1
|
Usai DS, Aasum E, Thomsen MB. The isolated, perfused working heart preparation of the mouse-Advantages and pitfalls. Acta Physiol (Oxf) 2025; 241:e70023. [PMID: 40078031 PMCID: PMC11904386 DOI: 10.1111/apha.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Isolated, perfused hearts are viable for hours outside the body, and important research findings have been made using mouse hearts ex vivo. In the Langendorff perfusion mode, the coronary tree is perfused via retrograde flow of a perfusate down the ascending aorta. Although the Langendorff setup is generally simpler and quicker to establish, the working heart mode allows the heart to function in a more physiologically relevant manner, where the perfusate is directed into the left ventricle via the left atrium. The contracting, fluid-filled ventricle will eject the perfusate into the aorta in a more physiologically relevant manner, lifting the physiological relevance of the contractile and energetic data. The workload on the heart (preload, afterload and heart rate) can be precisely adjusted in the working, isolated heart, and the ventricular performance, for example, end-diastolic and end-systolic pressures, stroke volume, cardiac output, and oxygen consumption can be determined. Moreover, using pressure-volume catheters, ventricular performance can be assessed in great detail. With the present review, we highlight the benefits and drawbacks of the technique and indicate where particular attention must be put when building the working heart setup, designing experiments, executing the studies, and analyzing the obtained data.
Collapse
Affiliation(s)
- Diana S Usai
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Aasum
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Morten B Thomsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Akyildiz K, Yilmaz A, Avci U, Toraman MN, Yazici ZA. White Tea Consumption Alleviates Anthropometric and Metabolic Parameters in Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1568. [PMID: 39459354 PMCID: PMC11509830 DOI: 10.3390/medicina60101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Obesity and related disorders are an increasing global health problem. Achieving and maintaining long-term weight loss through lifestyle changes and/or pharmacological interventions have not met expectations. Dietary supplements and alternative treatments have also shown limited effectiveness in this regard. The consumption of green tea in general has been shown to benefit obese patients, with effects attributed to caffeine, catechins, polyphenols and other components. However, the potential of white tea to prevent and treat the negative effects of obesity has not been addressed so far. In this study, the effect of white tea (WT) consumption in obese individuals was anthropometrically and biochemically investigated. Materials and Methods: Based on anthropometric and biochemical assessments, the patients were assigned to the control, orlistat, metformin and WT groups. Patients were given a diet and exercise program and one of either orlistat, metformin or WT for 12 weeks. At the end of the 12th week, the anthropometric and biochemical measurements were reassessed. Results: Body weight, waist circumference and BMI parameters decreased significantly in all groups. TNF-α, IL-6, IL-1β and MMP-9 levels decreased significantly in the WT group. In addition, contrary to a significant elevation in HDL-C, the serum cholesterol, LDL-C and TG levels decreased significantly. Furthermore, leptin, ghrelin and asprosin levels decreased significantly. Serum glucose levels decreased significantly in all groups except for the control. In the WT group, while there was a significant decrease in the levels of serum PL MDA and 8-OHdG, the opposite was true for GSH. Conclusions: The oral consumption of WT, its availability and its potency in obesity treatment and prevention pave the way for further delineation of the mechanisms of actions of its bioactive compounds at the cellular and endocrinological levels.
Collapse
Affiliation(s)
- Kerimali Akyildiz
- Department of Medical Services and Techniques, School of Vocational Healh Care Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Adnan Yilmaz
- Department of Biochemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ugur Avci
- Department of Endocrinology and Metabolism, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Merve Nur Toraman
- Department of Nutrition and Diet, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zihni Acar Yazici
- Department of Microbiology, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
3
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
4
|
Krako Jakovljevic N, Boardman NT, Makrecka-Kuka M. Editorial: Lipotoxicity, mitotoxicity, and drug targets. Front Endocrinol (Lausanne) 2023; 14:1245111. [PMID: 37560301 PMCID: PMC10408128 DOI: 10.3389/fendo.2023.1245111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Nina Krako Jakovljevic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine University of Belgrade, Belgrade, Serbia
| | - Neoma T. Boardman
- Department Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
5
|
Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, Muntean DM. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int J Mol Sci 2022; 23:8852. [PMID: 36012137 PMCID: PMC9408127 DOI: 10.3390/ijms23168852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method currently used to study mitochondrial respiration and its impairment in health and disease. Tissue samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration protocols, which allows the measurement and calculation of several parameters of mitochondrial respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both animal models and human subjects. Herein we review data regarding the impairment of oxidative phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge the critical role of this method in determining the alterations in oxidative phosphorylation occurring in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.
Collapse
Affiliation(s)
- Vlad Florian Avram
- Department VII Internal Medicine—Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Petru Merce
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina Maria Hâncu
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina Doruța Bătrân
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabrielle Kennedy
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Mariana Georgeta Rosca
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department III Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
6
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Li X, Peng X, Guo K, Tan Z. Bacterial diversity in intestinal mucosa of mice fed with Dendrobium officinale and high-fat diet. 3 Biotech 2021; 11:22. [PMID: 33442520 PMCID: PMC7779387 DOI: 10.1007/s13205-020-02558-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the effect of Dendrobium officinale (DO) on the diversity of intestinal mucosal flora in high-fat diet mice and provided an experimental basis for the development and research of DO and its series products. Twenty-four mice were randomly assigned to four equal groups of six mice, namely the control (bcm) group, model (bmm) group, Dendrobium officinale (bdm) group, and positive control (bjm) group. Mice in the bdm group were administrated at the dose of 2.37 g·kg-1·days-1, and those in bjm group were given the Lipid-lowering decoction at the concentration of 1.19 g·kg-1·days-1, and sterile water was used as a placebo control twice a day for 40 consecutive days. We measured the dynamic weight changes and intestinal mucosal flora changes in mice. The analysis showed that DO had a regulatory effect on weight change induced by a high-fat diet in mice. DO could also regulate the changes in the diversity of the intestinal mucosa of mice, which was specifically reflected in the changes of Chao 1, ACE, Shannon and Simpson index. The sample information of the bdm group was relatively concentrated, but the distance from the bmm group was relatively scattered. The relative abundance results showed dominant bacteria phylum (such as Bacteroidetes, Actinobacteria, Verrucomicrobia) and bacterial genus (such as Bifidobacterium, Ruminococcus, Ochrobactrum) in the intestinal mucosa of the four groups. And significant differences in the major microbiota between the bdm and bjm groups. In addition, DO changed the carbohydrate, energy, and amino acid metabolism of intestinal mucosal flora. To sum up, DO has a regulatory effect on weight change induced by high-fat diet in mice and can improve the diversity of intestinal mucosal flora, promote the abundance of Ochrobactrum, inhibit the abundance of Bifidobacterium and Ruminococcus, and influence the intestinal flora to positively affect high-fat diet-induced negative effects in mice.
Collapse
Affiliation(s)
- Xiaoya Li
- Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Kangxiao Guo
- Changsha Health Vocational College, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|