1
|
Nan Y, Zeng X, Jin Z, Li N, Chen Z, Chen J, Wang D, Wang Y, Lin Z, Ying L. PDE1 or PDE5 inhibition augments NO-dependent hypoxic constriction of porcine coronary artery via elevating inosine 3',5'-cyclic monophosphate level. J Cell Mol Med 2020; 24:14514-14524. [PMID: 33169529 PMCID: PMC7754025 DOI: 10.1111/jcmm.16078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxic coronary vasospasm may lead to myocardial ischaemia and cardiac dysfunction. Inosine 3',5'-cyclic monophosphate (cIMP) is a putative second messenger to mediate this pathological process. Nevertheless, it remains unclear as to whether levels of cIMP can be regulated in living tissue such as coronary artery and if so, what is the consequence of this regulation on hypoxia-induced vasoconstriction. In the present study, we found that cIMP was a key determinant of hypoxia-induced constriction but not that of the subsequent relaxation response in porcine coronary arteries. Subsequently, coronary arteries were treated with various phosphodiesterase (PDE) inhibitors to identify PDE types that are capable of regulating cIMP levels. We found that inhibition of PDE1 and PDE5 substantially elevated cIMP content in endothelium-denuded coronary artery supplemented with exogenous purified cIMP. However, cGMP levels were far lower than their levels in intact coronary arteries and lower than cIMP levels measured in endothelium-denuded coronary arteries supplemented with exogenous cIMP. The increased cIMP levels induced by PDE1 or PDE5 inhibition further led to augmented hypoxic constriction without apparently affecting the relaxation response. In intact coronary artery, PDE1 or PDE5 inhibition up-regulated cIMP levels under hypoxic condition. Concomitantly, cGMP level increased to a comparable level. Nevertheless, the hypoxia-mediated constriction was enhanced in this situation that was largely compromised by an even stronger inhibition of PDEs. Taken together, these data suggest that cIMP levels in coronary arteries are regulated by PDE1 and PDE5, whose inhibition at a certain level leads to increased cIMP content and enhanced hypoxic constriction.
Collapse
Affiliation(s)
- Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueqin Zeng
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiyi Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jiantong Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dezhong Wang
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lei Ying
- Department of Pathophysiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Vanhoutte PM, Leung SWS. Hypoxic augmentation: The tale of a strange contraction. Basic Clin Pharmacol Toxicol 2019; 127:59-66. [PMID: 31310708 DOI: 10.1111/bcpt.13295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Almost fifty years ago, experiments on isolated veins showed that acute hypoxia augments venoconstrictor responses in vitro and that such facilitation relied on anaerobic glycolysis. Over the years, this phenomenon was extended to a number of arterial preparations of different species and revisited, from a mechanistic point of view, with the successive demonstration that it depends on calcium handling in the vascular smooth muscle cells, is endothelium-dependent and requires the production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and the activation of soluble guanylyl cyclase (sGC). However, rather than the vasodilator cyclic nucleotide 3',5'-cyclic guanosine monophosphate (cGMP), its canonical product, the latter enzyme produces 3',5'-cyclic inosine monophosphate (cIMP) instead during acute hypoxia; this non-canonical cyclic nucleotide facilitates the contractile process in the vascular smooth muscle cells. This 'biased' activity of soluble guanylyl cyclase appears to involve stimulation of NAD(P)H:quinone oxidoreductase 1 (NQO-1). The exact interactions between hypoxia, anaerobic metabolism and NQO-1 leading to biased activity of soluble guanylyl cyclase remain to be established.
Collapse
Affiliation(s)
- Paul Michel Vanhoutte
- Department of Pharmacology and Pharmacy, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta. Anesthesiology 2019; 128:564-573. [PMID: 29251642 DOI: 10.1097/aln.0000000000002032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. METHODS Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. RESULTS Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). CONCLUSIONS These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.
Collapse
|
4
|
Detremmerie CMS, Leung SWS, Vanhoutte PM. Activation of NQO-1 mediates the augmented contractions of isolated arteries due to biased activity of soluble guanylyl cyclase in their smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1221-1235. [DOI: 10.1007/s00210-018-1548-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/24/2018] [Indexed: 01/24/2023]
|
5
|
Abstract
This essay summarizes a lecture presented on October 19th, 2017, during the 58th Annual Meeting of the Japanese College of Angiology in Nagoya, Japan. The lecture summarizes several instances where the absence of relaxations of isolated blood vessels in response to endothelium-dependent vasodilator agonists, which cause activation of endothelial nitric oxide synthase (eNOS) and consequent production of endothelium-derived nitric oxide (NO) and stimulation of soluble guanylyl cyclase (sGC) in underlying vascular smooth muscle, or hypoxia are curtailed or reversed to endothelium-dependent contractions. Chosen examples include selective dysfunction of eNOS activation in regenerated endothelial cells, unresponsiveness of vascular smooth muscle cells to NO during subarachnoid hemorrhage, and biased activation of sGC in vascular smooth muscle cells during acute exposure to hypoxia. The main message of this essay is that absence, blunting, or reversal of endothelium-dependent relaxations in response to vasodilator agonists cannot necessarily be interpreted as a sign of endothelial dysfunction. (This is a review article based on the invited lecture of the 58th Annual Meeting of Japanese College of Angiology.)
Collapse
Affiliation(s)
- Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, HKSAR, China
| |
Collapse
|
6
|
Abstract
Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.
Collapse
|
7
|
Abstract
Soluble guanylyl cyclase (sGC) is the principal enzyme in mediating the biological actions of nitric oxide. On activation, sGC converts guanosine triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP), which mediates diverse physiological processes including vasodilation, platelet aggregation, and myocardial functions predominantly by acting on cGMP-dependent protein kinases. Cyclic GMP has long been considered as the sole second messenger for sGC action. However, emerging evidence suggests that, in addition to cGMP, other nucleoside 3',5'-cyclic monophosphates (cNMPs) are synthesized by sGC in response to nitric oxide stimulation, and some of these nucleoside 3',5'-cyclic monophosphates are involved in various physiological activities. For example, inosine 3',5'-cyclic monophosphate synthesized by sGC may play a critical role in hypoxic augmentation of vasoconstriction. The involvement of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic monophosphate in certain cardiovascular activities is also implicated.
Collapse
|
8
|
Detremmerie C, Vanhoutte PM, Leung S. Biased activity of soluble guanylyl cyclase: the Janus face of thymoquinone. Acta Pharm Sin B 2017; 7:401-408. [PMID: 28752025 PMCID: PMC5518662 DOI: 10.1016/j.apsb.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022] Open
Abstract
The natural compound thymoquinone, extracted from Nigella sativa (black cumin), is widely used in humans for its anti-oxidative properties. Thymoquinone is known for its acute endothelium-independent vasodilator effects in isolated rat aortae and pulmonary arteries, depending in part on activation of adenosine triphosphate-sensitive potassium channels and inhibition of voltage-dependent calcium channels. The compound also improves endothelial dysfunction in mesenteric arteries of ageing rodents and in aortae of rabbits treated with pyrogallol, by inhibiting oxidative stress. Serendipitously, thymoquinone was found to augment contractions in isolated arteries with endothelium of both rats and pigs. The endothelium-dependent augmentation it causes counterintuitively depends on biased activation of soluble guanylyl cyclase (sGC) producing inosine 3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine 3',5'-cyclic monophosphate. This phenomenon shows a striking mechanistic similarity to the hypoxic augmentation previously observed in porcine coronary arteries. The cyclic IMP preferentially produced under thymoquinone exposure causes an increased contractility of arterial smooth muscle by interfering with calcium homeostasis. This brief review summarizes the vascular pharmacology of thymoquinone, focussing in particular on how the compound causes endothelium-dependent contractions by biasing the activity of sGC.
Collapse
|
9
|
An YM, Feng H, Zhang XZ, Cong X, Zhao Q, Wu LL, Dou D. Homocysteine ameliorates the endothelium-independent hypoxic vasoconstriction via the suppression of phosphatidylinositol 3-kinase/Akt pathway in porcine coronary arteries. Biochem Biophys Res Commun 2017; 486:178-183. [PMID: 28285136 DOI: 10.1016/j.bbrc.2017.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Endothelium-independent coronary vasoconstriction induced by continuous hypoxia contributes to the development of ischemic heart diseases. Acute elevation of homocysteine (Hcy) has a potent of vasodilation. The present study aims to investigate the role of Hcy in endothelium-independent hypoxic coronary vasoconstriction and its underlying mechanisms. METHODS AND RESULTS Vessel tension of isolated porcine coronary arteries was measured by organ chamber study and the protein expression were detected by western blot. A sustained contraction of porcine coronary artery was induced when exposed to prolonged hypoxia for more than 15 min, which was significantly reduced by Hcy in a dose-dependent manner but not affected by cysteine or N-acetyl-l-cysteine. Phosphorylated myosin light chain (MLC-p) at Ser19 was decreased when exposure to hypoxia for 15 min, and could be reversed by prolonged hypoxia for 30 and 60 min. The recovery of MLC-p at Ser19 by hypoxia for more than 30 min could be abolished by Hcy. The protein levels of phosphorylated Akt at Ser473 and phosphorylated P85 at Tyr508 were decreased by Hcy in normoxia, and were also reduced exposure to hypoxia for 15 min and then augmented by prolonged hypoxia for more than 30 min, which could be prevented by Hcy. The protein level of P110α was not affected by Hcy or prolonged hypoxia. CONCLUSIONS This study demonstrates that Hcy can ameliorate the endothelium-independent hypoxic coronary vasoconstriction, in which the inhibition of PI3K/Akt signaling pathway may be involved.
Collapse
Affiliation(s)
- Yuan-Ming An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Han Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xing-Zhong Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
10
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
11
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
12
|
Detremmerie CM, Chen Z, Li Z, Alkharfy KM, Leung SWS, Xu A, Gao Y, Vanhoutte PM. Endothelium-Dependent Contractions of Isolated Arteries to Thymoquinone Require Biased Activity of Soluble Guanylyl Cyclase with Subsequent Cyclic IMP Production. J Pharmacol Exp Ther 2016; 358:558-68. [PMID: 27335436 DOI: 10.1124/jpet.116.234153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
Preliminary experiments on isolated rat arteries demonstrated that thymoquinone, a compound widely used for its antioxidant properties and believed to facilitate endothelium-dependent relaxations, as a matter of fact caused endothelium-dependent contractions. The present experiments were designed to determine the mechanisms underlying this unexpected response. Isometric tension was measured in rings (with and without endothelium) of rat mesenteric arteries and aortae and of porcine coronary arteries. Precontracted preparations were exposed to increasing concentrations of thymoquinone, which caused concentration-dependent, sustained further increases in tension (augmentations) that were prevented by endothelium removal, Nω-nitro-L-arginine methyl ester [L-NAME; nitric oxide (NO) synthase inhibitor], and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; soluble guanylyl cyclase [sGC] inhibitor). In L-NAME-treated rings, the NO-donor diethylenetriamine NONOate restored the thymoquinone-induced augmentations; 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (sGC activator) and cyclic IMP (cIMP) caused similar restorations. By contrast, in ODQ-treated preparations, the cell-permeable cGMP analog did not restore the augmentation by thymoquinone. The compound augmented the content (measured with ultra-high performance liquid chromatography-tandem mass spectrometry) of cIMP, but not that of cGMP; these increases in cIMP content were prevented by endothelium removal, L-NAME, and ODQ. The augmentation of contractions caused by thymoquinone was prevented in porcine arteries, but not in rat arteries, by 1-(5-isoquinolinylsulfonyl)homopiperazine dihydrochloride and trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Rho-kinase inhibitors); in the latter, but not in the former, it was reduced by 3,5-dichloro-N-[[(1α,5α,6-exo,6α)-3-(3,3-dimethylbutyl)-3-azabicyclo[3.1.0]hex-6-yl]methyl]-benzamide hydrochloride (T-type calcium channel inhibitor), demonstrating species/vascular bed differences in the impact of cIMP on calcium handling. Thymoquinone is the first pharmacological agent that causes endothelium-dependent augmentation of contractions of isolated arteries, which requires endothelium-derived NO and biased sGC activation, resulting in the augmented production of cIMP favoring the contractile process.
Collapse
Affiliation(s)
- Charlotte M Detremmerie
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Zhengju Chen
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Zhuoming Li
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Khalid M Alkharfy
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Aimin Xu
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Yuansheng Gao
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| |
Collapse
|
13
|
Abstract
In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5′-triphosphate and in the synthesis of inosine 3′,5′-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5′-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca2+ through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.
Collapse
|
14
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Endothelium-Independent Hypoxic Contraction Is Prevented Specifically by Nitroglycerin via Inhibition of Akt Kinase in Porcine Coronary Artery. Stem Cells Int 2015; 2016:2916017. [PMID: 26839558 PMCID: PMC4709768 DOI: 10.1155/2016/2916017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022] Open
Abstract
Objective. Hypoxia-induced sustained contraction of porcine coronary artery is endothelium-independent and mediated by PI3K/Akt/Rho kinase. Nitroglycerin (NTG) is a vasodilator used to treat angina pectoris and acute heart failure. The present study was to determine the role of NTG in hypoxia-induced endothelium-independent contraction and the underlying mechanism. Methods and Results. Organ chamber technique was used to measure the isometric vessel tension of isolated porcine coronary arteries. Protein levels of phosphorylated and total Akt were determined by western blot. A sustained contraction of porcine coronary arteries induced by hypoxia was significantly reduced by NTG but not by isoproterenol. This contraction was also inhibited by DETA NONOate, 8-Br-cGMP, which can be reversed by ODQ, and Rp-8-Br-PET-cGMPS. The restored contraction was blocked by LY294002. The reduction of Akt-p at Ser-473 by NTG, DETA NONOate, and 8-Br-cGMP was significantly inhibited by ODQ, PKG-I. The decrease in Akt-p level by NTG and 8-Br-cGMP was prevented by calyculin A but not by okadaic acid. Conclusions. These results demonstrated that the endothelium-independent sustained hypoxic vasoconstriction can be prevented by NTG and that the inhibition of PI3K/Akt signaling pathway may be involved.
Collapse
|
16
|
Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015; 129:83-94. [PMID: 26499181 DOI: 10.1016/j.jphs.2015.09.002] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.
Collapse
|
17
|
Oversø Hansen P, Kringelholt S, Simonsen U, Bek T. Hypoxia-induced relaxation of porcine retinal arterioles in vitro depends on inducible NO synthase and EP4 receptor stimulation in the perivascular retina. Acta Ophthalmol 2015; 93:457-463. [PMID: 25619924 DOI: 10.1111/aos.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/24/2014] [Indexed: 01/26/2023]
Abstract
PURPOSE Hypoxia-induced relaxation of porcine retinal arterioles has been shown to be reduced during inhibition of prostaglandin synthesis and nitric oxide synthase (NOS). The purpose of this study was to identity the specific prostaglandin receptor(s) and source(s) of NO mediating this effect. METHODS Porcine retinal arterioles with preserved perivascular retinal tissue were mounted in a myograph and were exposed to hypoxia in the presence of one of the following: the general NO synthase inhibitor L-NAME, the selective iNOS inhibitor 1400W, the selective nNOS inhibitor 7-nitroindazole, the general cyclooxygenase (COX) inhibitor ibuprofen or an antagonist to the FP- (AL 8810), DP- (BWA868C), EP1 - (SC-19220), EP2 - (PF-044189) or EP4 receptors (GW627368X). The experiments were repeated after removal of the perivascular retinal tissue. RESULTS Hypoxia induced relaxation of retinal arterioles with preserved perivascular retinal tissue. This relaxation was significantly reduced in the presence of L-NAME, 1400W, ibuprofen and the EP4 receptor antagonist GW627368X. The simultaneous addition of L-NAME or 1400W in combination with ibuprofen, but not GW627368X, reduced hypoxia-induced vasorelaxation additively as compared to the effect of the compounds individually. CONCLUSION Hypoxia-induced vasorelaxation of porcine retinal arterioles is mediated by inducible NOS and stimulation of EP4 receptors acting through separate pathways, but mechanisms unrelated to the studied prostaglandin receptors and NOS products are also involved.
Collapse
Affiliation(s)
| | - Sidse Kringelholt
- Department of Ophthalmology; Aarhus University Hospital; Aarhus Denmark
| | - Ulf Simonsen
- Department of Biomedicine; University of Aarhus; Aarhus Denmark
| | - Toke Bek
- Department of Ophthalmology; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
18
|
Xu YC, Leung SWS, Leung GPH, Man RYK. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels. Br J Pharmacol 2015; 172:3003-14. [PMID: 25652142 DOI: 10.1111/bph.13108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 01/21/2015] [Accepted: 01/27/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. EXPERIMENTAL APPROACH The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). KEY RESULTS At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. CONCLUSIONS AND IMPLICATIONS The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels.
Collapse
Affiliation(s)
- Y C Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - G P H Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - R Y K Man
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
19
|
Cai Y, Manio MM, Leung GP, Xu A, Tang EH, Vanhoutte PM. Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries. Eur J Pharmacol 2015; 747:18-28. [DOI: 10.1016/j.ejphar.2014.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 02/04/2023]
|
20
|
|
21
|
Gao Y, Vanhoutte PM. Tissues cIMPly do not lie. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:901-3. [PMID: 25052042 DOI: 10.1007/s00210-014-1022-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | | |
Collapse
|
22
|
Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SWS, Vanhoutte PM, Gao Y. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 2014; 307:H328-36. [PMID: 24906916 DOI: 10.1152/ajpheart.00132.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (Po2: 25-30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr(853), which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK.
Collapse
Affiliation(s)
- Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lei Ying
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou; Zhejiang, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yanhui Li
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Bai
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Juan Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Susan Wai-Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China; and
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China; and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China;
| |
Collapse
|
23
|
Heinonen I, Kemppainen J, Kaskinoro K, Knuuti J, Boushel R, Kalliokoski KK. Capacity and hypoxic response of subcutaneous adipose tissue blood flow in humans. Circ J 2014; 78:1501-6. [PMID: 24759795 DOI: 10.1253/circj.cj-13-1273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The blood flow capacity in subcutaneous adipose tissue in humans remains largely unknown, and therefore the aim of this study was to determine the physiological range of blood flow in this tissue. METHODS AND RESULTS The subcutaneous adipose tissue blood flow (ATBF) was measured in 9 healthy young men by positron emission tomography using radiowater tracer. Subcutaneous ATBF was determined in regions adjacent to knee extensors at rest and during dynamic knee extensor exercise, and with 2 physiological perturbations: while breathing moderate systemic hypoxic air (14% O2) at rest and during exercise, and during intra-femoral artery infusion of high-dose adenosine infusion. ATBF was 1.3±0.6ml·100g(-1)·min(-1) at rest and increased with exercise (8.0±3.0ml·100g(-1)·min(-1), P<0.001) and adenosine infusion (10.5±4.9ml·100g(-1)·min(-1), P=0.001), but not when breathing moderate systemic hypoxic air (1.5±0.4ml·100g(-1)·min(-1)). ATBF was similar during exercise and adenosine infusion, but vascular conductance was lower during adenosine infusion. Finally, ATBF during exercise in moderate systemic hypoxia was reduced (6.3±2.2ml·100g(-1)·min(-1)) compared to normoxic exercise (P=0.004). CONCLUSIONS The vasodilatation capacity of human subcutaneous adipose blood flow appears to be comparable to, or even higher, than that induced by moderate intensity exercise. Furthermore, the reduced blood flow response in subcutaneous adipose tissue during systemic hypoxia is likely to contribute, in part, to the redistribution of blood flow to exercising muscle in a condition of reduced oxygen availability.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital
| | | | | | | | | | | |
Collapse
|
24
|
Liu H, Chen Z, Liu J, Liu L, Gao Y, Dou D. Endothelium-independent hypoxic contraction of porcine coronary arteries may be mediated by activation of phosphoinositide 3-kinase/Akt pathway. Vascul Pharmacol 2014; 61:56-62. [PMID: 24685819 DOI: 10.1016/j.vph.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/02/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays an essential role in the regulation of vascular tone. The present study aimed to determine its role in hypoxic coronary vasoconstriction. Isometric tension of isolated porcine coronary arteries was measured with organ chamber technique; the protein levels of phosphorylated and total MLC were examined by Western blotting; the activities of PI3K and Rho kinase were determined by the phosphorylation of their respective target protein Akt and MTPT1. Acute hypoxia induced a rapid contraction followed by a short-term relaxation and then a sustained contraction in porcine coronary arteries. The rapid but not the sustained contraction was abolished by endothelium removal. The sustained contraction was attenuated by inhibitors of PI3K (LY294002) and Akt (Akt-I). The attenuation effect caused by LY294002 was not affected by nifedipine, but was abolished by Y27632, an inhibitor of Rho kinase. The sustained hypoxic contraction was associated with altered phosphorylation of MLC and Akt, which was inhibited by LY294002. The sustained hypoxic contraction was also accompanied with increased phosphorylation of MYPT1, which was inhibited by LY294002 and Y27632. This study demonstrates that sustained hypoxia causes porcine coronary artery to contract in an endothelium-independent manner. An increased PI3K/Akt/Rho kinase signaling may be involved.
Collapse
Affiliation(s)
- Huixia Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Department of Physiology, Heze Medical College, Heze, Shandong, China
| | - Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Juan Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
25
|
Goulopoulou S, Webb RC. Symphony of vascular contraction: how smooth muscle cells lose harmony to signal increased vascular resistance in hypertension. Hypertension 2014; 63:e33-9. [PMID: 24470463 DOI: 10.1161/hypertensionaha.113.02444] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Styliani Goulopoulou
- Department of Physiology, Georgia Regents University, 1120 Fifteenth St, Augusta, GA 30912.
| | | |
Collapse
|
26
|
Bähre H, Danker KY, Stasch JP, Kaever V, Seifert R. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun 2013; 443:1195-9. [PMID: 24380860 DOI: 10.1016/j.bbrc.2013.12.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
Abstract
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor.
Collapse
Affiliation(s)
- Heike Bähre
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Kerstin Y Danker
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
27
|
Nuñez C, Victor VM, Martí M, D'Ocon P. Role of endothelial nitric oxide in pulmonary and systemic arteries during hypoxia. Nitric Oxide 2013; 37:17-27. [PMID: 24365975 DOI: 10.1016/j.niox.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/12/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED Our aim was to investigate the role played by endothelial nitric oxide (NO) during acute vascular response to hypoxia, as a modulator of both vascular tone (through guanylate cyclase (sGC) activation) and mitochondrial O2 consumption (through competitive inhibition of cytochrome-c-oxydase (CcO)). Organ bath experiments were performed and O2 consumption (Clark electrode) was determined in isolated aorta, mesenteric and pulmonary arteries of rats and eNOS-knockout mice. All pre-contracted vessels exhibited a triphasic hypoxic response consisting of an initial transient contraction (not observed in vessels from eNOS-knockout mice) followed by relaxation and subsequent sustained contraction. Removal of the endothelium, inhibition of eNOS (by L-NNA) and inhibition of sGC (by ODQ) abolished the initial contraction without altering the other two phases. The initial hypoxic contraction was observed in the presence of L-NNA+NO-donors. L-NNA and ODQ increases O2 consumption in hypoxic vessels and increases the arterial tone in normoxia but not in hypoxia. When L-NNA+mitochondrial inhibitors (cyanide, rotenone or myxothiazol) were added, the increase in tone was similar in normoxic and hypoxic vessels, which suggests that inhibition of the binding of NO to reduced CcO restored the action of NO on sGC. CONCLUSION A complex equilibrium is established between NO, sGC and CcO in vessels in function of the concentration of O2: as O2 falls, NO inhibition of mitochondrial O2 consumption increases and activation of sGC decreases, thus promoting a rapid increase in tone in both pulmonary and systemic vessels, which is followed by the triggering of NO-independent vasodilator/vasoconstrictor mechanisms.
Collapse
Affiliation(s)
- Cristina Nuñez
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain
| | - Victor M Victor
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain; FISABIO-Hospital Universitario Doctor Peset, Av. Gaspar Aguilar 90, 46017 Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Miguel Martí
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
28
|
|
29
|
Chan CK, Zhao Y, Liao SY, Zhang YL, Lee MYK, Xu A, Tse HF, Vanhoutte PM. A-FABP and oxidative stress underlie the impairment of endothelium-dependent relaxations to serotonin and the intima-medial thickening in the porcine coronary artery with regenerated endothelium. ACS Chem Neurosci 2013; 4:122-9. [PMID: 23336051 DOI: 10.1021/cn3000873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/22/2012] [Indexed: 01/12/2023] Open
Abstract
Experiments were designed to determine the cause of the selective dysfunction of G(i) proteins, characterized by a reduced endothelium-dependent relaxation to serotonin (5-hydroxytryptamine), in coronary arteries lined with regenerated endothelial cells. Part of the endothelium of the left anterior descending coronary artery of female pigs was removed in vivo to induce regeneration. The animals were treated chronically with vehicle (control), apocynin (antioxidant), or BMS309403 (A-FABP inhibitor) for 28 days before functional examination and histological analysis of segments of coronary arteries with native or regenerated endothelium of the same hearts. Isometric tension was recorded in organ chambers and cumulative concentration-relaxation curves obtained in response to endothelium-dependent [serotonin (G(i) protein mediated activation of eNOS) and bradykinin (G(q) protein mediated activation of eNOS)] and independent [detaNONOate (cGMP-mediated), isoproterenol (cAMP-mediated)] vasodilators. The two inhibitors tested did not acutely affect relaxations of preparations with either native or regenerated endothelium. In the chronically treated groups, however, both apocynin and BMS309403 abolished the reduction in relaxation to serotonin in segments covered with regenerated endothelium and prevented the intima-medial thickening caused by endothelial regeneration, without affecting responses to bradykinin or endothelium-independent agonists (detaNONOate and isoproterenol). Thus, inhibition of either oxidative stress or A-FABP likely prevents both the selective dysfunction of G(i) protein mediated relaxation to serotonin and the neointimal thickening resulting from endothelial regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul M. Vanhoutte
- Department of BIN Fusion
Technology, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
30
|
Peppiatt-Wildman CM, Crawford C, Hall AM. Fluorescence imaging of intracellular calcium signals in intact kidney tissue. Nephron Clin Pract 2012; 121:e49-58. [PMID: 23147410 DOI: 10.1159/000342812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intracellular calcium (Ca(2+)) plays an important role in normal renal physiology and in the pathogenesis of various kidney diseases; however, the study of Ca(2+) signals in intact tissue has been limited by technical difficulties, including achieving adequate loading of Ca(2+)-sensitive fluorescent dyes. The kidney slice preparation represents a model whereby three-dimensional tissue architecture is preserved and structures in both the cortex and medulla can be imaged using confocal or multiphoton microscopy. METHODS Ca(2+)-sensitive dyes Rhod-2, Fura-red and Fluo-4 were loaded into tubular and vascular cells in rat kidney slices using a re-circulating perfusion system and real-time imaging of Ca(2+) signals was recorded by confocal microscopy. Kidney slices were also obtained from transgenic mice expressing the GCaMP2 Ca(2+)-sensor in their endothelial cells and real time Ca(2+) transients stimulated by physiological stimuli. RESULTS Wide spread loading of Ca(2+) indicators was achieved in the tubular and vascular structures of both the medulla and cortex. Real time Ca(2+) signals were successfully recorded in different intracellular compartments of both rat and mouse cortical and medullary tubules in response to physiological stimuli (ATP and angiotensin II). Glomerular Ca(2+) transients were similarly recorded in kidney slices taken from the transgenic mouse expressing the GCaMP2 Ca(2+)-sensor. CONCLUSION We present new approaches that can be adopted to image cytosolic and mitochondrial Ca(2+) signals within various cell types in intact kidney tissue. Moreover, techniques described in this study can be used to facilitate future detailed investigations of intracellular Ca(2+) homeostasis in renal health and disease.
Collapse
Affiliation(s)
- C M Peppiatt-Wildman
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham Maritime, UK. C.M.Peppiatt @ kent.ac.uk
| | | | | |
Collapse
|