1
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
2
|
Zhang HK, Shi CY, Liu DT, Gao HQ, Zhao QQ, Zhang N, Yang L, Li GQ, Wang YL, Du Y, Li Q, Bo KR, Zhuang B, Fan ZM, Sun ZH, Xu L. Dynamic changes in cardiac morphology, function, and diffuse myocardial fibrosis duration of diabetes in type 1 and type 2 diabetic mice models using 7.0 T CMR and echocardiography. Front Endocrinol (Lausanne) 2023; 14:1278619. [PMID: 38027188 PMCID: PMC10663371 DOI: 10.3389/fendo.2023.1278619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with an increased risk of cardiovascular disease (CVD). Hence, early detection of cardiac changes by imaging is crucial to reducing cardiovascular complications. PURPOSE Early detection of cardiac changes is crucial to reducing cardiovascular complications. The study aimed to detect the dynamic change in cardiac morphology, function, and diffuse myocardial fibrosis(DMF) associated with T1DM and T2DM mice models. MATERIALS AND METHODS 4-week-old C57Bl/6J male mice were randomly divided into control (n=30), T1DM (n=30), and T2DM (n=30) groups. A longitudinal study was conducted every 4 weeks using serial 7.0T CMR and echocardiography imaging. Left ventricular ejection fraction (LV EF), tissue tracking parameters, and DMF were measured by cine CMR and extracellular volume fraction (ECV). Global peak circumferential strain (GCPS), peak systolic strain rate (GCPSSR) values were acquired by CMR feature tracking. LV diastolic function parameter (E/E') was acquired by echocardiography. The correlations between the ECV and cardiac function parameters were assessed by Pearson's test. RESULTS A total of 6 mice were included every 4 weeks in control, T1DM, and T2DM groups for analysis. Compared to control group, an increase was detected in the LV mass and E/E' ratio, while the values of GCPS, GCPSSR decreased mildly in DM. Compared to T2DM group, GCPS and GCPSSR decreased earlier in T1DM(GCPS 12W,P=0.004; GCPSSR 12W,P=0.04). ECV values showed a significant correlation with GCPS and GCPSSR in DM groups. Moreover, ECV values showed a strong positive correlation with E/E'(T1DM,r=0.757,P<0.001;T2DM, r=0.811,P<0.001). CONCLUSION The combination of ECV and cardiac mechanical parameters provide imaging biomakers for pathophysiology, early diagnosis of cardiac morphology, function and early intervention in diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Hong-Kai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Chun-Yan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Dong-Ting Liu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Hui-Qiang Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Beijing, China
| | - Qian-Qian Zhao
- Department of Cardiology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Guo-Qi Li
- Beijing Institute of Heart, Lung, and Vascular Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yue-Li Wang
- Echocardiographic Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Du
- Department of Cardiology, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qing Li
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Kai-Rui Bo
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Baiyan Zhuang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhan-Ming Fan
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhong-Hua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Perth, WA, Australia
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
4
|
Liu J, Wang Y, Zhang J, Li X, Tan L, Huang H, Dai Y, Shang Y, Shen Y. Dynamic evolution of left ventricular strain and microvascular perfusion assessed by speckle tracking echocardiography and myocardial contrast echocardiography in diabetic rats: Effect of dapagliflozin. Front Cardiovasc Med 2023; 10:1109946. [PMID: 36910521 PMCID: PMC9996187 DOI: 10.3389/fcvm.2023.1109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background This experimental study aimed to determine the dynamic changes in myocardial strain and microvascular perfusion in diabetic rats by comprehensive echocardiography while evaluating the effect of dapagliflozin (DAPA). Materials and methods Male Sprague-Dawley rats (n = 128) were randomly divided into four groups based on the presence or absence of a high-fat diet and streptozotocin-induced diabetes with or without DAPA treatment (n = 32/group). Serial conventional ultrasound, two-dimensional speckle tracking echocardiography (2D-STE) and myocardial contrast echocardiography (MCE) were performed at 2, 4, 6, and 8 weeks, and left ventricular global longitudinal strain (GLS), myocardial blood flow velocity (MBFV), myocardial blood flow (MBF), and myocardial blood volume (MBV) were determined. All animals were sacrificed immediately after the last echo measurement for histopathological assessment. Results Despite similar conventional Doppler-echo indexes among the groups at 2, 4, 6, and 8 weeks (p > 0.05), left ventricular GLS, MBFV, MBF, and MBV were decreased at 8 weeks in diabetic rats (p < 0.05) as detected by both 2D-STE and MCE. These indexes were significantly improved at 6 and 8 weeks after treatment with DAPA for diabetic rats (p < 0.05), reaching similar values observed in non-diabetic controls. DAPA treatment was associated with increased myocardial vacuolization and microvessel density and reduced interstitial fibrosis in diabetic rats. Conclusions Combined 2D-STE and MCE is sensitive for detecting left ventricular deformity and impaired microvascular perfusion in prediabetes and the early stage of diabetes mellitus. DAPA exerts a beneficial effect on protecting myocardial perfusion in diabetic rats.
Collapse
Affiliation(s)
- Juan Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yixuan Wang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xin Li
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Tan
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haiyun Huang
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Dai
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ying Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Billig S, Hein M, Mechelinck M, Schumacher D, Roehl AB, Fuchs D, Kramann R, Uhlig M. Comparative assessment of coronary physiology using transthoracic pulsed-wave Doppler and myocardial contrast echocardiography in rats. Eur Radiol Exp 2023; 7:6. [PMID: 36757486 PMCID: PMC9911582 DOI: 10.1186/s41747-022-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Coronary physiology assessment in rodents by ultrasound is an excellent noninvasive and easy to perform technique, including pulsed-wave Doppler (PWD) and myocardial contrast echocardiography (MCE). Both techniques and the corresponding calculated parameters were investigated in this study at rest as well as their response to pharmacologically induced stress. METHODS Left ventricular myocardial function was assessed in eight anaesthetised rats using transthoracic echocardiography. Coronary physiology was assessed by both PWD of the left coronary artery and MCE using a bolus method. Measurements were performed at rest and under stimulation with adenosine and dobutamine. Effects of stimulation on the calculated parameters were evaluated and rated by effect size (η2). RESULTS Changes could be demonstrated by selected parameters of PWD and MCE. The clearest effect in PWD was found for diastolic peak velocity (η2 = 0.58). It increased from 528 ± 110 mm/s (mean ± standard deviation) at rest to 839 ± 342 mm/s (p = 0.001) with adenosine and 1093 ± 302 mm/s with dobutamine (p = 0.001). The most distinct effect from MCE was found for the normalised wash-in rate (η2 = 0.58). It increased from 1.95 ± 0.35% at rest to 3.87 ± 0.85% with adenosine (p = 0.001) and 3.72 ± 1.03% with dobutamine (p = 0.001). CONCLUSION Induced changes in coronary physiology by adenosine and dobutamine could successfully be monitored using MCE and PWD in anaesthetised rats. Due to the low invasiveness of the measurements, this protocol could be used for longitudinal animal studies.
Collapse
Affiliation(s)
- Sebastian Billig
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Marc Hein
- grid.1957.a0000 0001 0728 696XDepartment of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Mare Mechelinck
- grid.1957.a0000 0001 0728 696XDepartment of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - David Schumacher
- grid.1957.a0000 0001 0728 696XDepartment of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Anna B. Roehl
- grid.1957.a0000 0001 0728 696XDepartment of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dieter Fuchs
- grid.509684.60000 0001 2309 6090FUJIFILM VisualSonics, Inc., Joop Geesinkweg 140, 1114 AB Amsterdam, The Netherlands
| | - Rafael Kramann
- grid.1957.a0000 0001 0728 696XInstitute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XDivision of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany ,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Moritz Uhlig
- grid.1957.a0000 0001 0728 696XDepartment of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
6
|
Zhang H, Shi C, Yang L, Zhang N, Li G, Zhou Z, Gao Y, Liu D, Xu L, Fan Z. Quantification of Early Diffuse Myocardial Fibrosis Through 7.0 T Cardiac Magnetic Resonance T1 Mapping in a Type 1 Diabetic Mellitus Mouse Model. J Magn Reson Imaging 2023; 57:167-177. [PMID: 35436040 DOI: 10.1002/jmri.28207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Diffuse myocardial interstitial fibrosis (DMIF) is a key factor for heart failure (HF) in diabetic cardiomyopathy. MRI T1-mapping technique can quantitatively evaluate DMIF. PURPOSE To evaluate of early DMIF in a type 1 diabetes mellitus (T1DM) mouse model through 7.0 T MRI T1 mapping. STUDY TYPE Prospective. ANIMAL MODEL A total of 50 8-week-old C57Bl/6J male mice were divided into control (n = 20) and T1DM (n = 30) groups. FIELD STRENGTH/SEQUENCE A 7.0 T small animal MRI; gradient echo Look-Locker inversion recovery T1-mapping sequence; cine MRI. Scans were acquired in control and T1DM mice every 4 weeks until 24 weeks. ASSESSMENT End-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), left ventricle (LV) mass, fractional shortening (FS), and E/A ratio. They were evaluated through echocardiography and cine MRI. The extracellular volume fraction (ECV) was calculated. Sirius Red staining was performed and calculated collagen volume fraction (CVF). STATISTICAL TESTS Differences in ECV and CVF between two groups were analyzed using one-way analysis of variance. The correlation between ECV and CVF was assessed using Pearson's correlations. RESULTS Compared with the control group, a progressive decrease in FS, EF, and E/A ratio was observed in the T1DM group. Both ECV and CVF values gradually increased during diabetes progression. A significant increase in ECV and CVF values was observed at 12 weeks (ECV: 32.5% ± 1.6% vs. 28.1% ± 1.8%; CVF: 6.9% ± 1.8% vs. 3.3% ± 1.1%). ECV showed a strong correlation with CVF (r = 0.856). DATA CONCLUSION ECV is an accurate and feasible imaging marker that can be used to quantitatively assess DMIF changes over time in T1DM mice. ECV has potential to accurately detect DMIF in the early stage and may be a useful imaging tool to assess the need for early intervention in T1DM mice. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Chunyan Shi
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Guoqi Li
- Beijing Institute of Heart, Lung & Vascular Diseases, The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Yifeng Gao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Dongting Liu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| | - Zhanming Fan
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Beijing, China, 100029
| |
Collapse
|
7
|
Thielen NT, Kleinsasser AA, Freeling JL. Myocardial contrast echocardiography assessment of mouse myocardial infarction: comparison of kinetic parameters with conventional methods. PeerJ 2021; 9:e11500. [PMID: 34141476 DOI: 10.7717/peerj.11500/supp-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/02/2021] [Indexed: 05/25/2023] Open
Abstract
This study explores the use of a minimally invasive assessment of myocardial infarction (MI) in mice using myocardial contrast echocardiography (MCE). The technique uses existing equipment and software readily available to the average researcher. C57/BL6 mice were randomized to either MI or sham surgery and evaluated using MCE at 1- or 2-weeks post-surgery. Size-isolated microbubbles were injected via retro-orbital catheter where their non-linear characteristics were utilized to produce the two-dimensional parameters of Wash-in-Rate and the Peak Enhancement, indicative of relative myocardial perfusion and blood volume, respectively. Three-dimensional cardiac reconstructions allowed the calculation of the Percent Agent, interpreted as the vascularity of the entire myocardium. These MCE parameters were compared to conventional assessments including M-Mode, strain analysis, and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Except for the Wash-in-Rate 2-week cohort, all MCE parameters were able to differentiate sham-operated versus MI animals and correlated with TTC staining (P < 0.05). MCE parameters were also able to identify MI group animals which failed to develop infarctions as determined by TTC staining. This study provides basic validation of these MCE parameters to detect MI in mice complementary to conventional methods while providing additional hemodynamic information in vivo.
Collapse
Affiliation(s)
- Nicholas T Thielen
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Adison A Kleinsasser
- Research Computing Group, University of South Dakota, Vermillion, South Dakota, United States
| | - Jessica L Freeling
- Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States
| |
Collapse
|
8
|
Thielen NT, Kleinsasser AA, Freeling JL. Myocardial contrast echocardiography assessment of mouse myocardial infarction: comparison of kinetic parameters with conventional methods. PeerJ 2021; 9:e11500. [PMID: 34141476 PMCID: PMC8176928 DOI: 10.7717/peerj.11500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/02/2021] [Indexed: 01/14/2023] Open
Abstract
This study explores the use of a minimally invasive assessment of myocardial infarction (MI) in mice using myocardial contrast echocardiography (MCE). The technique uses existing equipment and software readily available to the average researcher. C57/BL6 mice were randomized to either MI or sham surgery and evaluated using MCE at 1- or 2-weeks post-surgery. Size-isolated microbubbles were injected via retro-orbital catheter where their non-linear characteristics were utilized to produce the two-dimensional parameters of Wash-in-Rate and the Peak Enhancement, indicative of relative myocardial perfusion and blood volume, respectively. Three-dimensional cardiac reconstructions allowed the calculation of the Percent Agent, interpreted as the vascularity of the entire myocardium. These MCE parameters were compared to conventional assessments including M-Mode, strain analysis, and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Except for the Wash-in-Rate 2-week cohort, all MCE parameters were able to differentiate sham-operated versus MI animals and correlated with TTC staining (P < 0.05). MCE parameters were also able to identify MI group animals which failed to develop infarctions as determined by TTC staining. This study provides basic validation of these MCE parameters to detect MI in mice complementary to conventional methods while providing additional hemodynamic information in vivo.
Collapse
Affiliation(s)
- Nicholas T Thielen
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Adison A Kleinsasser
- Research Computing Group, University of South Dakota, Vermillion, South Dakota, United States
| | - Jessica L Freeling
- Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States
| |
Collapse
|
9
|
Yang L, Cao J, Ma J, Li M, Mu Y. Differences in the microcirculation disturbance in the right and left ventricles of neonatal rats with hypoxic pulmonary hypertension. Microvasc Res 2021; 135:104129. [PMID: 33385381 DOI: 10.1016/j.mvr.2020.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 11/17/2022]
Abstract
Microcirculation disturbance is a crucial pathological basis of heart damage; however, microcirculation alterations induced by hypoxic pulmonary hypertension (HPH) remain unknown, and the left ventricle (LV) in HPH is conventionally ignored. Herein, we investigated the changes in the cardiac structure, function and microcirculation after HPH and further compared the differences between the right ventricle (RV) and LV. Using a neonatal rat model of HPH, we found RV myocardial hypertrophy, dysfunction and poor myocardial perfusion in HPH rats. Additionally, RV microcirculation disturbance manifested as the abnormal expression of endothelin-1/eNOS and increased expression of intercellular cell adhesion molecule-1 (ICAM-1) or E-selectin 3 days after hypoxia, followed by vascular inflammation, coronary arterial remodeling and microvascular sparseness. Impairment in LV vasodilation was detected in rats after 3 days of hypoxia; however, no obvious microvascular rarefaction or inflammatory reaction was observed in the LV. In conclusion, our results suggest that HPH mainly triggers RV microcirculation disturbances, causing low myocardial perfusion damage and cardiac dysfunction. Despite the differences in the RV and LV, their impaired microvascular function, mediated by endothelial cells, occurs almost simultaneously after HPH, earlier than cardiac functional or structural abnormalities.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Coronary Circulation
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Microcirculation
- Microvessels/metabolism
- Microvessels/pathology
- Microvessels/physiopathology
- Rats, Wistar
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Left
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Lingjie Yang
- Department of Echocardiography, Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Cao
- Neonatal Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Ma
- Department of Echocardiography, Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingxia Li
- Neonatal Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
10
|
Emanuel AL, Meijer RI, van Poelgeest E, Spoor P, Serné EH, Eringa EC. Contrast-enhanced ultrasound for quantification of tissue perfusion in humans. Microcirculation 2019; 27:e12588. [PMID: 31465606 PMCID: PMC7050534 DOI: 10.1111/micc.12588] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Contrast-enhanced ultrasound is an imaging technique that can be used to quantify microvascular blood volume and blood flow of vital organs in humans. It relies on the use of microbubble contrast agents and ultrasound-based imaging of microbubbles. Over the past decades, both ultrasound contrast agents and experimental techniques to image them have rapidly improved, as did experience among investigators and clinicians. However, these improvements have not yet resulted in uniform guidelines for CEUS when it comes to quantification of tissue perfusion in humans, preventing its uniform and widespread use in research settings. The objective of this review is to provide a methodological overview of CEUS and its development, the influences of hardware and software settings, type and dosage of ultrasound contrast agent, and method of analysis on CEUS-derived perfusion data. Furthermore, we will discuss organ-specific imaging challenges, advantages, and limitations of CEUS.
Collapse
Affiliation(s)
- Anna L Emanuel
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Rick I Meijer
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Erik van Poelgeest
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Pien Spoor
- Department of Physiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Erik H Serné
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|