1
|
Chevalier NR, Zig L, Gomis A, Amedzrovi Agbesi RJ, El Merhie A, Pontoizeau L, Le Parco I, Rouach N, Arnoux I, de Santa Barbara P, Faure S. Calcium wave dynamics in the embryonic mouse gut mesenchyme: impact on smooth muscle differentiation. Commun Biol 2024; 7:1277. [PMID: 39375515 PMCID: PMC11458798 DOI: 10.1038/s42003-024-06976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Intestinal smooth muscle differentiation is a complex physico-biological process involving several different pathways. Here, we investigate the properties of Ca2+ waves in the developing intestinal mesenchyme using GCamp6f expressing mouse embryos and investigate their relationship with smooth muscle differentiation. We find that Ca2+ waves are absent in the pre-differentiation mesenchyme and start propagating immediately following α-SMA expression. Ca2+ waves are abrogated by CaV1.2 and gap-junction blockers, but are independent of the Rho pathway. The myosine light-chain kinase inhibitor ML-7 strongly disorganized or abolished Ca2+ waves, showing that perturbation of the contractile machinery at the myosine level also affected the upstream Ca2+ handling chain. Inhibiting Ca2+ waves and contractility with CaV1.2 blockers did not perturb circular smooth muscle differentiation at early stages. At later stages, CaV1.2 blockers abolished intestinal elongation and differentiation of the longitudinal smooth muscle, leading instead to the emergence of KIT-expressing interstitial cells of Cajal at the gut periphery. CaV1.2 blockers also drove apoptosis of already differentiated, CaV1.2-expressing smooth muscle and enteric neural cells. We provide fundamental new data on Ca2+ waves in the developing murine gut and their relation to myogenesis in this organ.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| | - Léna Zig
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Anthony Gomis
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Richard J Amedzrovi Agbesi
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Amira El Merhie
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | | | - Isabelle Le Parco
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Isabelle Arnoux
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
2
|
Silva RRD, Motta GMDS, de Camargo MLA, Goroso DG, Puglisi EJL. Feed Forward Modeling: an efficient approach for mathematical modeling of the force frequency relationship in the rabbit isolated ventricular myocyte. Biomed Phys Eng Express 2024; 10:065020. [PMID: 39255811 DOI: 10.1088/2057-1976/ad78e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Background and Objective. This study addresses the Force-Frequency relationship, a fundamental characteristic of cardiac muscle influenced byβ1-adrenergic stimulation. This relationship reveals that heart rate (HR) changes at the sinoatrial node lead to alterations in ventricular cell contractility, increasing the force and decreasing relaxation time for higher beat rates. Traditional models lacking this relationship offer an incomplete physiological depiction, impacting the interpretation of in silico experiment results. To improve this, we propose a new mathematical model for ventricular myocytes, named 'Feed Forward Modeling' (FFM).Methods. FFM adjusts model parameters like channel conductance and Ca2+pump affinity according to stimulation frequency, in contrast to fixed parameter values. An empirical sigmoid curve guided the adaptation of each parameter, integrated into a rabbit ventricular cell electromechanical model. Model validation was achieved by comparing simulated data with experimental current-voltage (I-V) curves for L-type Calcium and slow Potassium currents.Results. FFM-enhanced simulations align more closely with physiological behaviors, accurately reflecting inotropic and lusitropic responses. For instance, action potential duration at 90% repolarization (APD90) decreased from 206 ms at 1 Hz to 173 ms at 4 Hz using FFM, contrary to the conventional model, where APD90 increased, limiting high-frequency heartbeats. Peak force also showed an increase with FFM, from 8.5 mN mm-2at 1 Hz to 11.9 mN mm-2at 4 Hz, while it barely changed without FFM. Relaxation time at 50% of maximum force (t50) similarly improved, dropping from 114 ms at 1 Hz to 75.9 ms at 4 Hz with FFM, a change not observed without the model.Conclusion. The FFM approach offers computational efficiency, bypassing the need to model all beta-adrenergic pathways, thus facilitating large-scale simulations. The study recommends that frequency change experiments include fractional dosing of isoproterenol to better replicate heart conditionsin vivo.
Collapse
Affiliation(s)
- Robson Rodrigues da Silva
- Research and Technology Center, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
- LabNECC, Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| | | | | | - Daniel Gustavo Goroso
- Research and Technology Center, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - E José Luis Puglisi
- College of Medicine, California Northstate University, Elk Grove, Sacramento, CA, United States of America
| |
Collapse
|
3
|
Buonocunto M, Lyon A, Delhaas T, Heijman J, Lumens J. Electrophysiological effects of stretch-activated ion channels: a systematic computational characterization. J Physiol 2024; 602:4585-4604. [PMID: 37665242 DOI: 10.1113/jp284439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiac electrophysiology and mechanics are strongly interconnected. Their interaction is, among others, mediated by mechano-electric feedback through stretch-activated ion channels (SACs). The electrophysiological changes induced by SACs may contribute to arrhythmogenesis, but the precise SAC-induced electrophysiological changes remain incompletely understood. Here, we provide a systematic characterization of stretch effects through three distinguished SACs on cardiac electrophysiology using computational modelling. We implemented potassium-selective, calcium-selective and non-selective SACs in the Tomek-Rodriguez-O'Hara-Rudy model of human ventricular electrophysiology. The model was calibrated to experimental data from isolated cardiomyocytes undergoing stretch, considering inter-species differences, and disease-related remodelling of SACs. SAC-mediated effects on the action potential (AP) were analysed by varying stretch amplitude, application timing and/or duration. Afterdepolarizations of different amplitudes were observed with transient 10-ms stretch stimuli of 15-18% applied during phase 4, while stretch ≥18% during phase 4 elicited triggered APs. Longer stimuli shifted the threshold of AP trigger during phase 4 to lower amplitudes, while shorter stimuli increased it. Continuous stretch provoked electrophysiological remodelling. Furthermore, stretch shortened duration or changed morphology of a subsequent electrically evoked AP, and, if applied during a vulnerable time window with sufficient amplitude, prevented its occurrence because of stretch-induced modulation of sodium and L-type calcium channel gating. These effects were more pronounced with disease-related SAC remodelling due to increased stretch sensitivity of diseased hearts. We showed that SACs may induce afterdepolarizations and triggered activities, and prevent subsequent AP generation or change its morphology. These effects depend on cardiomyocyte stretch characteristics and disease-related SACs remodelling and may contribute to cardiac arrhythmogenesis. KEY POINTS: The interplay between cardiac electrophysiology and mechanics is mediated by mechano-electric feedback through stretch-activated ion channels (SACs). These channels may be pro-arrhythmic, but their precise effect on electrophysiology remains unclear. Here we present a systematic in silico characterization of stretch effects through three SACs by implementing inter-species differences as well as disease-related remodelling of SACs in a novel computational model of human ventricular cardiomyocyte electrophysiology. Our simulations showed that, at the cellular level, SACs may provoke electrophysiological remodelling, afterdepolarizations, triggered activities, change the morphology or shorten subsequent electrically evoked action potentials. The model further suggests that a vulnerable window exists in which stretch prevents the following electrically triggered beat occurrence. The pro-arrhythmic effects of stretch strongly depend on disease-related SAC remodelling as well as on stretch characteristics, such as amplitude, time of application and duration. Our study helps in understanding the role of stretch in cardiac arrhythmogenesis and revealing the underlying cellular mechanisms.
Collapse
Affiliation(s)
- Melania Buonocunto
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Sun Z, Lu K, Kamla C, Kameritsch P, Seidel T, Dendorfer A. Synchronous force and Ca 2+ measurements for repeated characterization of excitation-contraction coupling in human myocardium. Commun Biol 2024; 7:220. [PMID: 38388802 PMCID: PMC10884022 DOI: 10.1038/s42003-024-05886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Dysfunctional Ca2+ signaling affects the myocardial systole and diastole, may trigger arrhythmia and cause transcriptomic and proteomic modifications in heart failure. Thus, synchronous real-time measurement of Ca2+ and force is essential to investigate the relationship between contractility and Ca2+ signaling and the alteration of excitation-contraction coupling (ECC) in human failing myocardium. Here, we present a method for synchronized acquisition of intracellular Ca2+ and contraction force in long-term cultivated slices of human failing myocardium. Synchronous time series of contraction force and intracellular Ca2+ were used to calculate force-calcium loops and to analyze the dynamic alterations of ECC in response to various pacing frequencies, post-pause potentiation, high mechanical preload and pharmacological interventions in human failing myocardium. We provide an approach to simultaneously and repeatedly investigate alterations of contractility and Ca2+ signals in long-term cultured myocardium, which will allow detecting the effects of electrophysiological or pharmacological interventions on human myocardial ECC.
Collapse
Affiliation(s)
- Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kun Lu
- Department of Cardiac Surgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Christine Kamla
- Department of Cardiac Surgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Petra Kameritsch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
5
|
Asiri F, Haque Siddiqui MI, Ali MA, Alam T, Dobrotă D, Chicea R, Dobrotă RD. Mathematical modeling of active contraction of the human cardiac myocyte: A review. Heliyon 2023; 9:e20065. [PMID: 37809539 PMCID: PMC10559823 DOI: 10.1016/j.heliyon.2023.e20065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Background and objective In this present research paper, a mathematical model has been developed to study myocyte contraction in the human cardiac muscle, using the Land model. Different parts of the human heart with a focus on the composition of the myocyte cells have been explored numerically to enabling us to determine the interaction of various parameters in the heart muscle. The main objective of the work is to direct the study of the Land model, which has been exploited to simulate the contraction of real human myocytes. Methods Mathematical models has been developed based on the Hill model and Huxley model. Myocyte contraction for different scenarios, such as in isometric tension and isotonic tension have been studied. Results It is found that increase in stretch, the peak active tension increases, in line with well-established length-dependent tension generation. Five parameters are selected: [Ca2+]T50, Tref, TRPN50, β0, and β1, which have been varied in between the range of -50%-100%, to examine the isometric effects of each parameter on the behavior of the tension developed in the intact myocyte cells, with the most sensitive parameter being [Ca2+]T50. Conclusion In conclusion, it is found that the Land model provides a good platform for the analysis of the active contraction of the human cardiac myocyte.
Collapse
Affiliation(s)
- Fisal Asiri
- Department of Mathematics, Taibah University, Medina, 42353, Saudi Arabia
| | | | - Masood Ashraf Ali
- Department of Industrial Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
| | - Tabish Alam
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Dan Dobrotă
- Faculty of Engineering, Lucian Blaga University of Sibiu, 550024, Sibiu, Romania
| | - Radu Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024, Sibiu, Romania
| | | |
Collapse
|
6
|
Liu T, Li X, Wang Y, Zhou M, Liang F. Computational modeling of electromechanical coupling in human cardiomyocyte applied to study hypertrophic cardiomyopathy and its drug response. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107372. [PMID: 36736134 DOI: 10.1016/j.cmpb.2023.107372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Knowledge of electromechanical coupling in cardiomyocyte and how it is influenced by various pathophysiological factors is fundamental to understanding the pathogenesis of myocardial disease and its response to medication, which is however hard to be thoroughly addressed by clinical/experimental studies due to technical limitations. At this point, computational modeling offers an alternative approach. The main objective of the study was to develop a computational model capable of simulating the process of electromechanical coupling and quantifying the roles of various factors in play in the human left ventricular cardiomyocyte. METHODS A new electrophysiological model was firstly built by combining several existing electrophysiological models and incorporating the mechanism of electrophysiological homeostasis, which was subsequently coupled to models representing the cross-bridge dynamics and active force generation during excitation-contraction coupling and the passive mechanical properties of cardiomyocyte to yield an integrative electromechanical model. Model parameters were calibrated or optimized based on a large amount of experimental data. The resulting model was applied to delineate the characteristics of electromechanical coupling and explore underlying determinant factors in hypertrophic cardiomyopathy (HCM) cardiomyocyte, as well as quantify their changes in response to different medications. RESULTS Model predictions captured the major electromechanical characteristics of cardiomyocyte under both normal physiological and HCM conditions. In comparison with normal cardiomyocyte, HCM cardiomyocyte suffered from systemic changes in both electrophysiological and mechanical variables. Numerical simulations of drug response revealed that Mavacamten and Metoprolol could both reduce the active contractility and alleviate calcium overload but had marked differential influences on many other electromechanical variables, which theoretically explained why the two drugs have differential therapeutic effects. In addition, our numerical experiments demonstrated the important role of compensatory ion transport in maintaining electrophysiological homeostasis and regulating cytoplasmic volume. CONCLUSIONS A sophisticated computational model has the advantage of providing quantitative and integrative insights for understanding the pathogenesis and drug responses of HCM or other myocardial diseases at the level of cardiomyocyte, and hence may contribute as a useful complement to clinical/experimental studies. The model may also be coupled to tissue- or organ-level models to strengthen the physiological implications of macro-scale numerical simulations.
Collapse
Affiliation(s)
- Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mi Zhou
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 19991, Russia.
| |
Collapse
|
7
|
Bartolucci C, Forouzandehmehr M, Severi S, Paci M. A Novel In Silico Electromechanical Model of Human Ventricular Cardiomyocyte. Front Physiol 2022; 13:906146. [PMID: 35721558 PMCID: PMC9198403 DOI: 10.3389/fphys.2022.906146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Contractility has become one of the main readouts in computational and experimental studies on cardiomyocytes. Following this trend, we propose a novel mathematical model of human ventricular cardiomyocytes electromechanics, BPSLand, by coupling a recent human contractile element to the BPS2020 model of electrophysiology. BPSLand is the result of a hybrid optimization process and it reproduces all the electrophysiology experimental indices captured by its predecessor BPS2020, simultaneously enabling the simulation of realistic human active tension and its potential abnormalities. The transmural heterogeneity in both electrophysiology and contractility departments was simulated consistent with previous computational and in vitro studies. Furthermore, our model could capture delayed afterdepolarizations (DADs), early afterdepolarizations (EADs), and contraction abnormalities in terms of aftercontractions triggered by either drug action or special pacing modes. Finally, we further validated the mechanical results of the model against previous experimental and in silico studies, e.g., the contractility dependence on pacing rate. Adding a new level of applicability to the normative models of human cardiomyocytes, BPSLand represents a robust, fully-human in silico model with promising capabilities for translational cardiology.
Collapse
Affiliation(s)
- Chiara Bartolucci
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | | | - Stefano Severi
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
8
|
Klumm MJ, Heim C, Fiegle DJ, Weyand M, Volk T, Seidel T. Long-Term Cultivation of Human Atrial Myocardium. Front Physiol 2022; 13:839139. [PMID: 35283779 PMCID: PMC8905341 DOI: 10.3389/fphys.2022.839139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Organotypic culture of human ventricular myocardium is emerging in basic and translational cardiac research. However, few institutions have access to human ventricular tissue, whereas atrial tissue is more commonly available and important for studying atrial physiology. This study presents a method for long-term cultivation of beating human atrial myocardium. After written informed consent, tissues from the right-atrial appendage were obtained from patients with sinus rhythm undergoing open heart surgery with cardiopulmonary bypass. Trabeculae (pectinate muscles) prepared from the samples were installed into cultivation chambers at 37°C with a diastolic preload of 500 μN. After 2 days with 0.5 Hz pacing, stimulation frequency was set to 1 Hz. Contractile force was monitored continuously. Beta-adrenergic response, refractory period (RP) and maximum captured frequency (fmax) were assessed periodically. After cultivation, viability and electromechanical function were investigated, as well as the expression of several genes important for intracellular Ca2+ cycling and electrophysiology. Tissue microstructure was analyzed by confocal microscopy. We cultivated 19 constantly beating trabeculae from 8 patient samples for 12 days and 4 trabeculae from 3 specimen for 21 days. Functional parameters were compared directly after installation (0 d) with those after 12 d in culture. Contraction force was 384 ± 69 μN at 0 d and 255 ± 90 μN at 12 d (p = 0.8, n = 22), RP 480 ± 97 ms and 408 ± 78 ms (p = 0.3, n = 9), fmax 3.0 ± 0.5 Hz and 3.8 ± 0.5 Hz (p = 0.18, n = 9), respectively. Application of 100 nM isoprenaline to 11 trabeculae at 7 d increased contraction force from 168 ± 35 μN to 361 ± 60 μN (p < 0.01), fmax from 6.4 ± 0.6 Hz to 8.5 ± 0.4 Hz (p < 0.01) and lowered RP from 319 ± 22 ms to 223 ± 15 ms. CACNA1c (L-type Ca2+ channel subunit) and GJA1 (connexin-43) mRNA expressions were not significantly altered at 12 d vs 0 d, while ATP2A (SERCA) and KCNJ4 (Kir2.3) were downregulated, and KCNJ2 (Kir2.1) was upregulated. Simultaneous Ca2+ imaging and force recording showed preserved excitation-contraction coupling in cultivated trabeculae. Confocal microscopy indicated preserved cardiomyocyte structure, unaltered amounts of extracellular matrix and gap junctions. MTT assays confirmed viability at 12 d. We established a workflow that allows for stable cultivation and functional analysis of beating human atrial myocardium for up to 3 weeks. This method may lead to novel insights into the physiology and pathophysiology of human atrial myocardium.
Collapse
Affiliation(s)
- Maximilian J Klumm
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik J Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tilmann Volk
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
van Osta N, Kirkels FP, van Loon T, Koopsen T, Lyon A, Meiburg R, Huberts W, Cramer MJ, Delhaas T, Haugaa KH, Teske AJ, Lumens J. Uncertainty Quantification of Regional Cardiac Tissue Properties in Arrhythmogenic Cardiomyopathy Using Adaptive Multiple Importance Sampling. Front Physiol 2021; 12:738926. [PMID: 34658923 PMCID: PMC8514656 DOI: 10.3389/fphys.2021.738926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Computational models of the cardiovascular system are widely used to simulate cardiac (dys)function. Personalization of such models for patient-specific simulation of cardiac function remains challenging. Measurement uncertainty affects accuracy of parameter estimations. In this study, we present a methodology for patient-specific estimation and uncertainty quantification of parameters in the closed-loop CircAdapt model of the human heart and circulation using echocardiographic deformation imaging. Based on patient-specific estimated parameters we aim to reveal the mechanical substrate underlying deformation abnormalities in patients with arrhythmogenic cardiomyopathy (AC). Methods: We used adaptive multiple importance sampling to estimate the posterior distribution of regional myocardial tissue properties. This methodology is implemented in the CircAdapt cardiovascular modeling platform and applied to estimate active and passive tissue properties underlying regional deformation patterns, left ventricular volumes, and right ventricular diameter. First, we tested the accuracy of this method and its inter- and intraobserver variability using nine datasets obtained in AC patients. Second, we tested the trueness of the estimation using nine in silico generated virtual patient datasets representative for various stages of AC. Finally, we applied this method to two longitudinal series of echocardiograms of two pathogenic mutation carriers without established myocardial disease at baseline. Results: Tissue characteristics of virtual patients were accurately estimated with a highest density interval containing the true parameter value of 9% (95% CI [0-79]). Variances of estimated posterior distributions in patient data and virtual data were comparable, supporting the reliability of the patient estimations. Estimations were highly reproducible with an overlap in posterior distributions of 89.9% (95% CI [60.1-95.9]). Clinically measured deformation, ejection fraction, and end-diastolic volume were accurately simulated. In presence of worsening of deformation over time, estimated tissue properties also revealed functional deterioration. Conclusion: This method facilitates patient-specific simulation-based estimation of regional ventricular tissue properties from non-invasive imaging data, taking into account both measurement and model uncertainties. Two proof-of-principle case studies suggested that this cardiac digital twin technology enables quantitative monitoring of AC disease progression in early stages of disease.
Collapse
Affiliation(s)
- Nick van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Feddo P Kirkels
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tim van Loon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Tijmen Koopsen
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Roel Meiburg
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Maarten J Cramer
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Kristina H Haugaa
- Department of Cardiology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Arco J Teske
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|