1
|
Zhang Y, Jia X, Wang Y, Zheng Q. Caveolin-1-mediated LDL transcytosis across endothelial cells in atherosclerosis. Atherosclerosis 2025; 402:119113. [PMID: 39914325 DOI: 10.1016/j.atherosclerosis.2025.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 01/26/2025] [Indexed: 03/09/2025]
Abstract
Atherosclerosis is widely recognized as a chronic inflammatory disease of the arterial wall characterized by the progressive accumulation of lipids, inflammatory cells, and fibrous material in the subendothelial space of large arteries. The occurrence and pathogenesis of atherosclerosis are intricately linked to the deposition of low-density lipoprotein (LDL) in the arterial wall. LDL must cross the intact endothelium to reach the subendothelial space, with caveolin-1 assuming a crucial role in this process. Caveolin-1 is a 21-24 kDa membrane protein located in caveolae and highly expressed in endothelial cells. Previous investigations have demonstrated the pivotal role of caveolin-1 in fostering atherosclerosis through its modulation of membrane trafficking, cholesterol metabolism, and cellular signaling. However, how caveolin-1 regulates LDL transcytosis across endothelial cells in atherosclerosis remains unclear. We provide a comprehensive overview of recent research on the interplay between caveolin-1 and atherosclerosis, with a specific focus on elucidating the role of caveolin-1 in mediating LDL transcytosis across endothelial cells. This review furnishes theoretical foundations supporting the pivotal role of caveolin-1 in both the inception and progression of atherosclerosis. It underscores the prospective viability of caveolin-1 as a new therapeutic target for atherosclerosis and introduces novel perspectives for treatment strategies in the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Xiong Jia
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yayu Wang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
2
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
4
|
Zisser L, Binder CJ. Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease. J Lipid Atheroscler 2024; 13:232-261. [PMID: 39355407 PMCID: PMC11439751 DOI: 10.12997/jla.2024.13.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/03/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by accumulation of lipoproteins and accompanying inflammation, leading to the formation of plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction and ischemic stroke. Although many aspects of plaque development have been elucidated, the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released by cells as mediators of intercellular communication, has only recently come into focus of atherosclerosis research. EVs comprise several subtypes that may be differentiated by their size, mode of biogenesis, or surface marker expression and cargo. The functional effects of EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological context. EVs have been suggested to play a role in all stages of plaque formation. In this review, we highlight the known mechanisms by which EVs modulate atherogenesis and outline current limitations and challenges in the field.
Collapse
Affiliation(s)
- Lucia Zisser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Li Q, Zhou Q, Li S, Li S, Liao W, Yu L, Liu C, Li M, Xia H. Target analysis and identification of curcumin against vascular calcification. Sci Rep 2024; 14:17344. [PMID: 39069521 PMCID: PMC11284211 DOI: 10.1038/s41598-024-67776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
To investigate the mechanism of curcumin (CUR) on vascular calcification (VC), we screen for common targets of CUR and atherosclerosis and verify the targets genes in vivo and in vitro experiments. The common targets of CUR and AS were screened and obtained using different databases. These target genes were analyzed by GO and KEGG pathway enrichment analysis. PPI network analysis was performed and to analyze the key targets. A rat VC model was constructed and CUR was fed for three weeks. The changes of vascular structure and calcium salt deposition were observed in H&E and Von Kossa staining. Further, the expression of these target proteins was detected in the primary VSMCs of VC. The 31 common targets were obtained. GO functional enrichment analysis obtained 1284 terms and KEGG pathway enriched 66 pathways. The key genes were identified in the cytoHubba plugin. The molecular docking analysis showed that CUR bound strongly to EGFR, STAT3 and BCL2. The animal experiments showed the deposition calcium salt reduced by the CUR administration. These proteins BMP2, RUNX2, EGFR, STAT3 and BAX expression were upregulated in VC group and CUR attenuated the upregulated expression. The signal protein Akt and p65 expression increased in VC group and decreased in CUR group. We identified some common target genes of CUR and AS and identified these key genes. The anti-VC effect of CUR was associated with the inhibition of upregulation of EGFR, STAT3 and RUNX2 expression in VSMCs.
Collapse
Affiliation(s)
- Qingjie Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- The Central Hospital of Zhoukou, Zhoukou, 466001, People's Republic of China
| | - Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Shihuan Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Suqin Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Wenli Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Liangzhu Yu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Mincai Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Hongli Xia
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
- The Central Hospital of Xianning, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
6
|
Thomas T, Bakhshiannik A, Nautiyal P, Hutcheson JD, Agarwal A. Freeze casting to engineer gradient porosity in hydroxyapatite-boron nitride nanotube composite scaffold for improved compressive strength and osteogenic potential. J Mech Behav Biomed Mater 2024; 150:106283. [PMID: 38048712 DOI: 10.1016/j.jmbbm.2023.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Abstract
Graded porosity plays a crucial role in scaffolds for bone tissue engineering as it facilitates vital processes such as nutrient diffusion, cellular infiltration, and tissue integration. This paper explores the utilization of freeze casting (FC) as a technique to generate composite scaffolds comprising hydroxyapatite (HA) reinforced with 1D-boron nitride nanotubes (BNNTs) featuring graded porosity and improved compressive strength. Comparative studies were conducted using FC at room and sub-zero temperatures to assess the influence of temperature gradient and heat transfer rate on the production of gradient and aligned porosity in HA-BNNT composites. The FC process with a prolonged thermal gradient facilitated the creation of aligned pores in the HA-BNNT, exhibiting a wide distribution of 60% porosity ranging from 1 to 30 μm. Adding high strength 1 vol% BNNT reinforcement resulted in a remarkable 50% enhancement in compressive strength compared to the control sample. Osteoblasts seeded on the HA-BNNT substrate exhibited significantly higher alkaline phosphate activity, indicating accelerated mineralization compared to the control sample. Gradient porosity and wide pore distribution in the HA-BNNT scaffolds promoted osteogenic activities. Overall, the demonstrated FC processing technique and BNNT addition hold great potential for developing functional and biomimetic scaffolds that can effectively promote tissue regeneration, leading to improved clinical outcomes in bone tissue engineering applications.
Collapse
Affiliation(s)
- Tony Thomas
- Department of Mechanical and Materials Engineering, USA
| | - Amirala Bakhshiannik
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Pranjal Nautiyal
- School of Mechanical and Aerospace Engineering, Oklahoma State University, USA
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, USA.
| |
Collapse
|
7
|
Leizaola D, Dargam V, Leiva K, Alirezaei H, Hutcheson J, Godavarty A. Effect of chronic kidney disease induced calcification on peripheral vascular perfusion using near-infrared spectroscopic imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:277-293. [PMID: 38223173 PMCID: PMC10783904 DOI: 10.1364/boe.503667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Low-cost techniques that can detect the presence of vascular calcification (VC) in chronic kidney disease (CKD) patients could improve clinical outcomes. In this study, we established a near-infrared spectroscopy-based imaging technique to determine changes in peripheral hemodynamics due to CKD-induced VC. Mice were fed a high-adenine diet with either normal or high levels of phosphate to induce CKD with and without VC, respectively. The mice tail was imaged to evaluate hemodynamic changes in response to occlusion. The rate of change in oxyhemoglobin in response to occlusion showed a statistically significant difference in the presence of VC in the mice.
Collapse
Affiliation(s)
- Daniela Leizaola
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Valentina Dargam
- Cardiovascular Matrix Remodeling
Laboratory, Biomedical Engineering
Department, 10555 W Flagler St, Miami, FL 33174,
USA
| | - Kevin Leiva
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Haniyeh Alirezaei
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| | - Joshua Hutcheson
- Cardiovascular Matrix Remodeling
Laboratory, Biomedical Engineering
Department, 10555 W Flagler St, Miami, FL 33174,
USA
| | - Anuradha Godavarty
- Optical Imaging Laboratory, Biomedical Engineering Department, 10555 W Flagler St, Miami, FL 33174, USA
| |
Collapse
|
8
|
Dubourg V, Schwerdt G, Schreier B, Kopf M, Mildenberger S, Benndorf RA, Gekle M. Transcriptional impact of EGFR activation in human female vascular smooth muscle cells. iScience 2023; 26:108286. [PMID: 38026216 PMCID: PMC10651680 DOI: 10.1016/j.isci.2023.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMC) are critical for the vascular tone, but they can also drive the development of vascular diseases when they lose their contractile phenotype and de-differentiate. Previous studies showed that the epidermal growth factor receptor (EGFR) of VSMC is critical for vascular health, but most of the underlying mechanisms by which VSMC-EGFR controls vascular fate have remained unknown. We combined RNA-sequencing and bioinformatics analysis to characterize the effect of EGFR-activation on the transcriptome of human primary VSMC (from different female donors) and to identify potentially affected cellular processes. Our results indicate that the activation of human VSMC-EGFR is sufficient to trigger a phenotypical switch toward a proliferative and inflammatory phenotype. The extent of this effect is nonetheless partly donor-dependent. Our hypothesis-generating study thus provides a first insight into mechanisms that could partly explain variable susceptibilities to vascular diseases in between individuals.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf A. Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|