adenylate cyclase inhibitor SQ22536, PKA inhibitor Rp-cAMP, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, ERK inhibitor U0126 or cAMP response element binding protein (CREB) inhibitor KG501. It promoted the phosphorylation of ERK1/2, CREB and EGFR, which were abolished by SQ22536 or Rp-cAMP. Furthermore, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 diminished the salusin-β-evoked ERK1/2 and CREB phosphorylation. On the other hand, salusin-β increased collagen-I, collagen-III, fibronectin and connective tissue growth factor (CTGF) mRNA and phosphorylation of Smad2/3, which were prevented by ALK5 inhibitor A83-01. In vivo, salusin-β overexpression increased the media thickness, media/lumen ratio coupled with ERK1/2, CREB, EGFR and Smad2/3 phosphorylation, as well as the mRNA of collagen-I, collagen-III, fibronectin, transforming growth factor-β1 (TGF-β1) and CTGF in arteries. Moreover, salusin-β overexpression in rats caused severe hypertension. Intravenous injection of salusin-β dose-relatedly increased blood pressure, but excessive salusin-β decreased blood pressure and heart rate. These results indicate that salusin-β promotes VSMC proliferation via cAMP-PKA-EGFR-CREB/ERK pathway and vascular fibrosis via TGF-β1-Smad pathway. Increased salusin-β contributes to vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tong-Yan Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jue-Jin Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
12
|
Fu J, Han Y, Wang H, Wang Z, Liu Y, Chen X, Cai Y, Guan W, Yang D, Asico LD, Zhou L, Jose PA, Zeng C. Impaired dopamine D1 receptor-mediated vasorelaxation of mesenteric arteries in obese Zucker rats. Cardiovasc Diabetol 2014; 13:50. [PMID: 24559270 PMCID: PMC3938077 DOI: 10.1186/1475-2840-13-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Background Obesity plays an important role in the pathogenesis of hypertension. Renal dopamine D1-like receptor-mediated diuresis and natriuresis are impaired in the obese Zucker rat, an obesity-related hypertensive rat model. The role of arterial D1 receptors in the hypertension of obese Zucker rats is not clear. Methods Plasma glucose and insulin concentrations and blood pressure were measured. The vasodilatory response of isolated mesenteric arteries was evaluated using a small vessel myograph. The expression and phosphorylation of D1 receptors were quantified by co-immunoprecipitation and immunoblotting To determine the effect of hyperinsulinemia and hyperglycemia on the function of the arterial D1 receptor, we studied obese Zucker rats (six to eight-weeks old) fed (6 weeks) vehicle or rosiglitazone, an insulin sensitizer (10 mg/kg per day) and lean Zucker rats (eight to ten-weeks old), fed high-fat diet to induce hyperinsulinemia or injected intraperitoneally with streptomycin (STZ) to induce hyperglycemia. Results In obese Zucker rats, the vasorelaxant effect of D1-like receptors was impaired that could be ascribed to decreased arterial D1 receptor expression and increased D1 receptor phosphorylation. In these obese rats, rosiglitazone normalized the arterial D1 receptor expression and phosphorylation and improved the D1-like receptor-mediated vasorelaxation. We also found that D1 receptor-dependent vasorelaxation was decreased in lean Zucker rats with hyperinsulinemia or hyperglycemia but the D1 receptor dysfunction was greater in the former than in the latter group. The ability of insulin and glucose to decrease D1 receptor expression and increase its phosphorylation were confirmed in studies of rat aortic smooth muscle cells. Conclusions Both hyperinsulinemia and hyperglycemia caused D1 receptor dysfunction by decreasing arterial D1 receptor expression and increasing D1 receptor phosphorylation. Impaired D1 receptor-mediated vasorelaxation is involved in the pathogenesis of obesity-related hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P,R, China.
| | | | | |
Collapse
|