1
|
Schneider A, Hage A, Stein ICAP, Kriedemann N, Zweigerdt R, Leffler A. A Possible Role of Tetrodotoxin-Sensitive Na + Channels for Oxidation-Induced Late Na + Currents in Cardiomyocytes. Int J Mol Sci 2024; 25:6596. [PMID: 38928302 PMCID: PMC11203718 DOI: 10.3390/ijms25126596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| | - Axel Hage
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| | | | - Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| |
Collapse
|
2
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
3
|
Li H, Wang C, Cai L, Yu X, Wu L, Yuan N, Zhu Y, Jia N, James TD, Huang C. Versatile Ratiometric Fluorescent Probe Based on the Two-Isophorone Fluorophore for Sensing Nitroxyl. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huan Li
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Chengcheng Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Lei Cai
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiang Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Nannan Yuan
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yiming Zhu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
4
|
Smulik-Izydorczyk R, Dębowska K, Pięta J, Michalski R, Marcinek A, Sikora A. Fluorescent probes for the detection of nitroxyl (HNO). Free Radic Biol Med 2018; 128:69-83. [PMID: 29704623 DOI: 10.1016/j.freeradbiomed.2018.04.564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/19/2022]
Abstract
Nitroxyl (HNO), which according to the IUPAC recommended nomenclature should be named azanone, is the protonated one-electron reduction product of nitric oxide. Recently, it has gained a considerable attention due to the interesting pharmacological effects of its donors. Although there has been great progress in the understanding of HNO chemistry and chemical biology, it still remains the most elusive reactive nitrogen species, and its selective detection is a real challenge. The development of reliable methodologies for the direct detection of azanone is essential for the understanding of important signaling properties of this reactive intermediate and its pharmacological potential. Over the last decade, there has been considerable progress in the development of low-molecular-weight fluorogenic probes for the detection of HNO, and therefore, in this review, we have focused on the challenges and limitations of and perspectives on nitroxyl detection based on the use of such probes.
Collapse
Affiliation(s)
- Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
5
|
A kinetic study on the reactivity of azanone ( HNO ) toward its selected scavengers: Insight into its chemistry and detection. Nitric Oxide 2017; 69:61-68. [DOI: 10.1016/j.niox.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
|
6
|
Wynne BM, Labazi H, Carneiro ZN, Tostes RC, Webb RC. Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta. Eur J Pharmacol 2017; 814:294-301. [PMID: 28830679 DOI: 10.1016/j.ejphar.2017.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Nitroglycerin (Gtn) is a treatment for cardiovascular patients due to its vasodilatory actions, but induces tolerance when given chronically. A proposed mechanism is the superoxide (O2-)-oxidative stress hypothesis, which suggests that Gtn increases O2- production. Nitric oxide (NO) exists in three different redox states; the protonated, reduced state, nitroxyl anion (HNO) is an emerging candidate in vascular regulation. HNO is resistant to scavenging and of particular interest in conditions where high levels of reactive oxygen species (ROS) exist. We hypothesize that treatment with Gtn will exacerbate endothelin 1 (ET-1) induced vascular dysfunction via an increase in ROS, while treatment with Angeli's Salt (AS), an HNO donor, will not. Aorta from mice were isolated and divided into four groups: vehicle, ET-1 [0.1μM, 1μM], ET-1+Gtn [Gtn 1μM] and ET-1+AS [AS 1μM]. Concentration response curves (CRCs) to acetylcholine (ACh) and phenylephrine (Phe) were performed. Aorta incubated with ET-1 (for 20-22h) exhibited a decreased relaxation response to ACh and an increase in Phe-mediated contraction. Aorta incubated with AS exhibited a reversal in ET-1 induced vascular and endothelial dysfunction. ET-1 increased ROS in aortic vascular smooth muscle cells (VSMCs), visualized by dihydroethidium (DHE) staining. AS incubated reduced this ROS generation, yet maintained with Gtn treatment. These data suggest that aorta incubated with the HNO donor, AS, can reverse ET-1 mediated vascular dysfunction, which may be through a decrease or prevention of ROS generation. We propose that HNO may be vasoprotective and that HNO donors studied as a therapeutic option where other organic nitrates are contraindicative.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Department of Medicine, Renal Division, Emory University, 615 Michael St. Ste 605C, Atlanta, GA 30322, United States.
| | - Hicham Labazi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, United States.
| | - Zidonia N Carneiro
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| | - Rita C Tostes
- Pharmacology Department, Medical School of Ribeirão Preto, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
7
|
Subedi H, Brasch NE. Studies on the Reaction of Reduced Vitamin B12Derivatives with the Nitrosyl Hydride (HNO) Donor Angeli's Salt: HNO Oxidizes the Transition-Metal Center of Cob(I)alamin. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Abstract
The loss of contractile function is a hallmark of heart failure. Although increasing intracellular Ca(2+) is a possible strategy for improving contraction, current inotropic agents that achieve this by raising intracellular cAMP levels, such as β-agonists and phosphodiesterase inhibitors, are generally deleterious when administered as long-term therapy due to arrhythmia and myocardial damage. Nitroxyl donors have been shown to improve cardiac function in normal and failing dogs, and in isolated cardiomyocytes they increase fractional shortening and Ca(2+) transients, independently from cAMP/PKA or cGMP/PKG signaling. Instead, nitroxyl targets cysteines in the EC-coupling machinery and myofilament proteins, reversibly modifying them to enhance Ca(2+) handling and myofilament Ca(2+) sensitivity. Phase I-IIa trials with CXL-1020, a novel pure HNO donor, reported declines in left and right heart filling pressures and systemic vascular resistance, and increased cardiac output and stroke volume index. These findings support the concept of nitroxyl donors as attractive agents for the treatment of acute decompensated heart failure.
Collapse
|
9
|
Pagliaro P, Gattullo D, Penna C. Nitroglycerine and sodium trioxodinitrate: from the discovery to the preconditioning effect. J Cardiovasc Med (Hagerstown) 2014; 14:698-704. [PMID: 23695182 DOI: 10.2459/jcm.0b013e3283621ac6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The history began in the 19th century with Ascanio Sobrero (1812-1888), the discoverer of glycerol trinitrate (nitroglycerine, NTG), and with Angelo Angeli (1864-1931), the discoverer of sodium trioxodinitrate (Angeli's salt). It is likely that Angeli and Sobrero never met, but their two histories will join each other more than a century later. In fact, it has been discovered that both NTG and Angeli's salt are able to induce a preconditioning effect. As NTG has a long history as an antianginal drug its newly discovered property as a preconditioning agent has also been tested in humans. Angeli's salt properties as a preconditioning and inotropic agent have only been tested in animals so far.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | | |
Collapse
|
10
|
Holland RJ, Paulisch R, Cao Z, Keefer LK, Saavedra JE, Donzelli S. Enzymatic generation of the NO/HNO-releasing IPA/NO anion at controlled rates in physiological media using β-galactosidase. Nitric Oxide 2013; 35:131-6. [PMID: 24126017 PMCID: PMC3881966 DOI: 10.1016/j.niox.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/19/2013] [Accepted: 10/04/2013] [Indexed: 11/21/2022]
Abstract
We introduce a strategy for generating mixtures of nitric oxide (NO) and nitroxyl (HNO) at tunable rates in physiological media. The approach involves converting a spontaneously HNO/NO-generating ion to a caged (prodrug) form that is essentially stable in neutral media, but that can be activated for HNO/NO release by adding an enzyme capable of efficiently opening the cage to regenerate the ion. By judiciously choosing the enzyme, substrate, and reaction conditions, unwanted scavenging of the HNO and NO by the protein can be minimised and the catalytic efficiency of the enzyme can be maintained. We illustrate this approach with a proof-of-concept study wherein the prodrug is Gal-IPA/NO, a diazeniumdiolate of structure iPrHN-N(O)NOR, with R=β-d-galactosyl. Escherichia coli-derived β-d-galactosidase at concentrations of 1.9-15nM hydrolysed 56μM substrate with half-lives of 140-19min, respectively, producing the IPA/NO anion (iPrHN-N(O)NO(-), half-life ∼3min), which in turn spontaneously hydrolysed to mixtures of HNO with NO. Using saturating substrate concentrations furnished IPA/NO generation rates that were directly proportional to enzyme concentration. Consistent with these data, the enzyme/substrate combination applied to ventricular myocytes isolated from wild-type mouse hearts resulted not only in a significant positive inotropic effect, but also rescued the cells from the negative inotropy, hypercontractions, and occasional cell death seen with the enzyme alone. This mechanism represents an alternate approach for achieving controlled fluxes of NO/HNO to investigate their biological actions.
Collapse
Affiliation(s)
- Ryan J Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, Mazhari R, Takimoto E, Paolocci N, Cowart D, Colucci WS, Kass DA. Nitroxyl (HNO): A novel approach for the acute treatment of heart failure. Circ Heart Fail 2013; 6:1250-8. [PMID: 24107588 DOI: 10.1161/circheartfailure.113.000632] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The nitroxyl (HNO) donor, Angeli's salt, exerts positive inotropic, lusitropic, and vasodilator effects in vivo that are cAMP independent. Its clinical usefulness is limited by chemical instability and cogeneration of nitrite which itself has vascular effects. Here, we report on effects of a novel, stable, pure HNO donor (CXL-1020) in isolated myoctyes and intact hearts in experimental models and in patients with heart failure (HF). METHODS AND RESULTS CXL-1020 converts solely to HNO and inactive CXL-1051 with a t1/2 of 2 minutes. In adult mouse ventricular myocytes, it dose dependently increased sarcomere shortening by 75% to 210% (50-500 μmol/L), with a ≈30% rise in the peak Ca(2+) transient only at higher doses. Neither inhibition of protein kinase A nor soluble guanylate cyclase altered this contractile response. Unlike isoproterenol, CXL-1020 was equally effective in myocytes from normal or failing hearts. In anesthetized dogs with coronary microembolization-induced HF, CXL-1020 reduced left ventricular end-diastolic pressure and myocardial oxygen consumption while increasing ejection fraction from 27% to 40% and maximal ventricular power index by 42% (both P<0.05). In conscious dogs with tachypacing-induced HF, CXL-1020 increased contractility assessed by end-systolic elastance and provided venoarterial dilation. Heart rate was minimally altered. In patients with systolic HF, CXL-1020 reduced both left and right heart filling pressures and systemic vascular resistance, while increasing cardiac and stroke volume index. Heart rate was unchanged, and arterial pressure declined modestly. CONCLUSIONS These data show the functional efficacy of a novel pure HNO donor to enhance myocardial function and present first-in-man evidence for its potential usefulness in HF. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01096043, NCT01092325.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Papeo G, Pulici M. Italian chemists' contributions to named reactions in organic synthesis: an historical perspective. Molecules 2013; 18:10870-900. [PMID: 24008246 PMCID: PMC6270118 DOI: 10.3390/molecules180910870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022] Open
Abstract
From the second half of the 19th century up to modern times, the tremendous contribution of Italian chemists to the development of science resulted in the discovery of a number of innovative chemical transformations. These reactions were subsequently christened according to their inventors’ name and so entered into the organic chemistry portfolio of “named organic reactions”. As these discoveries were being conceived, massive social, political and geographical changes in these chemists’ homeland were also occurring. In this review, a brief survey of known (and some lesser known) named organic reactions discovered by Italian chemists, along with their historical contextualization, is presented.
Collapse
Affiliation(s)
- Gianluca Papeo
- Department of Medicinal Chemistry, Nerviano Medical Sciences srl, Business Unit Oncology, Viale Pasteur 10, Nerviano 20014, MI, Italy
- Authors to whom correspondence should be addressed; E-Mails: (G.P.); (M.P.)
| | - Maurizio Pulici
- Department of Chemical Core Technologies, Nerviano Medical Sciences srl, Business Unit Oncology, Viale Pasteur 10, Nerviano 20014, MI, Italy
- Authors to whom correspondence should be addressed; E-Mails: (G.P.); (M.P.)
| |
Collapse
|
13
|
Wynne BM, Labazi H, Tostes RC, Webb RC. Aorta from angiotensin II hypertensive mice exhibit preserved nitroxyl anion mediated relaxation responses. Pharmacol Res 2011; 65:41-7. [PMID: 21767645 DOI: 10.1016/j.phrs.2011.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/23/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
Hypertension is a disorder affecting millions worldwide, and is a leading cause of death and debilitation in the United States. It is widely accepted that during hypertension and other cardiovascular diseases the vasculature exhibits endothelial dysfunction; a deficit in the relaxatory ability of the vessel, attributed to a lack of nitric oxide (NO) bioavailability. Recently, the one electron redox variant of NO, nitroxyl anion (NO(-)) has emerged as an endothelium-derived relaxing factor (EDRF) and a candidate for endothelium-derived hyperpolarizing factor (EDRF). NO(-) is thought to exist protonated (HNO) in vivo, which would make this species more resistant to scavenging. However, no studies have investigated the role of this redox species during hypertension, and whether the vasculature loses the ability to relax to HNO. Thus, we hypothesize that aorta from angiotensin II (AngII)-hypertensive mice will exhibit a preserved relaxation response to Angeli's Salt, an HNO donor. Male C57Bl6 mice, aged 12-14 weeks were implanted with mini-osmotic pumps containing AngII (90ng/min, 14 days plus high salt chow) or sham surgery. Aorta were excised, cleaned and used to perform functional studies in a myograph. We found that aorta from AngII-hypertensive mice exhibited a significant endothelial dysfunction as demonstrated by a decrease in acetylcholine (ACh)-mediated relaxation. However, vessels from hypertensive mice exhibited a preserved response to Angeli's Salt (AS), the HNO donor. To confirm that relaxation responses to HNO were maintained, concentration response curves (CRCs) to ACh were performed in the presence of scavengers to both NO and HNO (carboxy-PTIO and L-cys, resp.). We found that ACh-mediated relaxation responses were significantly decreased in aorta from sham and almost completely abolished in aorta from AngII-treated mice. Vessels incubated with l-cys exhibited a modest decrease in ACh-mediated relaxations responses. These data demonstrate that aorta from AngII-treated hypertensive mice exhibit a preserved relaxation response to AS, an HNO donor, regardless of a significant endothelial dysfunction.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, United States.
| | | | | | | |
Collapse
|
14
|
Yong QC, Cheong JL, Hua F, Deng LW, Khoo YM, Lee HS, Perry A, Wood M, Whiteman M, Bian JS. Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal 2011; 14:2081-91. [PMID: 21194352 DOI: 10.1089/ars.2010.3572] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Both nitric oxide (NO) and hydrogen sulfide (H(2)S) are two important gaseous mediators regulating heart function. The present study examined the interaction between these two biological gases and its role in the heart. We found that l-arginine, a substrate of NO synthase, decreased the amplitudes of myocyte contraction and electrically induced calcium transients. Sodium hydrogen sulfide (an H(2)S donor), which alone had minor effect, reversed the negative inotropic effects of l-arginine. The effect of l-arginine + sodium hydrogen sulfide was abolished by three thiols (l-cysteine, N-acetyl-cysteine, and glutathione), suggesting that the effect of H(2)S + NO is thiol sensitive. The stimulatory effect on heart contractility was also induced by GYY4137, a slow-releasing H(2)S donor, when used together with sodium nitroprusside, an NO-releasing donor. More importantly, enzymatic generation of H(2)S from recombinant cystathionine-γ-lyase protein also interacted with endogenous NO generated from l-arginine to stimulate heart contraction. In summary, our data suggest that endogenous NO may interact with H(2)S to produce a new biological mediator that produces positive inotropic effect. The crosstalk between H(2)S and NO also suggests an intriguing potential for the endogenous formation of a thiol-sensitive molecule, which may be of physiological significance in the heart.
Collapse
Affiliation(s)
- Qian-Chen Yong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, Cheng R, Glynn SA, Paolocci N, Fukuto JM, Miranda KM, Wink DA. The specificity of nitroxyl chemistry is unique among nitrogen oxides in biological systems. Antioxid Redox Signal 2011; 14:1659-74. [PMID: 21235346 PMCID: PMC3070000 DOI: 10.1089/ars.2010.3841] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The importance of nitric oxide in mammalian physiology has been known for nearly 30 years. Similar attention for other nitrogen oxides such as nitroxyl (HNO) has been more recent. While there has been speculation as to the biosynthesis of HNO, its pharmacological benefits have been demonstrated in several pathophysiological settings such as cardiovascular disorders, cancer, and alcoholism. The chemical biology of HNO has been identified as related to, but unique from, that of its redox congener nitric oxide. A summary of these findings as well as a discussion of possible endogenous sources of HNO is presented in this review.
Collapse
Affiliation(s)
- Wilmarie Flores-Santana
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Choe CU, Lewerenz J, Gerloff C, Magnus T, Donzelli S. Nitroxyl in the central nervous system. Antioxid Redox Signal 2011; 14:1699-711. [PMID: 21235347 DOI: 10.1089/ars.2010.3852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nitroxyl (HNO) is the one-electron-reduced and protonated congener of nitric oxide (NO). Compared to NO, it is far more reactive with thiol groups either in proteins or in small antioxidant molecules either converting those into sulfinamides or inducing disulfide bond formation. HNO might mediate cytoprotective changes of protein function through thiol modifications. However, HNO is a strong oxidant that in vitro reacts with glutathione to form glutathione disulfide and glutathione sulfinamide. The resulting oxidative stress might aggravate tissue damage in inflammatory diseases. In this review, we will summarize the current knowledge of how exogenous HNO affects the central nervous system, especially nerve cells and glia in health and disease. Unlike most other organs, the brain is separated from the circulation by the blood-brain barrier, which limits access of many pharmacological compounds. Given that, we will review what is known about the ability of currently used HNO donors to cross the blood-brain barrier. Moreover, considering that the physiology and composition of the brain has unique properties, for example, expression of brain-specific enzymes like neuronal NO synthase, its high iron content, and increased energy metabolism, we will discuss possible sources of endogenous HNO in the brain.
Collapse
Affiliation(s)
- Chi-Un Choe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Germany
| | | | | | | | | |
Collapse
|
17
|
Fukuto JM, Bianco CL, Chavez TA. Nitroxyl (HNO) signaling. Free Radic Biol Med 2009; 47:1318-24. [PMID: 19539748 DOI: 10.1016/j.freeradbiomed.2009.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/16/2022]
Abstract
Nitroxyl (HNO) has become a nitrogen oxide of significant interest due to its reported biological activity. The actions of HNO in the cardiovascular system appear to make it a good candidate for therapeutic applications for cardiovascular disorders and other potentially important effects have been noted as well. Although the chemistry associated with this activity has not been firmly established, the propensity for HNO to react with thiols and metals are likely mechanisms. Herein, are described the biological activity of HNO and some of the chemistry of HNO that may be responsible for its biological effects.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| | | | | |
Collapse
|