1
|
Dasinger JH, Abais-Battad JM, McCrorey MK, Van Beusecum JP. Recent advances on immunity and hypertension: the new cells on the kidney block. Am J Physiol Renal Physiol 2025; 328:F301-F315. [PMID: 39853324 DOI: 10.1152/ajprenal.00309.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Over the past 50 years, the contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells, present antigenic peptides to T cells, promoting inflammation and the elevation of blood pressure. These T cells and other adaptive immune cells migrate to vascular and tubular cells of the kidney and promote end-organ fibrosis, damage, and ultimately hypertensive injury. Through the development of high-throughput screening, novel renal and immune cell subsets have been identified as possible contributors and regulators of renal injury and hypertension. In this review, we will consider classical immunological cells and their contribution to renal inflammation, and novel cell subsets, including renal stromal cells, that could potentially shed new light on renal injury and hypertension. Finally, we will discuss how interorgan inflammation contributes to the development of hypertension and hypertension-related multiorgan damage, and explore the clinical implications of the immunological components of renal injury and hypertension.
Collapse
Affiliation(s)
- John Henry Dasinger
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, August University, Augusta, Georgia, United States
| | - Marice K McCrorey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Research and Development, Ralph H. Johnson VA Healthcare System, Charleston, South Carolina, United States
| |
Collapse
|
2
|
Prouse T, Majumder S, Majumder R. Functions of TAM Receptors and Ligands Protein S and Gas6 in Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:12736. [PMID: 39684449 DOI: 10.3390/ijms252312736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Atherosclerosis and cardiovascular disease are associated with high morbidity and mortality in industrialized nations. The Tyro3, Axl, and Mer (TAM) family of receptor tyrosine kinases is involved in the amplification or resolution of atherosclerosis pathology and other cardiovascular pathology. The ligands of these receptors, Protein S (PS) and growth arrest specific protein 6 (Gas6), are essential for TAM receptor functions in the amplification and resolution of atherosclerosis. The Axl-Gas6 interaction has various effects on cardiovascular disease. Mer and PS dampen inflammation, thereby protecting against atherosclerosis progression. Tyro3, the least studied TAM receptor in cardiovascular disease, appears to protect against fibrosis in post-myocardial infarction injury. Ultimately, PS, Gas6, and TAM receptors present an exciting avenue of potential therapeutic targets against inflammation associated with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Teagan Prouse
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Harrison DG, Patrick DM. Immune Mechanisms in Hypertension. Hypertension 2024; 81:1659-1674. [PMID: 38881474 PMCID: PMC11254551 DOI: 10.1161/hypertensionaha.124.21355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
It is now apparent that immune mediators including complement, cytokines, and cells of the innate and adaptive immune system contribute not only to blood pressure elevation but also to the target organ damage that occurs in response to stimuli like high salt, aldosterone, angiotensin II, and sympathetic outflow. Alterations of vascular hemodynamic factors, including microvascular pulsatility and shear forces, lead to vascular release of mediators that affect myeloid cells to become potent antigen-presenting cells and promote T-cell activation. Research in the past 2 decades has defined specific biochemical and molecular pathways that are engaged by these stimuli and an emerging paradigm is these not only lead to immune activation, but that products of immune cells, including cytokines, reactive oxygen species, and metalloproteinases act on target cells to further raise blood pressure in a feed-forward fashion. In this review, we will discuss these molecular and pathophysiological events and discuss clinical interventions that might prove effective in quelling this inflammatory process in hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
4
|
Li F, Xu L, Li C, Hu F, Su Y. Immunological role of Gas6/TAM signaling in hemostasis and thrombosis. Thromb Res 2024; 238:161-171. [PMID: 38723521 DOI: 10.1016/j.thromres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
The immune system is an emerging regulator of hemostasis and thrombosis. The concept of immunothrombosis redefines the relationship between coagulation and immunomodulation, and the Gas6/Tyro3-Axl-MerTK (TAM) signaling pathway builds the bridge across them. During coagulation, Gas6/TAM signaling pathway not only activates platelets, but also promotes thrombosis through endothelial cells and vascular smooth muscle cells involved in inflammatory responses. Thrombosis appears to be a common result of a Gas6/TAM signaling pathway-mediated immune dysregulation. TAM TK and its ligands have been found to be involved in coagulation through the PI3K/AKT or JAK/STAT pathway in various systemic diseases, providing new perspectives in the understanding of immunothrombosis. Gas6/TAM signaling pathway serves as a breakthrough target for novel therapeutic strategies to improve disease management. Many preclinical and clinical studies of TAM receptor inhibitors are in process, confirming the pivotal role of Gas6/TAM signaling pathway in immunothrombosis. Therapeutics targeting the TAM receptor show potential both in anticoagulation management and immunotherapy. Here, we review the immunological functions of the Gas6/TAM signaling pathway in coagulation and its multiple mechanisms in diseases identified to date, and discuss the new clinical strategies that may generated by these roles.
Collapse
Affiliation(s)
- Fanshu Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; Peking University People's Hospital, Qingdao, China
| |
Collapse
|
5
|
Liu J, Wu J. The Pathogenesis and Impact of Arterial Stiffening in Hypertension: The 2023 John H. Laragh Research Award. Am J Hypertens 2024; 37:241-247. [PMID: 38214376 PMCID: PMC11484606 DOI: 10.1093/ajh/hpae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Fifty years ago, Dr. John Laragh brought forward the "vasoconstriction-volume hypothesis" of hypertension. This is Ohm's Law in blood pressure regulation, explicating hypertension as a consequence of increased peripheral vascular resistance, cardiac output, or both. Resistance vessels, those of a diameter less than 200 μm, determines mean arterial pressure by controlling peripheral vascular resistance. In comparison, large capacitance arteries, particularly the aorta, confines the systolic and diastolic blood pressure in physiological range through the "windkessel effect." Loss of this cushioning function results in aortic stiffening and isolated systolic hypertension, both of which are independently associated with increased risk for coronary, cerebral, and renal diseases. Aortic stiffening is both a cause and a consequence of hypertension. On one hand, aortic stiffness precedes the onset of hypertension in populations and experimental models, and hemodynamic derangements related to aortic stiffening contributes to the development of hypertension by promoting renal dysfunction. On the other hand, the vasculature itself is a hypertensive target organ and hypertensive mechanical stretch directly induces the pathogenesis of aortic adventitial remodeling. Various cell types, including bone marrow-derived circulating fibrocytes, vascular stem cell antigen-1 positive progenitors, and endothelial to mesenchymal transition, and to a lesser extent resident fibroblasts, contribute to adventitial matrix deposition and aortic stiffening in hypertension. Vascular smooth muscle stiffness is another important contributor of aortic stiffening. Understanding the roles of immune components and specific signal pathways in the pathogenesis aortic stiffening paves the path to novel antihypertensive and anti-fibrosis therapies.
Collapse
Affiliation(s)
- Jing Liu
- Division of Nephrology, Department of Medicine, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Jing Wu
- Division of Nephrology, Department of Medicine, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pharmacology & Physiology, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
- Environmental Health Science Center, Institute of Human Health and the Environment, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Zhang X, Che Y, Mao L, Li D, Deng J, Guo Y, Zhao Q, Zhang X, Wang L, Gao X, Chen Y, Zhang T. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation. Genomics 2023; 115:110685. [PMID: 37454936 DOI: 10.1016/j.ygeno.2023.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Aortic dissection is a devastating cardiovascular disease with a high lethality. Histone variants maintain the genomic integrity and play important roles in development and diseases. However, the role of histone variants in aortic dissection has not been well identified. In the present study, H3f3b knockdown reduced the synthetic genes expression of VSMCs, while overexpressing H3f3b exacerbated the cellular immune response of VSMCs induced by inflammatory cytokines. Combined RNA-seq and ChIP-seq analyses revealed that histone variant H3.3B directly bound to the genes related to extracellular matrix, VSMC synthetic phenotype, cytokine responses and TGFβ signaling pathway, and regulated their expressions. In addition, VSMC-specific H3f3b knockin aggravated aortic dissection development in mice, while H3f3b knockout significantly reduced the incidence of aortic dissection. In term of mechanisms, H3.3B regulated Spp1 and Ccl2 genes, inducing the apoptosis of VSMCs and recruiting macrophages. This study demonstrated the vital roles of H3.3B in phenotypic transition of VSMCs, loss of media VSMCs, and vascular inflammation in aortic dissection.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianqing Deng
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Yilong Guo
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xingzhong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration,Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yinan Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| | - Tao Zhang
- Vascular Surgery Department, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
7
|
Irons L, Cavinato C, Humphrey JD. Persistent non-homeostatic remodeling of aortic collagen following a brief episode of hypertension: A computational study. J Mech Behav Biomed Mater 2023; 144:105966. [PMID: 37327590 PMCID: PMC10353492 DOI: 10.1016/j.jmbbm.2023.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
The healthy adult aorta exhibits a remarkable homeostatic ability to respond to sustained changes in hemodynamic loads under many circumstances, but this mechanical homeostasis can be compromised or lost in natural aging and diverse pathological processes. Herein, we investigate persistent non-homeostatic changes in the composition and mechanical properties of the thoracic aorta in adult wild-type mice following 14 days of angiotensin II-induced hypertension. We employ a multiscale computational model of arterial growth and remodeling driven by mechanosensitive and angiotensin II-related cell signaling pathways. We find that experimentally observed findings can only be recapitulated computationally if the collagen deposited during the transient period of hypertension has altered properties (deposition stretch, fiber angle, crosslinking) compared with the collagen produced in the original homeostatic state. Some of these changes are predicted to persist for at least six months after blood pressure is restored to normal levels, consistent with the experimental findings.
Collapse
Affiliation(s)
- Linda Irons
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Sachan N, Phoon CKL, Zilberberg L, Kugler MC, Ene T, Mintz SB, Murtada SI, Weiss D, Fishman GI, Humphrey JD, Rifkin DB. TGFβ-2 haploinsufficiency causes early death in mice with Marfan syndrome. Matrix Biol 2023; 121:41-55. [PMID: 37217119 PMCID: PMC10527763 DOI: 10.1016/j.matbio.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
To assess the contribution of individual TGF-β isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-β1, 2, or 3 heterozygous null mutation. The loss of TGF-β2, and only TGF-β2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-β2 in the postnatal development of the heart, aorta and lungs.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| | - Colin K L Phoon
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Lior Zilberberg
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Matthias C Kugler
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Taylor Ene
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Shana B Mintz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Glenn I Fishman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Daniel B Rifkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
9
|
Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res 2023; 132:970-992. [PMID: 37053275 PMCID: PMC10097498 DOI: 10.1161/circresaha.123.321752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The endothelium is considered to be the gatekeeper of the vessel wall, maintaining and regulating vascular integrity. In patients with chronic kidney disease, protective endothelial cell functions are impaired due to the proinflammatory, prothrombotic and uremic environment caused by the decline in kidney function, adding to the increase in cardiovascular complications in this vulnerable patient population. In this review, we discuss endothelial cell functioning in healthy conditions and the contribution of endothelial cell dysfunction to cardiovascular disease. Further, we summarize the phenotypic changes of the endothelium in chronic kidney disease patients and the relation of endothelial cell dysfunction to cardiovascular risk in chronic kidney disease. We also review the mechanisms that underlie endothelial changes in chronic kidney disease and consider potential pharmacological interventions that can ameliorate endothelial health.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| |
Collapse
|
10
|
Yee SM, Choi H, Seon JE, Ban YJ, Kim MJ, Seo JE, Seo JH, Kim S, Moon SH, Yun CH, Lee HB, Kang HS. Axl alleviates DSS-induced colitis by preventing dysbiosis of gut microbiota. Sci Rep 2023; 13:5371. [PMID: 37005456 PMCID: PMC10067963 DOI: 10.1038/s41598-023-32527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Axl is a tyrosine kinase receptor, a negative regulator for innate immune responses and inflammatory bowel disease (IBD). The gut microbiota regulates intestinal immune homeostasis, but the role of Axl in the pathogenesis of IBD through the regulation of gut microbiota composition remains unresolved. In this study, mice with DSS-induced colitis showed increased Axl expression, which was almost entirely suppressed by depleting the gut microbiota with antibiotics. Axl-/- mice without DSS administration exhibited increased bacterial loads, especially the Proteobacteria abundant in patients with IBD, significantly consistent with DSS-induced colitis mice. Axl-/- mice also had an inflammatory intestinal microenvironment with reduced antimicrobial peptides and overexpression of inflammatory cytokines. The onset of DSS-induced colitis occurred faster with an abnormal expansion of Proteobacteria in Axl-/- mice than in WT mice. These findings suggest that a lack of Axl signaling exacerbates colitis by inducing aberrant compositions of the gut microbiota in conjunction with an inflammatory gut microenvironment. In conclusion, the data demonstrated that Axl signaling could ameliorate the pathogenesis of colitis by preventing dysbiosis of gut microbiota. Therefore, Axl may act as a potential novel biomarker for IBD and can be a potential candidate for the prophylactic or therapeutic target of diverse microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Harim Choi
- Department of Nursing, Nambu University, 23 Chumdan Jungang-Ro, Gwangsan-Gu, Gwangju, 62271, Republic of Korea
| | - Jeong-Eun Seon
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Yu-Jin Ban
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Min-Jae Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Jae-Eun Seo
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Ja Hun Seo
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Sehyeon Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Seo Hee Moon
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
Cristóbal H, Enjuanes C, Batlle M, Tajes M, Campos B, Francesch J, Moliner P, Farrero M, Andrea R, Ortiz-Pérez JT, Morales A, Sabaté M, Comin-Colet J, García de Frutos P. Prognostic Value of Soluble AXL in Serum from Heart Failure Patients with Preserved and Reduced Left Ventricular Ejection Fraction. J Pers Med 2023; 13:446. [PMID: 36983628 PMCID: PMC10056687 DOI: 10.3390/jpm13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Heart failure (HF) is classified according to the degree of reduction in left ventricular ejection fraction (EF) in HF with reduced, mildly reduced, and preserved EF. Biomarkers could behave differently depending on EF type. Here, we analyze the soluble form of the AXL receptor tyrosine kinase (sAXL) in HF patients with reduced and preserved EF. Two groups of HF patients with reduced (HFrEF; n = 134) and preserved ejection fraction (HFpEF; n = 134) were included in this prospective observational study, with measurements of candidate biomarkers and functional, clinical, and echocardiographic variables. A Cox regression model was used to determine predictors for clinical events: cardiovascular mortality and all-cause mortality. sAXL circulating values predicted outcome in HF: for a 1.0 ng/mL increase in serum sAXL, the mortality hazard ratio (HR) was 1.019 for HFrEF (95% CI 1.000 to 1.038) and 1.032 for HFpEF (95% CI 1.013 to 1.052). In a multivariable Cox regression analysis, sAXL and NT-proBNP were independent markers for all-cause and cardiovascular mortality in HFpEF. In contrast, only NT-proBNP remained significant in the HFrEF group. When analyzing the event-free survival at a mean follow-up of 3.6 years, HFrEF and HFpEF patients in the higher quartile of sAXL had a reduced survival time. Interestingly, sAXL is a reliable predictor for all-cause and cardiovascular mortality only in the HFpEF cohort. The results suggest an important role for AXL in HFpEF, supporting sAXL evaluation in larger clinical studies and pointing to AXL as a potential target for HF therapy.
Collapse
Affiliation(s)
- Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
| | - Cristina Enjuanes
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Montserrat Batlle
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Marta Tajes
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Begoña Campos
- Department of Basic Clinical Practice, Universitat de Barcelona, E08036 Barcelona, Spain
| | - Josep Francesch
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
| | - Pedro Moliner
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Marta Farrero
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Rut Andrea
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - José Tomás Ortiz-Pérez
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
| | - Manel Sabaté
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Josep Comin-Colet
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, E08036 Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM) and IIBB-CSIC Associated RDI Unit, E08036 Barcelona, Spain
| |
Collapse
|