1
|
Uppulapu SK, Alam MJ, Kumar S, Banerjee SK. Indazole and its Derivatives in Cardiovascular Diseases: Overview, Current Scenario, and Future Perspectives. Curr Top Med Chem 2022; 22:1177-1188. [PMID: 34906057 PMCID: PMC10782885 DOI: 10.2174/1568026621666211214151534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Indazoles are a class of heterocyclic compounds with a bicyclic ring structure composed of a pyrazole ring and a benzene ring. Indazole-containing compounds with various functional groups have important pharmacological activities and can be used as structural motifs in designing novel drug molecules. Some of the indazole-containing molecules are approved by FDA and are already in the market. However, very few drugs with indazole rings have been developed against cardiovascular diseases. This review aims to summarize the structural and pharmacological functions of indazole derivatives which have shown efficacy against cardiovascular pathologies in experimental settings.
Collapse
Affiliation(s)
- Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Md. Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Santosh Kumar
- Department of Cardiovascular Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sanjay Kumar Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
2
|
Greer-Short A, Poelzing S. Temporal response of ectopic activity in guinea pig ventricular myocardium in response to isoproterenol and acetylcholine. Front Physiol 2015; 6:278. [PMID: 26539122 PMCID: PMC4611207 DOI: 10.3389/fphys.2015.00278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
Both β adrenergic and muscarinic receptor stimulation independently potentiate arrhythmogenesis. However, the effect of simultaneous stimulation on arrhythmogenesis is not well known. The purpose of this study was to determine the temporal response of arrhythmia risk to individual and combined autonomic agonists. Guinea pig hearts were excised and Langendorff-perfused. The β adrenergic receptor and muscarinic receptor agonists were isoproterenol (ISO, 0.6 μM) and acetylcholine (ACh, 10 μM), respectively. All measurements with agonists occurred over 21 min. ISO induced ectopic activity for the first 8 min. ISO also transiently shortened and then prolonged R-R interval over a similar time course. ACh added after ISO transiently induced ectopic activity for 12 min, while R-R interval invariantly prolonged. ACh alone produced few ectopic beats, while invariantly prolonging R-R interval. In contrast to ISO alone, ISO following ACh significantly increased ectopic activity and shortened R-R interval for the duration of the experiment. Animals aged 17–19 months exhibited sustained arrhythmogenesis while those aged 11–14 did not. When ACh was removed in older hearts while ISO perfused, a transient increase in ectopic activity and decreased R-R interval was observed, similar to ISO alone. These data suggest that pre-treating with and maintaining ACh perfusion can sustain ISO sensitivity, in contrast to ISO perfusion alone.
Collapse
Affiliation(s)
- Amara Greer-Short
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University Roanoke, VA, USA ; School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Steven Poelzing
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University Roanoke, VA, USA ; School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
3
|
Abstract
Autonomic testing is used to define the role of the autonomic nervous system in diverse clinical and research settings. Because most of the autonomic nervous system is inaccessible to direct physiological testing, in the clinical setting the most widely used techniques entail the assessment of an end-organ response to a physiological provocation. The noninvasive measures of cardiovascular parasympathetic function involve the assessment of heart rate variability while the measures of cardiovascular sympathetic function assess the blood pressure response to physiological stimuli. Tilt-table testing, with or without pharmacological provocation, has become an important tool in the assessment of a predisposition to neurally mediated (vasovagal) syncope, the postural tachycardia syndrome, and orthostatic hypotension. Distal, postganglionic, sympathetic cholinergic (sudomotor) function may be evaluated by provoking axon reflex mediated sweating, e.g., the quantitative sudomotor axon reflex (QSART) or the quantitative direct and indirect axon reflex (QDIRT). The thermoregulatory sweat test provides a nonlocalizing measure of global pre- and postganglionic sudomotor function. Frequency domain analyses of heart rate and blood pressure variability, microneurography, and baroreflex assessment are currently research tools but may find a place in the clinical assessment of autonomic function in the future.
Collapse
Affiliation(s)
- Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
4
|
Barlow MA, Deo SH, Caffrey JL. Sympatholytic delta-2 opioid receptors moderate ganglionic vasomotor control. Exp Biol Med (Maywood) 2011; 236:341-51. [DOI: 10.1258/ebm.2011.010341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study tested the hypothesis that enkephalin increases femoral vascular conductance via the delta-2 phenotype of the opioid receptor (DOR-2) within peripheral sympathetic ganglia. Graded pulses of methionine–enkephalin (ME) were administered (0.03–10 μg/kg) into the terminal aorta of anesthetized dogs proximal to lumbar arteries that perfuse vasomotor ganglia regulating femoral blood flow. Femoral vascular conductance increased sharply (ED50 = 2.6 × 10−9 mol/kg) accompanied by declines in arterial pressure and femoral vascular resistance. A dose-related increase in arterial pressure preceded each subsequent fall in pressure. The DOR-2 antagonist, naltriben (NTB), abrogated the hyperemic effect of ME (ID50 = 1.4 × 10−9 mol/kg). DOR-1 blockade (BNTX) was five-fold less effective. The hyperemic effect of ME was also enhanced when sympathetic activity was reflexly increased by bilateral carotid occlusion. The DOR-2 agonist, deltorphin II, produced exaggerated increases in conductance compared with ME that were also reduced by DOR-2 blockade. DOR-1 blockade eliminated the initial pressor responses, exaggerated the subsequent depressor response, increased baseline femoral conductance 10-fold and shifted the ME-mediated hyperemic threshold one dose lower from 0.3 to 0.1 μg/kg, providing indirect support for a competing DOR-1-mediated constriction. Extended exposure to DOR-1 blockade lowered the maximal ME increase in conductance by 30%, suggesting that BNTX reduces the available pool of DOR receptors. In summary, enkephalin mediates a robust hyperemic effect through sympatholytic ganglionic DOR-2 receptors and DOR-1 antagonist studies provide indirect evidence for constituent opposition from a proposed DOR-1-mediated sympathotonic constrictor pathway.
Collapse
Affiliation(s)
- Matthew A Barlow
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Shekhar H Deo
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - James L Caffrey
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Abstract
The methods used to assess cardiac parasympathetic (cardiovagal) activity and its effects on the heart in both humans and animal models are reviewed. Heart rate (HR)-based methods include measurements of the HR response to blockade of muscarinic cholinergic receptors (parasympathetic tone), beat-to-beat HR variability (HRV) (parasympathetic modulation), rate of post-exercise HR recovery (parasympathetic reactivation), and reflex-mediated changes in HR evoked by activation or inhibition of sensory (afferent) nerves. Sources of excitatory afferent input that increase cardiovagal activity and decrease HR include baroreceptors, chemoreceptors, trigeminal receptors, and subsets of cardiopulmonary receptors with vagal afferents. Sources of inhibitory afferent input include pulmonary stretch receptors with vagal afferents and subsets of visceral and somatic receptors with spinal afferents. The different methods used to assess cardiovagal control of the heart engage different mechanisms, and therefore provide unique and complementary insights into underlying physiology and pathophysiology. In addition, techniques for direct recording of cardiovagal nerve activity in animals; the use of decerebrate and in vitro preparations that avoid confounding effects of anesthesia; cardiovagal control of cardiac conduction, contractility, and refractoriness; and noncholinergic mechanisms are described. Advantages and limitations of the various methods are addressed, and future directions are proposed.
Collapse
Affiliation(s)
- Mark W Chapleau
- The Cardiovascular Center and Department of Internal Medicine, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | |
Collapse
|
6
|
Deo SH, Barlow MA, Gonzalez L, Yoshishige D, Caffrey JL. Repeated arterial occlusion, delta-opioid receptor (DOR) plasticity and vagal transmission within the sinoatrial node of the anesthetized dog. Exp Biol Med (Maywood) 2008; 234:84-94. [PMID: 18997098 DOI: 10.3181/0808-rm-242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brief interruptions in coronary blood flow precondition the heart, engage delta-opioid receptor (DOR) mechanisms and reduce the damage that typically accompanies subsequent longer coronary occlusions. Repeated short occlusions of the sinoatrial (SA) node artery progressively raised nodal methionine-enkephalin-arginine-phenylalanine (MEAP) and improved vagal transmission during subsequent long occlusions in anesthetized dogs. The DOR type-1 (DOR-1) antagonist, BNTX reversed the vagotonic effect. Higher doses of enkephalin interrupted vagal transmission through a DOR-2 mechanism. The current study tested whether the preconditioning (PC) protocol, the later occlusion or a combination of both was required for the vagotonic effect. The study also tested whether evolving vagotonic effects included withdrawal of competing DOR-2 vagolytic influences. Vagal transmission progressively improved during successive SA nodal artery occlusions. The vagotonic effect was absent in sham animals and after DOR-1 blockade. After completing the PC protocol, exogenously applied vagolytic doses of MEAP reduced vagal transmission under both normal and occluded conditions. The magnitude of these DOR-2 vagolytic effects was small compared to controls and repeated MEAP challenges rapidly eroded vagolytic responses further. Prior DOR-1 blockade did not alter the PC mediated, progressive loss of DOR-2 vagolytic responses. In conclusion, DOR-1 vagotonic responses evolved from signals earlier in the PC protocol and erosion of competing DOR-2 vagolytic responses may have contributed to an unmasking of vagotonic responses. The data support the hypothesis that PC and DOR-2 stimulation promote DOR trafficking, and down regulation of the vagolytic DOR-2 phenotype in favor of the vagotonic DOR-1 phenotype. DOR-1 blockade may accelerate the process by sequestering newly emerging receptors.
Collapse
Affiliation(s)
- Shekhar H Deo
- University of North Texas Health Science Center, Department of Integrative Physiology, Cardiovascular Research Institute, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
7
|
Deo SH, Barlow MA, Gonzalez L, Yoshishige D, Caffrey JL. Cholinergic location of δ-opioid receptors in canine atria and SA node. Am J Physiol Heart Circ Physiol 2008; 294:H829-38. [DOI: 10.1152/ajpheart.01141.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
δ-Opioid receptors (DORs) are associated with ischemic preconditioning and vagal transmission in the sinoatrial (SA) node and atria. Although functional studies suggested that DORs are prejunctional on parasympathetic nerve terminals, their precise location remains unconfirmed. DORs were colocalized in tissue slices and synaptosomes from the canine right atrium and SA node along with cholinergic and adrenergic markers, vesicular acetylcholine transporter (VAChT), and tyrosine hydroxylase (TH). Synapsin I immunofluorescence verified the neural character of tissue structures and isolated synaptosomes. Acetylcholine and norepinephrine measurements suggested the presence of both cholinergic and adrenergic synaptosomes. Fluorescent analysis of VAChT and TH signals indicated that >80% of the synapsin-positive synaptosomes were of cholinergic origin and <8% were adrenergic. DORs colocalized 75–85% with synapsin in tissue slices from both atria and SA node. The colocalization was equally strong (85%) for nodal synaptosomes but less so for atrial synaptosomes (57%). Colocalization between DOR and VAChT was 75–85% regardless of the source. Overlap between DOR and TH was uniformly low, ranging from 8% to 17%. Western blots with synaptosomal extracts confirmed two DOR-positive bands at molecular masses corresponding to those reported for DOR monomers and dimers. The abundance of DOR was greater in nodal synaptosomes than in atrial synaptosomes, largely attributable to a greater abundance of monomers in the SA node. The abundant nodal and atrial DORs predominantly associated with cholinergic nerve terminals support the hypothesis that prejunctional DORs regulate vagal transmission locally within the heart.
Collapse
|
8
|
Deo SH, Johnson-Davis S, Barlow MA, Yoshishige D, Caffrey JL. Repeated δ1-opioid receptor stimulation reduces δ2-opioid receptor responses in the SA node. Am J Physiol Heart Circ Physiol 2006; 291:H2246-54. [PMID: 16782849 DOI: 10.1152/ajpheart.00122.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultra-low-dose methionine-enkephalin-arginine-phenylalanine improves vagal transmission (vagotonic) and decreases heart rate via δ1-opioid receptors within the sinoatrial (SA) node. Higher doses activate δ2-opioid receptors, interrupt vagal transmission (vagolytic), and reduce the bradycardia. Preconditioning-like occlusion of the nodal artery produced a vagotonic response that was reversed by the δ1-antagonist 7-benzylidenaltrexone (BNTX). The following study tested the hypothesis that extended δ1-opioid receptor stimulation reduces subsequent δ2-receptor responses. The δ2-agonist deltorphin II was introduced in the SA node by microdialysis to evaluate δ2 responses before and after infusion of the δ1-agonist TAN-67. TAN-67 reduced the vagolytic effect of deltorphin by two-thirds. When the δ1-antagonist BNTX was combined with TAN-67, the deltorphin response was preserved, suggesting that attrition of the prior response was mediated by δ1 activity. When TAN-67 was omitted in time control studies, some loss of δ2 responses was apparent in the absence of the δ1 treatment. This loss was also eliminated by BNTX, suggesting that the attenuation of the response after deltorphin alone was also the result of δ1 activity. Additional studies tested TAN-67 alone in the absence of prior deltorphin. When time controls were conducted without the initial deltorphin treatment, a robust vagolytic response was observed. When TAN-67 preceded the delayed deltorphin, the vagolytic response was eroded, indicating an independent effect of TAN-67. BNTX infused afterward was unable to restore the δ2 response. These data support the conclusion that the loss of the δ2 response resulted from reduced δ2 activity mediated by continued δ1-receptor stimulation and not the arithmetic consequence of increased competition from that same δ1 receptor.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Benzylidene Compounds/pharmacology
- Bradycardia/drug therapy
- Bradycardia/physiopathology
- Dogs
- Dose-Response Relationship, Drug
- Enkephalin, Methionine/analogs & derivatives
- Enkephalin, Methionine/pharmacology
- Female
- Male
- Microdialysis
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Quinolines/pharmacology
- Receptors, Opioid, delta/classification
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Sinoatrial Node/drug effects
- Sinoatrial Node/innervation
- Sinoatrial Node/physiology
- Stimulation, Chemical
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- S H Deo
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth TX 76107, USA.
| | | | | | | | | |
Collapse
|
9
|
Davis S, Deo SH, Barlow M, Yoshishige D, Farias M, Caffrey JL. The monosialosyl ganglioside GM-1 reduces the vagolytic efficacy of delta2-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 2006; 291:H2318-26. [PMID: 16815987 DOI: 10.1152/ajpheart.00455.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac enkephalin, methionine-enkephalin-arginine-phenylalanine (MEAP), alters vagally induced bradycardia when introduced by microdialysis into the sinoatrial (SA) node. The responses to MEAP are bimodal; lower doses enhance bradycardia and higher doses suppress bradycardia. The opposing vagotonic and vagolytic effects are mediated, respectively, by delta(1) and delta(2) phenotypes of the same receptor. Stimulation of the delta(1) receptor reduced the subsequent delta(2) responses. Experiments were conducted to test the hypothesis that the delta-receptor interactions were mediated by the monosialosyl ganglioside GM-1. When the mixed agonist MEAP was evaluated after nodal GM-1 treatment, delta(1)-mediated vagotonic responses were enhanced, and delta(2)-mediated vagolytic responses were reduced. Prior treatment with the delta(1)-selective antagonist 7-benzylidenaltrexone (BNTX) failed to prevent attrition of the delta(2)-vagolytic response or restore it when added afterward. Thus the GM-1-mediated attrition was not mediated by delta(1) receptors or increased competition from delta(1)-mediated vagotonic responses. When GM-1 was omitted, deltorphin produced a similar but less robust loss in the vagolytic response. In contrast, however, to GM-1, the deltorphin-mediated attrition was prevented by pretreatment with BNTX, indicating that the decline in response after deltorphin alone was mediated by delta(1) receptors and that GM-1 effectively bypassed the receptor. Whether deltorphin has intrinsic delta(1) activity or causes the release of an endogenous delta(1)-agonist is unclear. When both GM-1 and deltorphin were omitted, the subsequent vagolytic response was more intense. Thus GM-1, deltorphin, and time all interact to modify subsequent delta(2)-mediated vagolytic responses. The data support the hypothesis that delta(1)-receptor stimulation may reduce delta(2)-vagolytic responses by stimulating the GM-1 synthesis.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Benzylidene Compounds/pharmacology
- Bradycardia/drug therapy
- Bradycardia/physiopathology
- Dogs
- Dose-Response Relationship, Drug
- Enkephalin, Methionine/analogs & derivatives
- Enkephalin, Methionine/pharmacology
- Female
- G(M1) Ganglioside/pharmacology
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Sinoatrial Node/drug effects
- Sinoatrial Node/innervation
- Sinoatrial Node/physiology
- Stimulation, Chemical
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Shavsha Davis
- Univ. of North Texas Health Science Center, Dept. of Integrative Physiology, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107. )
| | | | | | | | | | | |
Collapse
|
10
|
Barlow MA, Deo S, Johnson S, Caffrey JL. Vagotonic effects of enkephalin are not mediated by sympatholytic mechanisms. Exp Biol Med (Maywood) 2006; 231:387-95. [PMID: 16565434 DOI: 10.1177/153537020623100404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study examined the hypothesis that vagotonic and sympatholytic effects of cardiac enkephalins are independently mediated by different receptors. A dose-response was constructed by administering the delta-receptor opioid methionine-enkephalin-arginine-phenylalanine (MEAP) by microdialysis into the interstitium of the canine sinoatrial node during vagal and sympathetic stimulation. The right cardiac sympathetic nerves were stimulated as they exited the stellate ganglion at frequencies selected to increase heart rate approximately 35 bpm. The right cervical vagus was stimulated at frequencies selected to produce a two-step decline in heart rate of 25 and 50 bpm. A six-step dose-response was constructed by recording heart rates during nerve stimulation as the dose of MEAP was increased between 0.05 pmol/min and 1.5 nmol/min. Vagal transmission improved during MEAP at 0.5 pmol/min. However, sympathetically mediated tachycardia was unaltered with any dose of MEAP. In Study 2, a similar dose-response was constructed with the kappa-opioid receptor agonist trans(+/-)-3-4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide-HCl (U-50488H) to illustrate an independent sympatholytic effect and to verify its kappa-receptor character. U-50488H gradually suppressed the sympathetic tachycardia, with a significant effect obtained only at the highest dose (1.5 nmol/min). U-50488H had no effect on vagally mediated bradycardia. Surprisingly, the sympatholytic effect was not reversed by withdrawing U-50488H or by the subsequent addition of the kappa-antagonist 17,17'-(dichloropropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetroldi-hydrochloride (norBNI). Study 3 was conducted to determine whether the sympatholytic effect of U-50488H could be prevented by norBNI. NorBNI blocked the sympatholytic effect of the U50488H for 90 mins. When norBNI was discontinued afterward and U-50488H was continued alone, a sympatholytic effect emerged within 30 mins. Collectively these observations support the hypothesis that the vagotonic influence of MEAP is not dependent on a sympatholytic influence. Furthermore, the sympatholytic effect is mediated independently by kappa-receptors. The sympatholytic effect of sustained kappa-receptor stimulation appears to evolve gradually into a functional state not easily reversed.
Collapse
Affiliation(s)
- Matthew A Barlow
- Department of Integrative Physiology, University of North Texas Health Science Center at Forth Worth, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
11
|
Abstract
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology, Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|