1
|
Wang J, Tomar D, Martin TG, Dubey S, Dubey PK, Song J, Landesberg G, McCormick MG, Myers VD, Merali S, Merali C, Lemster B, McTiernan CF, Khalili K, Madesh M, Cheung JY, Kirk JA, Feldman AM. Bag3 Regulates Mitochondrial Function and the Inflammasome Through Canonical and Noncanonical Pathways in the Heart. JACC Basic Transl Sci 2023; 8:820-839. [PMID: 37547075 PMCID: PMC10401293 DOI: 10.1016/j.jacbts.2022.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhadendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas G. Martin
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Shubham Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Praveen K. Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gavin Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Carmen Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Bonnie Lemster
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charles F. McTiernan
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Maning J, Desimine VL, Pollard CM, Ghandour J, Lymperopoulos A. Carvedilol Selectively Stimulates βArrestin2-Dependent SERCA2a Activity in Cardiomyocytes to Augment Contractility. Int J Mol Sci 2022; 23:11315. [PMID: 36232617 PMCID: PMC9570329 DOI: 10.3390/ijms231911315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure (HF) carries the highest mortality in the western world and β-blockers [β-adrenergic receptor (AR) antagonists] are part of the cornerstone pharmacotherapy for post-myocardial infarction (MI) chronic HF. Cardiac β1AR-activated βarrestin2, a G protein-coupled receptor (GPCR) adapter protein, promotes Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a SUMO (small ubiquitin-like modifier)-ylation and activity, thereby directly increasing cardiac contractility. Given that certain β-blockers, such as carvedilol and metoprolol, can activate βarrestins and/or SERCA2a in the heart, we investigated the effects of these two agents on cardiac βarrestin2-dependent SERCA2a SUMOylation and activity. We found that carvedilol, but not metoprolol, acutely induces βarrestin2 interaction with SERCA2a in H9c2 cardiomyocytes and in neonatal rat ventricular myocytes (NRVMs), resulting in enhanced SERCA2a SUMOylation. However, this translates into enhanced SERCA2a activity only in the presence of the β2AR-selective inverse agonist ICI 118,551 (ICI), indicating an opposing effect of carvedilol-occupied β2AR subtype on carvedilol-occupied β1AR-stimulated, βarrestin2-dependent SERCA2a activation. In addition, the amplitude of fractional shortening of NRVMs, transfected to overexpress βarrestin2, is acutely enhanced by carvedilol, again in the presence of ICI only. In contrast, metoprolol was without effect on NRVMs' shortening amplitude irrespective of ICI co-treatment. Importantly, the pro-contractile effect of carvedilol was also observed in human induced pluripotent stem cell (hIPSC)-derived cardiac myocytes (CMs) overexpressing βarrestin2, and, in fact, it was present even without concomitant ICI treatment of human CMs. Metoprolol with or without concomitant ICI did not affect contractility of human CMs, either. In conclusion, carvedilol, but not metoprolol, stimulates βarrestin2-mediated SERCA2a SUMOylation and activity through the β1AR in cardiac myocytes, translating into direct positive inotropy. However, this unique βarrestin2-dependent pro-contractile effect of carvedilol may be opposed or masked by carvedilol-bound β2AR subtype signaling.
Collapse
Affiliation(s)
| | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
3
|
Feldman AM, Gordon J, Wang J, Song J, Zhang XQ, Myers VD, Tomar D, Gerhard GS, Khalili K, Cheung JY. Novel BAG3 Variants in African American Patients With Cardiomyopathy: Reduced β-Adrenergic Responsiveness in Excitation-Contraction. J Card Fail 2020; 26:1075-1085. [PMID: 32956817 DOI: 10.1016/j.cardfail.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND We reported 3 novel nonsynonymous single nucleotide variants of Bcl2-associated athanogene 3 (BAG3) in African Americans with heart failure (HF) that are associated with a 2-fold increase in cardiac events (HF hospitalization, heart transplantation, or death). METHODS AND RESULTS We expressed BAG3 variants (P63A, P380S, and A479V) via adenovirus-mediated gene transfer in adult left ventricular myocytes isolated from either wild-type (WT) or cardiac-specific BAG3 haploinsufficient (cBAG3+/-) mice: the latter to simulate the clinical situation in which BAG3 variants are only found on 1 allele. Compared with WT myocytes, cBAG3+/- myocytes expressed approximately 50% of endogenous BAG3 levels and exhibited decreased [Ca2+]i and contraction amplitudes after isoproterenol owing to decreased L-type Ca2+ current. BAG3 repletion with WT BAG3 but not P380S, A479V, or P63A/P380S variants restored contraction amplitudes in cBAG3+/- myocytes to those measured in WT myocytes, suggesting excitation-contraction abnormalities partly account for HF in patients harboring these mutants. Because P63A is near the WW domain (residues 21-55) and A479V is in the BAG domain (residues 420-499), we expressed BAG3 deletion mutants (Δ1-61 and Δ421-575) in WT myocytes and demonstrated that the BAG but not the WW domain was involved in enhancement of excitation-contraction by isoproterenol. CONCLUSIONS The BAG3 variants contribute to HF in African American patients partly by decreasing myocyte excitation-contraction under stress, and that both the BAG and PXXP domains are involved in mediating β-adrenergic responsiveness in myocytes.
Collapse
Affiliation(s)
- Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Jufang Wang
- Center for Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Valerie D Myers
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania; Center for Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Haouzi P, McCann M, Wang J, Zhang XQ, Song J, Sariyer I, Langford D, Santerre M, Tubbs N, Haouzi-Judenherc A, Cheung JY. Antidotal effects of methylene blue against cyanide neurological toxicity: in vivo and in vitro studies. Ann N Y Acad Sci 2020; 1479:108-121. [PMID: 32374444 DOI: 10.1111/nyas.14353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to determine whether methylene blue (MB) could directly oppose the neurological toxicity of a lethal cyanide (CN) intoxication. KCN, infused at the rate of 0.375 mg/kg/min intravenously, produced 100% lethality within 15 min in unanaesthetized rats (n = 12). MB at 10 (n = 5) or 20 mg/kg (n = 5), administered 3 min into CN infusion, allowed all animals to survive with no sequelae. No apnea and gasping were observed at 20 mg/kg MB (P < 0.001). The onset of coma was also significantly delayed and recovery from coma was shortened in a dose-dependent manner (median of 359 and 737 seconds, respectively, at 20 and 10 mg/kg). At 4 mg/kg MB (n = 5), all animals presented faster onset of coma and apnea and a longer period of recovery than at the highest doses (median 1344 seconds, P < 0.001). MB reversed NaCN-induced resting membrane potential depolarization and action potential depression in primary cultures of human fetal neurons intoxicated with CN. MB restored calcium homeostasis in the CN-intoxicated human SH-SY5Y neuroblastoma cell line. We conclude that MB mitigates the neuronal toxicity of CN in a dose-dependent manner, preventing the lethal depression of respiratory medullary neurons and fatal outcome.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Marissa McCann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ilker Sariyer
- Department of Neurosciences, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Diane Langford
- Department of Neurosciences, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Maryline Santerre
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Annick Haouzi-Judenherc
- Heart and Vascular Institute, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joseph Y Cheung
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.,Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Miller BA, Wang J, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Tomar D, Rajan S, Feldman AM, Madesh M, Sheu SS, Cheung JY. Trpm2 enhances physiological bioenergetics and protects against pathological oxidative cardiac injury: Role of Pyk2 phosphorylation. J Cell Physiol 2019; 234:15048-15060. [PMID: 30637731 PMCID: PMC6626587 DOI: 10.1002/jcp.28146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/03/2019] [Indexed: 01/25/2023]
Abstract
The mechanisms by which Trpm2 channels enhance mitochondrial bioenergetics and protect against oxidative stress-induced cardiac injury remain unclear. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in Trpm2 signaling is explored. Activation of Trpm2 in adult myocytes with H2 O2 resulted in 10- to 21-fold increases in Pyk2 phosphorylation in wild-type (WT) myocytes which was significantly lower (~40%) in Trpm2 knockout (KO) myocytes. Pyk2 phosphorylation was inhibited (~54%) by the Trpm2 blocker clotrimazole. Buffering Trpm2-mediated Ca2+ increase with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) resulted in significantly reduced pPyk2 in WT but not in KO myocytes, indicating Ca2+ influx through activated Trpm2 channels phosphorylated Pyk2. Part of phosphorylated Pyk2 translocated from cytosol to mitochondria which has been previously shown to augment mitochondrial Ca2+ uptake and enhance adenosine triphosphate generation. Although Trpm2-mediated Ca2+ influx phosphorylated Ca2+ -calmodulin kinase II (CaMKII), the CaMKII inhibitor KN93 did not significantly affect Pyk2 phosphorylation in H2 O2 -treated WT myocytes. After ischemia/reperfusion (I/R), Pyk2 phosphorylation and its downstream prosurvival signaling molecules (pERK1/2 and pAkt) were significantly lower in KO-I/R when compared with WT-I/R hearts. After hypoxia/reoxygenation, mitochondrial membrane potential was lower and superoxide level was higher in KO myocytes, and were restored to WT values by the mitochondria-targeted superoxide scavenger MitoTempo. Our results suggested that Ca2+ influx via tonically activated Trpm2 phosphorylated Pyk2, part of which translocated to mitochondria, resulting in better mitochondrial bioenergetics to maintain cardiac health. After I/R, Pyk2 activated prosurvival signaling molecules and prevented excessive increases in reactive oxygen species, thereby affording protection from I/R injury.
Collapse
Affiliation(s)
- Barbara A. Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Iwona Hirschler-Laszkiewicz
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Santhanam Shanmughapriya
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Dhanendra Tomar
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Sudasan Rajan
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Arthur M. Feldman
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Biochemistry, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| | - Shey-Shing Sheu
- Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joseph Y. Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140,Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA 19140
| |
Collapse
|
6
|
Cheung JY, Merali S, Wang J, Zhang XQ, Song J, Merali C, Tomar D, You H, Judenherc-Haouzi A, Haouzi P. The central role of protein kinase C epsilon in cyanide cardiotoxicity and its treatment. Toxicol Sci 2019; 171:247-257. [PMID: 31173149 PMCID: PMC6735853 DOI: 10.1093/toxsci/kfz137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
In adult mouse myocytes, brief exposure to sodium cyanide (CN) in the presence of glucose does not decrease ATP levels, yet produces profound reduction in contractility, intracellular Ca2+ concentration ([Ca2+]i) transient and L-type Ca2+ current (ICa) amplitudes. We analyzed proteomes from myocytes exposed to CN, focusing on ionic currents associated with excitation-contraction coupling. CN induced phosphorylation of α1c subunit of L-type Ca2+ channel and α2 subunit of Na+-K+-ATPase. Methylene blue (MB), a CN antidote that we previously reported to ameliorate CN-induced reduction in contraction, [Ca2+]i transient and ICa amplitudes, was able to reverse this phosphorylation. CN decreased Na+-K+-ATPase current contributed by α2 but not α1 subunit, an effect that was also counteracted by MB. Peptide consensus sequences suggested CN-induced phosphorylation was mediated by protein kinase C epsilon (PKCε). Indeed, CN stimulated PKC kinase activity and induced PKCε membrane translocation, effects that were prevented by MB. Pre-treatment with myristoylated PKCε translocation activator or inhibitor peptides mimicked and inhibited the effects of CN on ICa and myocyte contraction, respectively. We conclude that CN activates PKCε, which phosphorylates L-type Ca2+ channel and Na+-K+-ATPase, resulting in depressed cardiac contractility. We hypothesize that this inhibition of ion fluxes represents a novel mechanism by which the cardiomyocyte reduces its ATP demand (decreased ion fluxes and contractility), diminishes ATP turnover and preserves cell viability. However, this cellular protective effect translates into life-threatening cardiogenic shock in vivo, thereby creating a profound disconnect between survival mechanisms at the cardiomyocyte level from those at the level of the whole organism.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA.,Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Salim Merali
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA
| | - JuFang Wang
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Xue-Qian Zhang
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Carmen Merali
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA
| | - Dhanendra Tomar
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Hanning You
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | | | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
7
|
Cheung JY, Wang J, Zhang XQ, Song J, Davidyock JM, Prado FJ, Shanmughapriya S, Worth AM, Madesh M, Judenherc-Haouzi A, Haouzi P. Methylene Blue Counteracts H 2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction. Cardiovasc Toxicol 2019; 18:407-419. [PMID: 29603116 DOI: 10.1007/s12012-018-9451-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously demonstrated that methylene blue (MB) counteracts the effects of hydrogen sulfide (H2S) cardiotoxicity by improving cardiomyocyte contractility and intracellular Ca2+ homeostasis disrupted by H2S poisoning. In vivo, MB restores cardiac contractility severely depressed by sulfide and protects against arrhythmias, ranging from bundle branch block to ventricular tachycardia or fibrillation. To dissect the cellular mechanisms by which MB reduces arrhythmogenesis and improves bioenergetics in myocytes intoxicated with H2S, we evaluated the effects of H2S on resting membrane potential (Em), action potential (AP), Na+/Ca2+ exchange current (INaCa), depolarization-activated K+ currents and ATP levels in adult mouse cardiac myocytes and determined whether MB could counteract the toxic effects of H2S on myocyte electrophysiology and ATP. Exposure to toxic concentrations of H2S (100 µM) significantly depolarized Em, reduced AP amplitude, prolonged AP duration at 90% repolarization (APD90), suppressed INaCa and depolarization-activated K+ currents, and reduced ATP levels in adult mouse cardiac myocytes. Treating cardiomyocytes with MB (20 µg/ml) 3 min after H2S exposure restored Em, APD90, INaCa, depolarization-activated K+ currents, and ATP levels toward normal. MB improved mitochondrial membrane potential (∆ψm) and oxygen consumption rate in myocytes in which Complex I was blocked by rotenone. We conclude that MB ameliorated H2S-induced cardiomyocyte toxicity at multiple levels: (1) reversing excitation-contraction coupling defects (Ca2+ homeostasis and L-type Ca2+ channels); (2) reducing risks of arrhythmias (Em, APD, INaCa and depolarization-activated K+ currents); and (3) improving cellular bioenergetics (ATP, ∆ψm).
Collapse
MESH Headings
- Action Potentials
- Adenosine Triphosphate/metabolism
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Energy Metabolism/drug effects
- Heart Rate/drug effects
- Hydrogen Sulfide/toxicity
- Ion Channels/drug effects
- Ion Channels/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Methylene Blue/pharmacology
- Mice
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxygen Consumption/drug effects
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- Sodium-Calcium Exchanger/drug effects
- Sodium-Calcium Exchanger/metabolism
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA.
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA, 19140, USA.
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - John M Davidyock
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA, 19140, USA
| | - Fabian Jana Prado
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Santhanam Shanmughapriya
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Alison M Worth
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine of Temple University, 3500 N. Broad Street, MERB 958, Philadelphia, PA, 19140, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
8
|
Cheung JY, Gordon J, Wang J, Song J, Zhang XQ, Prado FJ, Shanmughapriya S, Rajan S, Tomar D, Tahrir FG, Gupta MK, Knezevic T, Merabova N, Kontos CD, McClung JM, Klotman PE, Madesh M, Khalili K, Feldman AM. Mitochondrial dysfunction in human immunodeficiency virus-1 transgenic mouse cardiac myocytes. J Cell Physiol 2018; 234:4432-4444. [PMID: 30256393 DOI: 10.1002/jcp.27232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Abstract
The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2 •- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2 •- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2 •- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2 •- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fabian Jana Prado
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Santhanam Shanmughapriya
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Sudarsan Rajan
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Farzaneh G Tahrir
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Manish K Gupta
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tijana Knezevic
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Nana Merabova
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Christopher D Kontos
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine of East Carolina University, Greenville, North Carolina
| | - Paul E Klotman
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.,Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Cheung JY, Wang J, Zhang XQ, Song J, Tomar D, Madesh M, Judenherc-Haouzi A, Haouzi P. Methylene blue counteracts cyanide cardiotoxicity: cellular mechanisms. J Appl Physiol (1985) 2018; 124:1164-1176. [PMID: 29420146 PMCID: PMC6050200 DOI: 10.1152/japplphysiol.00967.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 11/22/2022] Open
Abstract
In adult left ventricular mouse myocytes, exposure to sodium cyanide (NaCN) in the presence of glucose dose-dependently reduced contraction amplitude, with ~80% of maximal inhibitory effect attained at 100 µM. NaCN (100 µM) exposure for 10 min significantly decreased contraction and intracellular Ca2+ concentration ([Ca2+]i) transient amplitudes, systolic but not diastolic [Ca2+]i, and maximal L-type Ca2+ current ( ICa) amplitude, indicating acute alteration of [Ca2+]i homeostasis largely accounted for the observed excitation-contraction abnormalities. In addition, NaCN depolarized resting membrane potential ( Em), reduced action potential (AP) amplitude, prolonged AP duration at 50% (APD50) and 90% repolarization (APD90), and suppressed depolarization-activated K+ currents but had no effect on Na+-Ca2+ exchange current ( INaCa). NaCN did not affect cellular adenosine triphosphate levels but depolarized mitochondrial membrane potential (ΔΨm) and increased superoxide (O2·-) levels. Methylene blue (MB; 20 µg/ml) added 3 min after NaCN restored contraction and [Ca2+]i transient amplitudes, systolic [Ca2+]i, Em, AP amplitude, APD50, APD90, ICa, depolarization-activated K+ currents, ΔΨm, and O2·- levels toward normal. We conclude that MB reversed NaCN-induced cardiotoxicity by preserving intracellular Ca2+ homeostasis and excitation-contraction coupling ( ICa), minimizing risks of arrhythmias ( Em, AP configuration, and depolarization-activated K+ currents), and reducing O2·- levels. NEW & NOTEWORTHY Cyanide poisoning due to industrial exposure, smoke inhalation, and bioterrorism manifests as cardiogenic shock and requires rapidly effective antidote. In the early stage of cyanide exposure, adenosine triphosphate levels are normal but myocyte contractility is reduced, largely due to alterations in Ca2+ homeostasis because of changes in oxidation-reduction environment of ion channels. Methylene blue, a drug approved by the U.S. Food and Drug Administration, ameliorates cyanide toxicity by normalizing oxidation-reduction state and Ca2+ channel function.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
- Department of Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
10
|
Agarwal SR, Gratwohl J, Cozad M, Yang PC, Clancy CE, Harvey RD. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Front Pharmacol 2018; 9:332. [PMID: 29740315 PMCID: PMC5925456 DOI: 10.3389/fphar.2018.00332] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Jackson Gratwohl
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Mia Cozad
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
11
|
Myers VD, Tomar D, Madesh M, Wang J, Song J, Zhang XQ, Gupta MK, Tahrir FG, Gordon J, McClung JM, Kontos CD, Khalili K, Cheung JY, Feldman AM. Haplo-insufficiency of Bcl2-associated athanogene 3 in mice results in progressive left ventricular dysfunction, β-adrenergic insensitivity, and increased apoptosis. J Cell Physiol 2018; 233:6319-6326. [PMID: 29323723 DOI: 10.1002/jcp.26482] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid protein that is found predominantly in the heart, skeletal muscle, and many cancers. Deletions and truncations in BAG3 that result in haplo-insufficiency have been associated with the development of dilated cardiomyopathy. To study the cellular and molecular events attributable to BAG3 haplo-insufficiency we generated a mouse in which one allele of BAG3 was flanked by loxP recombination sites (BAG3fl/+ ). Mice were crossed with α-MHC-Cre mice in order to generate mice with cardiac-specific haplo-insufficiency (cBAG3+/-) and underwent bi-weekly echocardiography to assess their cardiac phenotype. By 10 weeks of age, cBAG3+/- mice demonstrated increased heart size and diminished left ventricular ejection fraction when compared with non-transgenic littermates (Cre-/- BAG3fl/+ ). Contractility in adult myocytes isolated from cBAG3+/- mice were similar to those isolated from control mice at baseline, but showed a significantly decreased response to adrenergic stimulation. Intracellular calcium ([Ca2+ ]i ) transient amplitudes in myocytes isolated from cBAG3+/- mice were also similar to myocytes isolated from control mice at baseline but were significantly lower than myocytes from control mice in their response to isoproterenol. BAG3 haplo-insufficiency was also associated with decreased autophagy flux and increased apoptosis. Taken together, these results suggest that mice in which BAG3 has been deleted from a single allele provide a model that mirrors the biology seen in patients with heart failure and BAG3 haplo-insufficiency.
Collapse
Affiliation(s)
- Valerie D Myers
- Department of Medicine, Lewis Katz School of Medicine at Philadelphia, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - JuFang Wang
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Manish K Gupta
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Farzaneh G Tahrir
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greeneville, North Carolina
| | - Christopher D Kontos
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- Department of Medicine, Lewis Katz School of Medicine at Philadelphia, Philadelphia, Pennsylvania.,Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Bouley R, Waldschmidt HV, Cato MC, Cannavo A, Song J, Cheung JY, Yao XQ, Koch WJ, Larsen SD, Tesmer JJG. Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein-Coupled Receptor Kinase 2 Inhibitors. Mol Pharmacol 2017; 92:707-717. [PMID: 29070696 PMCID: PMC5691592 DOI: 10.1124/mol.117.110130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate activated receptors to promote arrestin binding, decoupling from heterotrimeric G proteins, and internalization. GRK2 and GRK5 are overexpressed in the failing heart and thus have become therapeutic targets. Previously, we discovered two classes of GRK2-selective inhibitors, one stemming from GSK180736A, a Rho-associated coiled-coil containing kinase 1 (ROCK1) inhibitor, the other from paroxetine, a selective serotonin-reuptake inhibitor. These two classes of compounds bind to the GRK2 active site in a similar configuration but contain different hinge-binding "warheads": indazole and benzodioxole, respectively. We surmised from our prior studies that an indazole would be the stronger hinge binder and would impart increased potency when substituted for benzodioxole in paroxetine derivatives. To test this hypothesis, we synthesized a series of hybrid compounds that allowed us to compare the effects of inhibitors that differ only in the identity of the warhead. The indazole-paroxetine analogs were indeed more potent than their respective benzodioxole derivatives but lost selectivity. To investigate how these two warheads dictate selectivity, we determined the crystal structures of three of the indazole hybrid compounds (CCG224061, CCG257284, and CCG258748) in complex with GRK2-Gβγ Comparison of these structures with those of analogous benzodioxole-containing complexes confirmed that the indazole-paroxetine hybrids form stronger interactions with the hinge of the kinase but also stabilize a distinct conformation of the kinase domain of GRK2 compared with previous complexes with paroxetine analogs. This conformation is analogous to one that can be assumed by GRK5, at least partially explaining the loss in selectivity.
Collapse
Affiliation(s)
- Renee Bouley
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Helen V Waldschmidt
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - M Claire Cato
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Alessandro Cannavo
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Jianliang Song
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Joseph Y Cheung
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Xin-Qiu Yao
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Walter J Koch
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - Scott D Larsen
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| | - John J G Tesmer
- Life Sciences Institute (R.B., H.V.W., M.C.C., J.J.G.T.), Departments of Medicinal Chemistry (H.V.W., S.D.L., J.J.G.T.), Pharmacology (R.B., J.J.G.T.), Biological Chemistry (M.C.C., J.J.G.T.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; Department of Chemistry, Georgia State University, Atlanta, Georgia (X.-Q.Y.); Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania (A.C., J.S., J.Y.C, W.J.K.); and Department of Biological Sciences, Purdue University, West Lafayette Indiana (J.J.G.T.)
| |
Collapse
|
13
|
Waldschmidt HV, Homan KT, Cato MC, Cruz-Rodríguez O, Cannavo A, Wilson MW, Song J, Cheung JY, Koch WJ, Tesmer JJG, Larsen SD. Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. J Med Chem 2017; 60:3052-3069. [PMID: 28323425 DOI: 10.1021/acs.jmedchem.7b00112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In heart failure, the β-adrenergic receptors (βARs) become desensitized and uncoupled from heterotrimeric G proteins. This process is initiated by G protein-coupled receptor kinases (GRKs), some of which are upregulated in the failing heart, making them desirable therapeutic targets. The selective serotonin reuptake inhibitor, paroxetine, was previously identified as a GRK2 inhibitor. Utilizing a structure-based drug design approach, we modified paroxetine to generate a small compound library. Included in this series is a highly potent and selective GRK2 inhibitor, 14as, with an IC50 of 30 nM against GRK2 and greater than 230-fold selectivity over other GRKs and kinases. Furthermore, 14as showed a 100-fold improvement in cardiomyocyte contractility assays over paroxetine and a plasma concentration higher than its IC50 for over 7 h. Three of these inhibitors, including 14as, were additionally crystallized in complex with GRK2 to give insights into the structural determinants of potency and selectivity of these inhibitors.
Collapse
Affiliation(s)
- Helen V Waldschmidt
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Kristoff T Homan
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Marilyn C Cato
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Osvaldo Cruz-Rodríguez
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Alessandro Cannavo
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Michael W Wilson
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Jianliang Song
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Joseph Y Cheung
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Walter J Koch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - John J G Tesmer
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Scott D Larsen
- Department of Medicinal Chemistry, College of Pharmacy, ‡Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, §Ph.D. Program in Chemical Biology, ⊥Vahlteich Medicinal Chemistry Core, University of Michigan , Ann Arbor, Michigan 48109, United States.,Center for Translational Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
14
|
Knezevic T, Myers VD, Su F, Wang J, Song J, Zhang XQ, Gao E, Gao G, Muniswamy M, Gupta MK, Gordon J, Weiner KN, Rabinowitz J, Ramsey FV, Tilley DG, Khalili K, Cheung JY, Feldman AM. Adeno-associated Virus Serotype 9 - Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts with Left Ventricular Dysfunction Secondary to a Myocardial Infarction. ACTA ACUST UNITED AC 2016; 1:647-656. [PMID: 28164169 PMCID: PMC5289821 DOI: 10.1016/j.jacbts.2016.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BAG3 is a highly conserved protein having pleiotropic effects that is expressed at high levels in the heart, skeletal muscles, and many cancers. BAG3 levels are reduced in many forms of LV dysfunction including mice after ligation of the left coronary artery. Retro-orbital injection of mice with an adeno-associated virus coupled to murine BAG3 under the control of a CMV promoter (rAAV9-BAG3) increased myocardial levels of BAG3 by 7 days post-injection. Retro-orbital injection of rAAV9-BAG3 in mice post-myocardial infarction improved LV function, whereas rAAV9-BAG3 had no effect on LV function in the absence of an MI. BAG3 may prove to be a new therapeutic target in the treatment of heart failure.
Mutations in Bcl-2–associated athanogene 3 (BAG3) were associated with skeletal muscle dysfunction and dilated cardiomyopathy. Retro-orbital injection of an adeno-associated virus serotype 9 expressing BAG3 (rAAV9-BAG3) significantly (p < 0.0001) improved left ventricular ejection fraction, fractional shortening, and stroke volume 9 days post-injection in mice with cardiac dysfunction secondary to a myocardial infarction. Furthermore, myocytes isolated from mice 3 weeks after injection showed improved cell shortening, enhanced systolic [Ca2+]i and increased [Ca2+]i transient amplitudes, and increased maximal L-type Ca2+ current amplitude. These results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.
Collapse
Affiliation(s)
- Tijana Knezevic
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennslyvnaia; Department of Neuroscience, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Valerie D Myers
- Department of Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Feifei Su
- Department of Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; Department of Cardiology, TangDu Hospital, Fourth Military Medical University, Xi'an, China
| | - JuFang Wang
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Erhe Gao
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Guofeng Gao
- Department of Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Madesh Muniswamy
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Manish K Gupta
- Department of Neuroscience, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kristen N Weiner
- Department of Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joseph Rabinowitz
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Frederick V Ramsey
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennslyvnaia
| | - Douglas G Tilley
- Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joseph Y Cheung
- Department of Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; Center for Translational Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Department of Medicine, the Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Su F, Myers VD, Knezevic T, Wang J, Gao E, Madesh M, Tahrir FG, Gupta MK, Gordon J, Rabinowitz J, Ramsey FV, Tilley DG, Khalili K, Cheung JY, Feldman AM. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight 2016; 1:e90931. [PMID: 27882354 DOI: 10.1172/jci.insight.90931] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9-expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction.
Collapse
Affiliation(s)
- Feifei Su
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania USA.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Valerie D Myers
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania USA
| | | | | | - Erhe Gao
- Center for Translational Medicine, and
| | | | | | | | | | | | - Frederick V Ramsey
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania USA
| | | | | | - Joseph Y Cheung
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania USA.,Center for Translational Medicine, and
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania USA
| |
Collapse
|
16
|
Waldschmidt HV, Homan KT, Cruz-Rodríguez O, Cato MC, Waninger-Saroni J, Larimore KL, Cannavo A, Song J, Cheung JY, Koch WJ, Tesmer JJG, Larsen SD, Larsen SD. Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors. J Med Chem 2016; 59:3793-807. [PMID: 27050625 PMCID: PMC4890168 DOI: 10.1021/acs.jmedchem.5b02000] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) are central to many physiological processes. Regulation of this superfamily of receptors is controlled by GPCR kinases (GRKs), some of which have been implicated in heart failure. GSK180736A, developed as a Rho-associated coiled-coil kinase 1 (ROCK1) inhibitor, was identified as an inhibitor of GRK2 and co-crystallized in the active site. Guided by its binding pose overlaid with the binding pose of a known potent GRK2 inhibitor, Takeda103A, a library of hybrid inhibitors was developed. This campaign produced several compounds possessing high potency and selectivity for GRK2 over other GRK subfamilies, PKA, and ROCK1. The most selective compound, 12n (CCG-224406), had an IC50 for GRK2 of 130 nM, >700-fold selectivity over other GRK subfamilies, and no detectable inhibition of ROCK1. Four of the new inhibitors were crystallized with GRK2 to give molecular insights into the binding and kinase selectivity of this class of inhibitors.
Collapse
Affiliation(s)
- Helen V. Waldschmidt
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Kristoff T. Homan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Osvaldo Cruz-Rodríguez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,PhD Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Marilyn C. Cato
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Jessica Waninger-Saroni
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, 48109
| | - Kelly L. Larimore
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Alessandro Cannavo
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania, 19140
| | - Jianliang Song
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania, 19140
| | - Joseph Y. Cheung
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania, 19140
| | - Walter J. Koch
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania, 19140
| | - John J. G. Tesmer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Scott D. Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109,Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109,Corresponding Author: Scott D. Larsen, , (734) 615 - 0454
| | | |
Collapse
|
17
|
Judenherc-Haouzi A, Zhang XQ, Sonobe T, Song J, Rannals MD, Wang J, Tubbs N, Cheung JY, Haouzi P. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1030-44. [PMID: 26962024 DOI: 10.1152/ajpregu.00527.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/08/2016] [Indexed: 11/22/2022]
Abstract
We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania;
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Takashi Sonobe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Matthew D Rannals
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
18
|
Feldman AM, Gordon J, Wang J, Song J, Zhang XQ, Myers VD, Tilley DG, Gao E, Hoffman NE, Tomar D, Madesh M, Rabinowitz J, Koch WJ, Su F, Khalili K, Cheung JY. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes. J Mol Cell Cardiol 2016; 92:10-20. [PMID: 26796036 PMCID: PMC4789075 DOI: 10.1016/j.yjmcc.2016.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/22/2022]
Abstract
Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.
Collapse
MESH Headings
- Action Potentials/drug effects
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Excitation Contraction Coupling
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Homeostasis
- Humans
- Isoproterenol/administration & dosage
- Membrane Proteins/metabolism
- Mice
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Sarcolemma/metabolism
- Sodium-Potassium-Exchanging ATPase/metabolism
Collapse
Affiliation(s)
- Arthur M Feldman
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer Gordon
- Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Valerie D Myers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Nicholas E Hoffman
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Muniswamy Madesh
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Joseph Rabinowitz
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Feifei Su
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Kamel Khalili
- Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, Gumpert AM, Bhimaraj A, Youker KA, Uribe C, Suresh Babu S, Jeyabal P, Kishore R, Krishnamurthy P. Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury: Role of Human CD34+ Cells Deficient in MicroRNA-377. J Am Coll Cardiol 2016; 66:2214-2226. [PMID: 26564600 DOI: 10.1016/j.jacc.2015.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNA (miR) dysregulation in the myocardium has been implicated in cardiac remodeling after injury or stress. OBJECTIVES The aim of this study was to explore the role of miR in human CD34(+) cell (hCD34(+)) dysfunction in vivo after transplantation into the myocardium under ischemia-reperfusion (I-R) conditions. METHODS In response to inflammatory stimuli, the miR array profile of endothelial progenitor cells was analyzed using a polymerase chain reaction-based miR microarray. miR-377 expression was assessed in myocardial tissue from human patients with heart failure (HF). We investigated the effect of miR-377 inhibition on an hCD34(+) cell angiogenic proteome profile in vitro and on cardiac repair and function after I-R injury in immunodeficient mice. RESULTS The miR array data from endothelial progenitor cells in response to inflammatory stimuli indicated changes in numerous miR, with a robust decrease in the levels of miR-377. Human cardiac biopsies from patients with HF showed significant increases in miR-377 expression compared with nonfailing control hearts. The proteome profile of hCD34(+) cells transfected with miR-377 mimics showed significant decrease in the levels of proangiogenic proteins versus nonspecific control-transfected cells. We also validated that serine/threonine kinase 35 is a target of miR-377 using a dual luciferase reporter assay. In a mouse model of myocardial I-R, intramyocardial transplantation of miR-377 silenced hCD34(+) cells in immunodeficient mice, promoting neovascularization (at 28 days, post-I-R) and lower interstitial fibrosis, leading to improved left ventricular function. CONCLUSIONS These findings indicate that HF increased miR-377 expression in the myocardium, which is detrimental to stem cell function, and transplantation of miR-377 knockdown hCD34(+) cells into ischemic myocardium promoted their angiogenic ability, attenuating left ventricular remodeling and cardiac fibrosis.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | | | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Suresh K Verma
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Alexander R Mackie
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois
| | - Mohsin Khan
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anna M Gumpert
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Arvind Bhimaraj
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Keith A Youker
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Cesar Uribe
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Sahana Suresh Babu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Prince Jeyabal
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas; Department of Cell and Developmental Biology, Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
20
|
Cheung JY, Gordon J, Wang J, Song J, Zhang XQ, Tilley DG, Gao E, Koch WJ, Rabinowitz J, Klotman PE, Khalili K, Feldman AM. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3. Clin Transl Sci 2015; 8:305-10. [PMID: 26300236 DOI: 10.1111/cts.12331] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer Gordon
- Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas G Tilley
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Walter J Koch
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Rabinowitz
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Kamel Khalili
- Comprehensive NeuroAIDS Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Arthur M Feldman
- Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Zhang XQ, Wang J, Song J, Rabinowitz J, Chen X, Houser SR, Peterson BZ, Tucker AL, Feldman AM, Cheung JY. Regulation of L-type calcium channel by phospholemman in cardiac myocytes. J Mol Cell Cardiol 2015; 84:104-11. [PMID: 25918050 PMCID: PMC4468006 DOI: 10.1016/j.yjmcc.2015.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
We evaluated whether phospholemman (PLM) regulates L-type Ca(2+) current (ICa) in mouse ventricular myocytes. Expression of α1-subunit of L-type Ca(2+) channels between wild-type (WT) and PLM knockout (KO) hearts was similar. Compared to WT myocytes, peak ICa (at -10 mV) from KO myocytes was ~41% larger, the inactivation time constant (τ(inact)) of ICa was ~39% longer, but deactivation time constant (τ(deact)) was similar. In the presence of isoproterenol (1 μM), peak ICa was ~48% larger and τ(inact) was ~144% higher in KO myocytes. With Ba(2+) as the permeant ion, PLM enhanced voltage-dependent inactivation but had no effect on τ(deact). To dissect the molecular determinants by which PLM regulated ICa, we expressed PLM mutants by adenovirus-mediated gene transfer in cultured KO myocytes. After 24h in culture, KO myocytes expressing green fluorescent protein (GFP) had significantly larger peak ICa and longer τ(inact) than KO myocytes expressing WT PLM; thereby independently confirming the observations in freshly isolated myocytes. Compared to KO myocytes expressing GFP, KO myocytes expressing the cytoplasmic domain truncation mutant (TM43), the non-phosphorylatable S68A mutant, the phosphomimetic S68E mutant, and the signature PFXYD to alanine (ALL5) mutant all resulted in lower peak ICa. Expressing PLM mutants did not alter expression of α1-subunit of L-type Ca(2+) channels in cultured KO myocytes. Our results suggested that both the extracellular PFXYD motif and the transmembrane domain of PLM but not the cytoplasmic tail were necessary for regulation of peak ICa amplitude. We conclude that PLM limits Ca(2+) influx in cardiac myocytes by reducing maximal ICa and accelerating voltage-dependent inactivation.
Collapse
Affiliation(s)
- Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joseph Rabinowitz
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Blaise Z Peterson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Amy L Tucker
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Hoffman NE, Miller BA, Wang J, Elrod JW, Rajan S, Gao E, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Koch WJ, Feldman AM, Madesh M, Cheung JY. Ca²⁺ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol 2015; 308:H637-50. [PMID: 25576627 DOI: 10.1152/ajpheart.00720.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitously expressed Trpm2 channel limits oxidative stress and preserves mitochondrial function. We first demonstrated that intracellular Ca(2+) concentration increase after Trpm2 activation was due to direct Ca(2+) influx and not indirectly via reverse Na(+)/Ca(2+) exchange. To elucidate whether Ca(2+) entry via Trpm2 is required to maintain cellular bioenergetics, we injected adenovirus expressing green fluorescent protein (GFP), wild-type (WT) Trpm2, and loss-of-function (E960D) Trpm2 mutant into left ventricles of global Trpm2 knockout (gKO) or WT hearts. Five days post-injection, gKO-GFP heart slices had higher reactive oxygen species (ROS) levels but lower oxygen consumption rate (OCR) than WT-GFP heart slices. Trpm2 but not E960D decreased ROS and restored OCR in gKO hearts back to normal levels. In gKO myocytes expressing Trpm2 or its mutants, Trpm2 but not E960D reduced the elevated mitochondrial superoxide (O2(.-)) levels in gKO myocytes. After hypoxia-reoxygenation (H/R), Trpm2 but not E906D or P1018L (inactivates Trpm2 current) lowered O2(.-) levels in gKO myocytes and only in the presence of extracellular Ca(2+), indicating sustained Ca(2+) entry is necessary for Trpm2-mediated preservation of mitochondrial function. After ischemic-reperfusion (I/R), cardiac-specific Trpm2 KO hearts exhibited lower maximal first time derivative of LV pressure rise (+dP/dt) than WT hearts in vivo. After doxorubicin treatment, Trpm2 KO mice had worse survival and lower +dP/dt. We conclude 1) cardiac Trpm2-mediated Ca(2+) influx is necessary to maintain mitochondrial function and protect against H/R injury; 2) Ca(2+) influx via cardiac Trpm2 confers protection against H/R and I/R injury by reducing mitochondrial oxidants; and 3) Trpm2 confers protection in doxorubicin cardiomyopathy.
Collapse
Affiliation(s)
- Nicholas E Hoffman
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Barbara A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - John W Elrod
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sudasan Rajan
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | - Santhanam Shanmughapriya
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Walter J Koch
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Division of Nephrology, Temple University School of Medicine, Philadelphia, Pennsylvania;
| |
Collapse
|
23
|
Miller BA, Hoffman NE, Merali S, Zhang XQ, Wang J, Rajan S, Shanmughapriya S, Gao E, Barrero CA, Mallilankaraman K, Song J, Gu T, Hirschler-Laszkiewicz I, Koch WJ, Feldman AM, Madesh M, Cheung JY. TRPM2 channels protect against cardiac ischemia-reperfusion injury: role of mitochondria. J Biol Chem 2014; 289:7615-29. [PMID: 24492610 DOI: 10.1074/jbc.m113.533851] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca(2+) uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca(2+) uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca(2+) uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.
Collapse
|
24
|
Wang J, Song J, Gao E, Zhang XQ, Gu T, Yu D, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of phospholemman S68E mutant improves cardiac contractility and mortality after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2014; 306:H1066-77. [PMID: 24486513 DOI: 10.1152/ajpheart.00861.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM), when phosphorylated at Ser(68), inhibits cardiac Na+ / Ca2+ exchanger 1 (NCX1) and relieves its inhibition on Na+ -K+ -ATPase. We have engineered mice in which expression of the phosphomimetic PLM S68E mutant was induced when dietary doxycycline was removed at 5 wk. At 8-10 wk, compared with noninduced or wild-type hearts, S68E expression in induced hearts was ∼35-75% that of endogenous PLM, but protein levels of sarco(endo)plasmic reticulum Ca2+ -ATPase, α1- and α2-subunits of Na+ -K+ -ATPase, α1c-subunit of L-type Ca2+ channel, and phosphorylated ryanodine receptor were unchanged. The NCX1 protein level was increased by ∼47% but the NCX1 current was depressed by ∼34% in induced hearts. Isoproterenol had no effect on NCX1 currents but stimulated Na+ -K+ -ATPase currents equally in induced and noninduced myocytes. At baseline, systolic intracellular Ca2+ concentrations ([Ca2+]i), sarcoplasmic reticulum Ca2+ contents, and [Ca(2+)]i transient and contraction amplitudes were similar between induced and noninduced myocytes. Isoproterenol stimulation resulted in much higher systolic [Ca2+]i, sarcoplasmic reticulum Ca2+ content, and [Ca2+]i transient and contraction amplitudes in induced myocytes. Echocardiography and in vivo close-chest catheterization demonstrated similar baseline myocardial function, but isoproterenol induced a significantly higher +dP/dt in induced compared with noninduced hearts. In contrast to the 50% mortality observed in mice constitutively overexpressing the S68E mutant, induced mice had similar survival as wild-type and noninduced mice. After ischemia-reperfusion, despite similar areas at risk and left ventricular infarct sizes, induced mice had significantly higher +dP/dt and -dP/dt and lower perioperative mortality compared with noninduced mice. We propose that phosphorylated PLM may be a novel therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang J, Gao E, Chan TO, Zhang XQ, Song J, Shang X, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of Na(+)/Ca(2+) exchanger does not aggravate myocardial dysfunction induced by transverse aortic constriction. J Card Fail 2013; 19:60-70. [PMID: 23273595 DOI: 10.1016/j.cardfail.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alterations in expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) have been implicated in the pathogenesis of heart failure. METHODS AND RESULTS Using transgenic mice in which expression of rat NCX1 was induced at 5 weeks of age, we performed transverse aortic constriction (TAC) at 8 weeks and examined cardiac and myocyte function at 15-18 weeks after TAC (age 23-26 weeks). TAC induced left ventricular (LV) and myocyte hypertrophy and increased myocardial fibrosis in both wild-type (WT) and NCX1-overexpressed mice. NCX1 and phosphorylated ryanodine receptor expression was increased by TAC, whereas sarco(endo)plasmic reticulum Ca(2+)-ATPase levels were decreased by TAC. Action potential duration was prolonged by TAC, but to a greater extent in NCX1 myocytes. Na(+)/Ca(2+) exchange current was similar between WT-TAC and WT-sham myocytes, but was higher in NCX1-TAC myocytes. Both myocyte contraction and [Ca(2+)](i) transient amplitudes were reduced in WT-TAC myocytes, but restored to WT-sham levels in NCX1-TAC myocytes. Despite improvement in single myocyte contractility and Ca(2+) dynamics, induced NCX1 overexpression in TAC animals did not ameliorate LV hypertrophy, increase ejection fraction, or enhance inotropic (maximal first derivative of LV pressure rise, +dP/dt) responses to isoproterenol. CONCLUSIONS In pressure-overload hypertrophy, induced overexpression of NCX1 corrected myocyte contractile and [Ca(2+)](i) transient abnormalities but did not aggravate or improve myocardial dysfunction.
Collapse
Affiliation(s)
- Jufang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang XQ, Koch WJ, Madesh M, Mallilankaraman K, Gu T, Chen SJ, Keefer K, Conrad K, Feldman AM, Cheung JY. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2013; 304:H1010-22. [PMID: 23376831 DOI: 10.1152/ajpheart.00906.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The second member of the transient receptor potential-melastatin channel family (TRPM2) is expressed in the heart and vasculature. TRPM2 channels were expressed in the sarcolemma and transverse tubules of adult left ventricular (LV) myocytes. Cardiac TRPM2 channels were functional since activation with H2O2 resulted in Ca(2+) influx that was dependent on extracellular Ca(2+), was significantly higher in wild-type (WT) myocytes compared with TRPM2 knockout (KO) myocytes, and inhibited by clotrimazole in WT myocytes. At rest, there were no differences in LV mass, heart rate, fractional shortening, and +dP/dt between WT and KO hearts. At 2-3 days after ischemia-reperfusion (I/R), despite similar areas at risk and infarct sizes, KO hearts had lower fractional shortening and +dP/dt compared with WT hearts. Compared with WT I/R myocytes, expression of the Na(+)/Ca(2+) exchanger (NCX1) and NCX1 current were increased, expression of the α1-subunit of Na(+)-K(+)-ATPase and Na(+) pump current were decreased, and action potential duration was prolonged in KO I/R myocytes. Post-I/R, intracellular Ca(2+) concentration transients and contraction amplitudes were equally depressed in WT and KO myocytes. After 2 h of hypoxia followed by 30 min of reoxygenation, levels of ROS were significantly higher in KO compared with WT LV myocytes. Compared with WT I/R hearts, oxygen radical scavenging enzymes (SODs) and their upstream regulators (forkhead box transcription factors and hypoxia-inducible factor) were lower, whereas NADPH oxidase was higher, in KO I/R hearts. We conclude that TRPM2 channels protected hearts from I/R injury by decreasing generation and enhancing scavenging of ROS, thereby reducing I/R-induced oxidative stress.
Collapse
Affiliation(s)
- Barbara A Miller
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cheung JY, Zhang XQ, Song J, Gao E, Chan TO, Rabinowitz JE, Koch WJ, Feldman AM, Wang J. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:175-90. [PMID: 23224879 DOI: 10.1007/978-1-4614-4756-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thal DM, Homan KT, Chen J, Wu EK, Hinkle PM, Huang ZM, Chuprun JK, Song J, Gao E, Cheung JY, Sklar LA, Koch WJ, Tesmer JJ. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol 2012; 7:1830-9. [PMID: 22882301 DOI: 10.1021/cb3003013] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. Herein we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine-Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice with paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.
Collapse
Affiliation(s)
- David M. Thal
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristoff T. Homan
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jun Chen
- Center for Molecular Discovery, University of New Mexico Health Sciences Center, Albuquerque,
New Mexico 87131, United States
| | - Emily K. Wu
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Patricia M. Hinkle
- Department of Pharmacology and
Physiology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Z. Maggie Huang
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - J. Kurt Chuprun
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Jianliang Song
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Joseph Y. Cheung
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Larry A. Sklar
- Center for Molecular Discovery, University of New Mexico Health Sciences Center, Albuquerque,
New Mexico 87131, United States
| | - Walter J. Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - John J.G. Tesmer
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Cardiac mechanoenergetics for understanding isoproterenol-induced rat heart failure. ACTA ACUST UNITED AC 2012; 19:163-70. [PMID: 22687629 DOI: 10.1016/j.pathophys.2012.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 11/23/2022]
Abstract
Considering from clinical implication, it is often complained that short-term experimental diseased heart models do not mimic long-term diseased hearts that one often clinically encountered. The left ventricle (LV) function in rat cardiac hypertrophy models treated with isoproterenol (ISO) up to 16 weeks was followed up with a non-invasive echocardiography. Infusion of either ISO (1.2mgkg(-1)day(-1) for 3 days-16 weeks) or vehicle (saline 24μlday(-1) for 3 days-16 weeks; SA group) was performed by subcutaneously implanting osmotic minipump. LV and right ventricle (RV) weight ratios to body weight (mgg(-1)) in SA, ISO3d, ISO7d and ISO4w were: 1.94±0.10 and 0.54±0.04 (n=7), 2.56±0.10 and 0.66±0.05 (n=7), 2.50±0.25 and 0.64±0.07 (n=10) and 2.40±0.08 and 0.59±0.08 (n=9), respectively. From echocardiography, the LV function of the hypertrophy models at 3 days, 1 and 2 weeks was unchanged but the model at the longer-term than 4 weeks resulted in prolonged systolic failure. These results indicated that only 3-day ISO infusion induced the hypertrophy model similar in shape and function to that induced by 2-week ISO infusion; the 3-day model sufficiently represents the effects of 2-week ISO infusion. In this review, left ventricular (LV) function was compared between rat cardiac hypertrophy models treated with ISO for 3 days (ISO3d) and 7 days (ISO7d) by analyzing LV mechanical work and energetics. The LV mechanical work and energetics was unchanged in SA, ISO3d and ISO7d groups. The LV relaxation rate at 240bpm in ISO3d and ISO7d groups was significantly slower than that in SA group with unchanged contraction rate. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban (PLB), phosphorylated-Ser(16) PLB (p-PLB), phospholemman (PLM) and Na(+)-K(+)-ATPase (NKA) are significantly decreased in ISO3d and ISO7d groups. Furthermore, the marked collagen production (types I and III) was observed in ISO3d and ISO7d groups. These results suggested the possibility that physiological LV function is compensated, although molecular changes have been generated even in the short-term hypertrophy model. Although a novel histone deacetylase (HDAC) inhibitor, has some beneficial effects on hemodynamics, it has no effects of anti-hypertrophic modalities in ISO3d model. However, a selective sodium proton exchanger-1 (NHE-1) inhibitor normalized ISO-induced down-regulation of SERCA2a without changes in pPLB/PLB expression in the ISO7d model and ameliorates cardiac Ca(2+) handling impairment and prevents the development of cardiac dysfunction. This result indicated that SERCA2a is a key molecule in the ISO7d model. Slow LV relaxation rate in ISO7d model may be due to down-regulation of SERCA2a. In conclusion, lowering the heart rate make it possible to rescue the impairment of LV mechanical work and energetics in the ISO-induced compensatory hypertrophied rat hearts, providing basic evidence for clinical therapy for patients with some types of cardiac failure.
Collapse
|
30
|
Mirza MA, Lane S, Yang Z, Karaoli T, Akosah K, Hossack J, McDuffie M, Wang J, Zhang XQ, Song J, Cheung JY, Tucker AL. Phospholemman deficiency in postinfarct hearts: enhanced contractility but increased mortality. Clin Transl Sci 2012; 5:235-42. [PMID: 22686200 DOI: 10.1111/j.1752-8062.2012.00403.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholemman (PLM) regulates [Na(+) ](i), [Ca(2+)](i) and contractility through its interactions with Na(+)-K(+)-ATPase (NKA) and Na(+) /Ca(2+) exchanger (NCX1) in the heart. Both expression and phosphorylation of PLM are altered after myocardial infarction (MI) and heart failure. We tested the hypothesis that absence of PLM regulation of NKA and NCX1 in PLM-knockout (KO) mice is detrimental. Three weeks after MI, wild-type (WT) and PLM-KO hearts were similarly hypertrophied. PLM expression was lower but fractional phosphorylation was higher in WT-MI compared to WT-sham hearts. Left ventricular ejection fraction was severely depressed in WT-MI but significantly less depressed in PLM-KO-MI hearts despite similar infarct sizes. Compared with WT-sham myocytes, the abnormal [Ca(2+) ], transient and contraction amplitudes observed in WT-MI myocytes were ameliorated by genetic absence of PLM. In addition, NCX1 current was depressed in WT-MI but not in PLM-KO-MI myocytes. Despite improved myocardial and myocyte performance, PLM-KO mice demonstrated reduced survival after MI. Our findings indicate that alterations in PLM expression and phosphorylation are important adaptations post-MI, and that complete absence of PLM regulation of NKA and NCX1 is detrimental in post-MI animals.
Collapse
Affiliation(s)
- M Ayoub Mirza
- Cardiovascular Division, Department of Medicine, University of Virginia Medical Center, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kerkelä R, Boucher M, Zaka R, Gao E, Harris D, Piuhola J, Song J, Serpi R, Woulfe KC, Cheung JY, O'Leary E, Bonventre JV, Force T. Cytosolic phospholipase A(2)α protects against ischemia/reperfusion injury in the heart. Clin Transl Sci 2011; 4:236-42. [PMID: 21884509 DOI: 10.1111/j.1752-8062.2011.00294.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Studies with sPLA(2) Group X, and cPLA(2) α gene-targeted mice suggest that absence of sPLA(2) Group X results in protection from ischemia/reperfusion (I/R) injury in the heart, and absence of cPLA(2) α Group IV is protective in the brain. Although latter studies might suggest a similar deleterious role for cPLA(2) α in I/R injury in the heart, the pathophysiology of stroke is intricately related to excitotoxicity and cannot necessarily be extrapolated to the heart. We report here that unlike findings in the brain, cPLA(2) α((-/-)) mice have exaggerated injury following I/R in vivo. In contrast, there is no difference in injury induced by simulated ischemia in cardiomyocytes isolated from cPLA(2) α((-/-)) versus cPLA(2) α((+/+)) mice. This suggests that cPLA(2) α does not have an important cardiomyocyte autonomous effect on ischemic injury. Prostaglandin E(2) (PGE(2) ) levels are significantly reduced in the hearts of the cPLA(2) α((-/-)) mice, and the enhanced injury is ameliorated by treatment with the PGE analog, misoprostol. We demonstrate that cPLA(2) α is cardioprotective in vivo, and this is likely via cPLA(2) α-mediated production of cardioprotective eicosanoids. These studies are the first to identify a protective role for cPLA(2) in I/R injury in any organ and raise concerns over long-term inhibition of cPLA(2).
Collapse
Affiliation(s)
- Risto Kerkelä
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Song J, Gao E, Wang J, Zhang XQ, Chan TO, Koch WJ, Shang X, Joseph JI, Peterson BZ, Feldman AM, Cheung JY. Constitutive overexpression of phosphomimetic phospholemman S68E mutant results in arrhythmias, early mortality, and heart failure: potential involvement of Na+/Ca2+ exchanger. Am J Physiol Heart Circ Physiol 2011; 302:H770-81. [PMID: 22081699 DOI: 10.1152/ajpheart.00733.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ∼50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.
Collapse
Affiliation(s)
- Jianliang Song
- Division of Nephrology, Thomas Jefferson Univ., 833 Chestnut St., Suite 700, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Berberián G, Podjarny A, DiPolo R, Beaugé L. Metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger: recent kinetic, biochemical and structural developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:47-63. [PMID: 21964458 DOI: 10.1016/j.pbiomolbio.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
The Na⁺/Ca²⁺ exchangers are structural membrane proteins, essential for the extrusion of Ca²⁺ from most animal cells. Apart from the transport sites, they have several interacting ionic and metabolic sites located at the intracellular loop of the exchanger protein. One of these, the intracellular Ca²⁺ regulatory sites, are essential and must be occupied by Ca²⁺ to allow any type of ion (Na⁺ or Ca²⁺) translocation. Intracellular protons and Na⁺ are inhibitory by reducing the affinity of the regulatory sites for Ca²⁺; MgATP stimulates by antagonizing H⁺ and Na⁺. We have proposed a kinetic scheme to explain all ionic and metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger. This model uniquely accounts for most of the new kinetic data provided here; however, none of the existing models can explain the trans effects of the Ca(i)²⁺-regulatory sites on external cation transport sites; i.e. all models are incomplete. MgATP up-regulation of the squid Na⁺/Ca²⁺ exchanger requires a cytosolic protein, which has been recently identified as a member of the lipocalin super family of Lipid Binding Proteins (LBP or FABP) of 132 amino acids (ReP1-NCXSQ, access to GenBank EU981897). This protein was cloned, expressed and purified. To be active, ReP1-NCXSQ must be phosphorylated from MgATP by a kinase present in the plasma membrane. Phosphorylated ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. Experiments with proteoliposomes proved that this up-regulation can take place just with the lipid membrane and the exchanger protein. The structure of ReP1-NCXSQ predicted from the amino acid sequence has been confirmed by X-ray crystal analysis; it has a "barrel" formed by ten beta sheets and two alpha helices, with a lipid coordinated by hydrogen bonds with Arg 126 and Tyr 128.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica "Mercedes y Martín Ferreyra" (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
34
|
Tulloch LB, Howie J, Wypijewski KJ, Wilson CR, Bernard WG, Shattock MJ, Fuller W. The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation. J Biol Chem 2011; 286:36020-36031. [PMID: 21868384 DOI: 10.1074/jbc.m111.282145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (PLM), the principal sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. We investigated post-translational modifications of PLM additional to phosphorylation in adult rat ventricular myocytes (ARVM). LC-MS/MS of tryptically digested PLM immunoprecipitated from ARVM identified cysteine 40 as palmitoylated in some peptides, but no information was obtained regarding the palmitoylation status of cysteine 42. PLM palmitoylation was confirmed by immunoprecipitating PLM from ARVM loaded with [(3)H]palmitic acid and immunoblotting following streptavidin affinity purification from ARVM lysates subjected to fatty acyl biotin exchange. Mutagenesis identified both Cys-40 and Cys-42 of PLM as palmitoylated. Phosphorylation of PLM at serine 68 by PKA in ARVM or transiently transfected HEK cells increased its palmitoylation, but PKA activation did not increase the palmitoylation of S68A PLM-YFP in HEK cells. Wild type and unpalmitoylatable PLM-YFP were all correctly targeted to the cell surface membrane, but the half-life of unpalmitoylatable PLM was reduced compared with wild type. In cells stably expressing inducible PLM, PLM expression inhibited the sodium pump, but PLM did not inhibit the sodium pump when palmitoylation was inhibited. Hence, palmitoylation of PLM controls its turnover, and palmitoylated PLM inhibits the sodium pump. Surprisingly, phosphorylation of PLM enhances its palmitoylation, probably through the enhanced mobility of the phosphorylated intracellular domain increasing the accessibility of cysteines for the palmitoylating enzyme, with interesting theoretical implications. All FXYD proteins have conserved intracellular cysteines, so FXYD protein palmitoylation may be a universal means to regulate the sodium pump.
Collapse
Affiliation(s)
- Lindsay B Tulloch
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Jacqueline Howie
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Krzysztof J Wypijewski
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Catherine R Wilson
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - William G Bernard
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Michael J Shattock
- Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - William Fuller
- Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, College of Medicine Dentistry & Nursing, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
35
|
Giordano E, Hillary RA, Vary TC, Pegg AE, Sumner AD, Caldarera CM, Zhang XQ, Song J, Wang J, Cheung JY, Shantz LM. Overexpression of ornithine decarboxylase decreases ventricular systolic function during induction of cardiac hypertrophy. Amino Acids 2011; 42:507-518. [PMID: 21814794 DOI: 10.1007/s00726-011-1023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 01/04/2023]
Abstract
Ornithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls. The current work studies the cooperation between the cardiac polyamines and L-arginine (L-Arg) availability in MHC-ODC mice. Although ISO-induced hypertrophy is well-compensated, MHC-ODC mice administered L-Arg along with ISO showed a rapid onset of systolic dysfunction and died within 48 h. Myocytes isolated from MHC-ODC mice administered L-Arg/ISO exhibited reduced contractility and altered calcium transients, suggesting an alteration in [Ca(2+)] homeostasis, and abbreviated action potential duration, which may contribute to arrhythmogenesis. The already elevated levels of spermidine and spermine were not further altered in MHC-ODC hearts by L-Arg/ISO treatment, suggesting alternative L-Arg utilization pathways lead to dysregulation of intracellular calcium. MHC-ODC mice administered an arginase inhibitor (Nor-NOHA) along with ISO died almost as rapidly as L-Arg/ISO-treated mice, while the iNOS inhibitor S-methyl-isothiourea (SMT) was strongly protective against L-Arg/ISO. These results point to the induction of arginase as a protective response to β-adrenergic stimulation in the setting of high polyamines. Further, NO generated by exogenously supplied L-Arg may contribute to the lethal consequences of L-Arg/ISO treatment. Since considerable variations in human cardiac polyamine and L-Arg content are likely, it is possible that alterations in these factors may influence myocyte contractility.
Collapse
Affiliation(s)
- Emanuele Giordano
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA.,Dipartimento di Biochimica "G. Moruzzi", Università di Bologna, 40126 Bologna, Italia.,National Institute for Cardiovascular Research (INRC), Bologna, 40126 Bologna, Italia
| | - Rebecca A Hillary
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Thomas C Vary
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Anthony E Pegg
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Andrew D Sumner
- Department of Cardiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| | - Claudio M Caldarera
- National Institute for Cardiovascular Research (INRC), Bologna, 40126 Bologna, Italia
| | - Xue-Qian Zhang
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jianliang Song
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - JuFang Wang
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph Y Cheung
- Division of Nephrology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lisa M Shantz
- Department of Cellular & Molecular Physiology, The Penn State College of Medicine; Hershey, PA 17033-2390, USA
| |
Collapse
|
36
|
Wang J, Gao E, Rabinowitz J, Song J, Zhang XQ, Koch WJ, Tucker AL, Chan TO, Feldman AM, Cheung JY. Regulation of in vivo cardiac contractility by phospholemman: role of Na+/Ca2+ exchange. Am J Physiol Heart Circ Physiol 2010; 300:H859-68. [PMID: 21193587 DOI: 10.1152/ajpheart.00894.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ∼40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Jufang Wang
- Division of Nephrology and Center of Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cheung JY, Zhang XQ, Song J, Gao E, Rabinowitz JE, Chan TO, Wang J. Phospholemman: a novel cardiac stress protein. Clin Transl Sci 2010; 3:189-96. [PMID: 20718822 DOI: 10.1111/j.1752-8062.2010.00213.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Gao G, Guo K, Yarotskyy V, Huang C, Elmslie KS, Peterson BZ. Phospholemman modulates the gating of cardiac L-type calcium channels. Biophys J 2010; 98:1149-59. [PMID: 20371314 DOI: 10.1016/j.bpj.2009.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 10/19/2022] Open
Abstract
Ca(2+) entry through L-type calcium channels (Ca(V)1.2) is critical in shaping the cardiac action potential and initiating cardiac contraction. Modulation of Ca(V)1.2 channel gating directly affects myocyte excitability and cardiac function. We have found that phospholemman (PLM), a member of the FXYD family and regulator of cardiac ion transport, coimmunoprecipitates with Ca(V)1.2 channels from guinea pig myocytes, which suggests PLM is an endogenous modulator. Cotransfection of PLM in HEK293 cells slowed Ca(V)1.2 current activation at voltages near the threshold for activation, slowed deactivation after long and strong depolarizing steps, enhanced the rate and magnitude of voltage-dependent inactivation (VDI), and slowed recovery from inactivation. However, Ca(2+)-dependent inactivation was not affected. Consistent with slower channel closing, PLM significantly increased Ca(2+) influx via Ca(V)1.2 channels during the repolarization phase of a human cardiac action potential waveform. Our results support PLM as an endogenous regulator of Ca(V)1.2 channel gating. The enhanced VDI induced by PLM may help protect the heart under conditions such as ischemia or tachycardia where the channels are depolarized for prolonged periods of time and could induce Ca(2+) overload. The time and voltage-dependent slowed deactivation could represent a gating shift that helps maintain Ca(2+) influx during the cardiac action potential waveform plateau phase.
Collapse
Affiliation(s)
- Xianming Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang J, Gao E, Song J, Zhang XQ, Li J, Koch WJ, Tucker AL, Philipson KD, Chan TO, Feldman AM, Cheung JY. Phospholemman and beta-adrenergic stimulation in the heart. Am J Physiol Heart Circ Physiol 2009; 298:H807-15. [PMID: 20008271 DOI: 10.1152/ajpheart.00877.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation at serine 68 of phospholemman (PLM) in response to beta-adrenergic stimulation results in simultaneous inhibition of cardiac Na(+)/Ca(2+) exchanger NCX1 and relief of inhibition of Na(+)-K(+)-ATPase. The role of PLM in mediating beta-adrenergic effects on in vivo cardiac function was investigated with congenic PLM-knockout (KO) mice. Echocardiography showed similar ejection fraction between wild-type (WT) and PLM-KO hearts. Cardiac catheterization demonstrated higher baseline contractility (+dP/dt) but similar relaxation (-dP/dt) in PLM-KO mice. In response to isoproterenol (Iso), maximal +dP/dt was similar but maximal -dP/dt was reduced in PLM-KO mice. Dose-response curves to Iso (0.5-25 ng) for WT and PLM-KO hearts were superimposable. Maximal +dP/dt was reached 1-2 min after Iso addition and declined with time in WT but not PLM-KO hearts. In isolated myocytes paced at 2 Hz. contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes and [Na(+)](i) reached maximum 2-4 min after Iso addition, followed by decline in WT but not PLM-KO myocytes. Reducing pacing frequency to 0.5 Hz resulted in much smaller increases in [Na(+)](i) and no decline in contraction and [Ca(2+)](i) transient amplitudes with time in Iso-stimulated WT and PLM-KO myocytes. Although baseline Na(+)-K(+)-ATPase current was 41% higher in PLM-KO myocytes because of increased alpha(1)- but not alpha(2)-subunit activity, resting [Na(+)](i) was similar between quiescent WT and PLM-KO myocytes. Iso increased alpha(1)-subunit current (I(alpha1)) by 73% in WT but had no effect in PLM-KO myocytes. Iso did not affect alpha(2)-subunit current (I(alpha2)) in WT and PLM-KO myocytes. In both WT and NCX1-KO hearts, PLM coimmunoprecipitated with Na(+)-K(+)-ATPase alpha(1)- and alpha(2)-subunits, indicating that association of PLM with Na(+)-K(+)-ATPase did not require NCX1. We conclude that under stressful conditions in which [Na(+)](i) was high, beta-adrenergic agonist-mediated phosphorylation of PLM resulted in time-dependent reduction in inotropy due to relief of inhibition of Na(+)-K(+)-ATPase.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nakajima-Takenaka C, Zhang GX, Obata K, Tohne K, Matsuyoshi H, Nagai Y, Nishiyama A, Takaki M. Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics. Am J Physiol Heart Circ Physiol 2009; 297:H1736-43. [PMID: 19734357 DOI: 10.1152/ajpheart.00672.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated left ventricular (LV) mechanical work and energetics in the cross-circulated (blood-perfused) isoproterenol [Iso 1.2 mg x kg(-1).day(-1) for 3 days (Iso3) or 7 days (Iso7)]-induced hypertrophied rat heart preparation under isovolumic contraction-relaxation. We evaluated pressure-time curves per beat, end-systolic pressure-volume and end-diastolic pressure-volume relations, and myocardial O(2) consumption per beat (Vo(2))-systolic pressure-volume area (PVA; a total mechanical energy per beat) linear relations at 240 beats/min, because Iso-induced hypertrophied hearts failed to completely relax at 300 beats/min. The LV relaxation rate at 240 beats/min in Iso-induced hypertrophied hearts was significantly slower than that in control hearts [saline 24 microl/day for 3 and 7 days (Sa)] with unchanged contraction rate. The Vo(2)-intercepts (composed of basal metabolism and Ca(2+) cycling energy consumption in excitation-contraction coupling) of Vo(2)-PVA linear relations were unchanged associated with their unchanged slopes in Sa, Iso3, and Iso7 groups. The oxygen costs of LV contractility were also unchanged in all three groups. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban (PLB), phosphorylated-Ser(16) PLB, phospholemman, and Na(+)-K(+)-ATPase are significantly decreased in Iso3 and Iso7 groups, although the amount of expression of NCX1 is unchanged in all three groups. Furthermore, the marked collagen production (types I and III) was observed in Iso3 and Iso7 groups. These results suggested the possibility that lowering the heart rate was beneficial to improve mechanical work and energetics in isoproterenol-induced hypertrophied rat hearts, although LV relaxation rate was slower than in normal hearts.
Collapse
|
41
|
Wang J, Chan TO, Zhang XQ, Gao E, Song J, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of Na+/Ca2+ exchanger transgene: altered myocyte contractility, [Ca2+]i transients, SR Ca2+ contents, and action potential duration. Am J Physiol Heart Circ Physiol 2009; 297:H590-601. [PMID: 19525383 DOI: 10.1152/ajpheart.00190.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have produced mice in which expression of the rat cardiac Na(+)/Ca(2+) exchanger (NCX1) transgene was switched on when doxycycline was removed from the feed at 5 wk. At 8 to 10 wk, NCX1 expression in induced (Ind) mouse hearts was 2.5-fold higher but protein levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase, alpha(1)- and alpha(2)-subunits of Na(+)-K(+)-ATPase, phospholamban, ryanodine receptor, calsequestrin, and unphosphorylated and phosphorylated phospholemman were unchanged compared with wild-type (WT) or noninduced (non-Ind) hearts. There was no cellular hypertrophy since WT, non-Ind, and Ind myocytes had similar whole cell membrane capacitance. In Ind myocytes, NCX1 current amplitude was approximately 42% higher, L-type Ca(2+) current amplitude was unchanged, and action potential duration was prolonged compared with WT or non-Ind myocytes. Contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes in Ind myocytes were lower at 0.6, not different at 1.8, and higher at 5.0 mM extracellular Ca(2+) concentration ([Ca(2+)](o)) compared with WT or non-Ind myocytes. Despite similar Ca(2+) current amplitude and sarcoplasmic reticulum (SR) Ca(2+) uptake, SR Ca(2+) content at 5.0 mM [Ca(2+)](o) was significantly higher in Ind compared with non-Ind myocytes, indicating that NCX1 directly contributed to SR Ca(2+) loading. Echocardiography demonstrated that heart rate, left ventricular mass, ejection fraction, stroke volume, and cardiac output were similar among the three groups of animals. In vivo close-chest catheterization demonstrated similar contractility and relaxation among the three groups of mice, both at baseline and after stimulation with isoproterenol. We conclude that induced expression of NCX1 transgene resulted in altered [Ca(2+)](i) homeostasis, myocyte contractility, and action potential morphology. In addition, heart failure did not occur 3 to 5 wk after NCX1 transgene was induced to be expressed at levels found in diseased hearts.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Division of Nephrology, Center of Translational Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|