1
|
Cheng B, Bian Y, Song X, Li W, Li M, Feng R. Role of S100A1, S100A4, S100A8/A9 and S100B in myocardial infarction and heart failure. Int Immunopharmacol 2025; 151:114348. [PMID: 40024216 DOI: 10.1016/j.intimp.2025.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Myocardial infarction and heart failure represent major global health challenges, leading causes of hospitalization and mortality worldwide, especially among the elderly. Despite considerable advancements in treatment, there remains a substantial need to improve prognostic outcomes through further research into pathogenesis and therapeutic optimization. S100 proteins, as inflammatory factors within the heart, demonstrate binding capabilities to various target proteins. Notably, S100A1, S100A4, S100A8/A9, and S100B have emerged as key players in myocardial infarction and heart failure pathophysiology. This review comprehensively illustrates the underlying roles of these four S100 proteins in myocardial infarction and heart failure, highlights similarities and differences in their mechanisms. By synthesizing recent insights, this review offers valuable references and suggests future research directions to advance our understanding and treatment strategies for myocardial infarction and heart failure. Through continued investigation into S100 proteins, more effective therapeutic targets may be identified, ultimately improving patient care and outcomes in cardiovascular diseases.
Collapse
Affiliation(s)
- Boya Cheng
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Yashuo Bian
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaofei Song
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wei Li
- Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Ajijola OA, Aksu T, Arora R, Biaggioni I, Chen PS, De Ferrari G, Dusi V, Fudim M, Goldberger JJ, Green AL, Herring N, Khalsa SS, Kumar R, Lakatta E, Mehra R, Meyer C, Po S, Stavrakis S, Somers VK, Tan AY, Valderrabano M, Shivkumar K. Clinical neurocardiology: defining the value of neuroscience-based cardiovascular therapeutics - 2024 update. J Physiol 2025; 603:1781-1839. [PMID: 40056025 DOI: 10.1113/jp284741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/28/2025] [Indexed: 04/01/2025] Open
Abstract
The intricate role of the autonomic nervous system (ANS) in regulating cardiac physiology has long been recognized. Aberrant function of the ANS is central to the pathophysiology of cardiovascular diseases. It stands to reason, therefore, that neuroscience-based cardiovascular therapeutics hold great promise in the treatment of cardiovascular diseases in humans. A decade after the inaugural edition, this White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology and pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tolga Aksu
- Division of Cardiology, Yeditepe University Hospital, Istanbul, Türkiye
| | - Rishi Arora
- Division of Cardiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Italo Biaggioni
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Gaetano De Ferrari
- Department of Medical Sciences, University of Turin, Italy and Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Veronica Dusi
- Department of Medical Sciences, University of Turin, Italy and Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey J Goldberger
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander L Green
- Department of Clinical Neurosciences, John Radcliffe Hospital, and Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Neil Herring
- Department for Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sahib S Khalsa
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rajesh Kumar
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Edward Lakatta
- National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Reena Mehra
- Division of Pulmonary Medicine, University of Washington, Seattle, WA, USA
| | - Christian Meyer
- Klinik für Kardiologie, Angiologie, Intensivmedizin, cNEP Research Consortium EVK, Düsseldorf, Germany
- Heart Rhythm Institute, Overland Park, KS, USA
| | - Sunny Po
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | - Alex Y Tan
- Division of Cardiology, Richmond Veterans Affairs Hospital, Richmond, VA, USA
| | - Miguel Valderrabano
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Lai CC, Tang CY, Fu SK, Tseng KW, Yu CH, Wang CY. High-intensity interval training attenuates renal injury induced by myocardial ischemia-reperfusion in rats. J Chin Med Assoc 2025; 88:126-137. [PMID: 39965790 DOI: 10.1097/jcma.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND High-intensity interval training (HIIT) has been recognized as an effective form of short-duration exercise. The purpose of this study was to assess whether HIIT could reduce renal injury induced by myocardial ischemia-reperfusion (MIR) in rats. METHODS Male Sprague-Dawley rats were randomly assigned to the Sham (SHAM), coronary artery occlusion (CAO), HIIT, and ischemic precondition (IPC) groups. Rats underwent 40 minutes of left anterior descending CAO under anesthesia, followed by 3 hours of reperfusion, to induce MIR. Postsurgery, rats were sacrificed, and their blood, heart, and kidney tissues were examined. The HIIT group underwent 4 weeks of HIIT training before surgery. RESULTS HIIT intervention significantly reduced renal injury after MIR and the concentrations of blood urea nitrogen (BUN) and creatinine (CRE) in the serum. Moreover, proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, were significantly decreased, while the anti-inflammatory cytokine IL-10 was significantly increased in the serum. Additionally, HIIT intervention suppressed the expression of FoxO1, Bax/Bcl-2 ratio, TNF-α, and cleaved-caspase-3/caspase-3 ratio in kidney tissues, ultimately reducing renal cell apoptosis. CONCLUSION This study is the first to demonstrate that HIIT has effects similar to IPC, significantly reducing renal injury after MIR. HIIT regulates the production of proinflammatory and anti-inflammatory cytokines and inhibits renal cell apoptosis, thereby reducing the occurrence of cardiorenal syndrome.
Collapse
Affiliation(s)
- Chang-Chi Lai
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Chia-Yu Tang
- Graduate Institute of Sports Training, University of Taipei, Taipei, Taiwan, ROC
| | - Szu-Kai Fu
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Kuo-Wei Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Chia-Hsien Yu
- Department of Physical Education, Graduate Institute of Sports Training, College of Kinesiology, University of Taipei, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Zhang S, Huang Y, Han C, Chen M, Yang Z, Wang C. Circulating mitochondria carrying cGAS promote endothelial Secreted group IIA phospholipase A2-mediated neuroinflammation through activating astroglial/microglial Integrin-alphavbeta3 in subfornical organ to augment central sympathetic overdrive in heart failure rats. Int Immunopharmacol 2025; 144:113649. [PMID: 39586230 DOI: 10.1016/j.intimp.2024.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Sympathoexcitation, a manifestation of heart-brain axis dysregulation, contributes to the progression of heart failure (HF). Our recent study revealed that circulating mitochondria (C-Mito), a newly identified mediator of multi-organ communication, promote sympathoexcitation in HF by aggravating endothelial cell (EC)-derived neuroinflammation in the subfornical organ (SFO), the cardiovascular autonomic neural center. The precise molecular mechanism by which C-Mito promotes SFO-induced endothelial neuroinflammation has not been fully elucidated. OBJECTIVE C-Mito carrying cGAS promote sympathoexcitation by targeting PLA2G2A in ECs of the SFO in HF rats. METHODS Male Sprague-Dawley (SD) rats received a subcutaneous injection of isoprenaline (ISO) at a dosage of 5 mg/kg/day for seven consecutive days to establish a HF model. C-Mito were isolated from HF rats and evaluated. The level of cGAS, a dsDNA sensor recently discovered to be directly localized on the outer membrane of mitochondria, was detected in C-Mito. C-Mito from HF rats (C-MitoHF) or control rats (C-MitoCtrl) were intravenously infused into HF rats. The accumulation of C-Mito in the ECs in the SFO was detected via double immunofluorescence staining. The SFO was processed for RNA sequencing (RNA-Seq) analysis. Secreted group IIA phospholipase A2 (PLA2G2A), the key gene involved in C-MitoHF-associated SFO dysfunction, was identified via bioinformatics analysis. Upregulation of PLA2G2A in the SFO ECs was assessed via immunofluorescence staining and immunoblotting, and PLA2G2A activity was evaluated. The interaction between cGAS and PLA2G2A was detected via co-immunoprecipitation. The dowstream molecular mechanisms of which PLA2G2A induced astroglial/microglial activation were also investigated. AAV9-TIE-shRNA (PLA2G2A) was introduced into the SFO to specifically knockdown endothelial PLA2G2A. Neuronal activation and glial proinflammatory polarization in the SFO were also evaluated. Renal sympathetic nerve activity (RSNA) was measured to evaluate central sympathetic output. Cardiac sympathetic hyperinnervation, myocardial remodeling, and left ventricular systolic function were assessed in C-Mito-treated HF rats. RESULTS Respiratory functional incompetence and oxidative damage were observed in C-MitoHF compared with C-MitoCtrl. Surprisingly, cGAS protein levels in C-MitoHF were significantly higher than those in C-MitoCtrl, while blocking cGAS with its specific inhibitor, RU.521, mitigated respiratory dysfunction and oxidative injury in C-MitoHF. C-Mito entered the ECs of the SFO in HF rats. RNA sequencing revealed that PLA2G2A is a key molecule for the induction of SFO dysfunction by C-MitoHF. The immunoblotting and immunofluorescence results confirmed that, compared with C-MitoCtrl, C-MitoHF increased endothelial PLA2G2A expression in the SFO of HF rats, which could be alleviated by attenuating C-MitoHF-localized cGAS. Furthermore, we found that cGAS directly interacts with PLA2G2A, increased the activity of PLA2AG2, which produced arachidonic acid, and also promoted PLA2G2A secretion in brain ECs. In addition, the inhibition of PLA2G2A in brain ECs significantly mitigated the proinflammatory effect of conditioned cell culture medium from C-MitoHF-treated ECs on astroglia and microglia. Also, we found that PLA2G2A secreted from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Specific knockdown of endothelial PLA2G2A in the SFO mitigated C-MitoHF-induced presympathetic neuronal sensitization, cardiac sympathetic hyperinnervation, RSNA activation, myocardial remodeling, and systolic dysfunction in HF rats. CONCLUSION C-Mito carrying cGAS promoted cardiac sympathoexcitation by directly targeting PLA2G2A in the ECs of the SFO in HF rats. Secreted PLA2G2A derived from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Our study indicated that inhibiting cGAS in C-Mito might be a potential treatment for central sympathetic overdrive in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
5
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
6
|
Zhang S, Zhao D, Yang Z, Wang F, Yang S, Wang C. Circulating mitochondria promoted endothelial cGAS-derived neuroinflammation in subfornical organ to aggravate sympathetic overdrive in heart failure mice. J Neuroinflammation 2024; 21:27. [PMID: 38243316 PMCID: PMC10799549 DOI: 10.1186/s12974-024-03013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Sympathoexcitation contributes to myocardial remodeling in heart failure (HF). Increased circulating pro-inflammatory mediators directly act on the Subfornical organ (SFO), the cardiovascular autonomic center, to increase sympathetic outflow. Circulating mitochondria (C-Mito) are the novel discovered mediators for inter-organ communication. Cyclic GMP-AMP synthase (cGAS) is the pro-inflammatory sensor of damaged mitochondria. OBJECTIVES This study aimed to assess the sympathoexcitation effect of C-Mito in HF mice via promoting endothelial cGAS-derived neuroinflammation in the SFO. METHODS C-Mito were isolated from HF mice established by isoprenaline (0.0125 mg/kg) infusion via osmotic mini-pumps for 2 weeks. Structural and functional analyses of C-Mito were conducted. Pre-stained C-Mito were intravenously injected every day for 2 weeks. Specific cGAS knockdown (cGAS KD) in the SFO endothelial cells (ECs) was achieved via the administration of AAV9-TIE-shRNA (cGAS) into the SFO. The activation of cGAS in the SFO ECs was assessed. The expression of the mitochondrial redox regulator Dihydroorotate dehydrogenase (DHODH) and its interaction with cGAS were also explored. Neuroinflammation and neuronal activation in the SFO were evaluated. Sympathetic activity, myocardial remodeling, and cardiac systolic dysfunction were measured. RESULTS C-Mito were successfully isolated, which showed typical structural characteristics of mitochondria with double-membrane and inner crista. Further analysis showed impaired respiratory complexes activities of C-Mito from HF mice (C-MitoHF) accompanied by oxidative damage. C-Mito entered ECs, instead of glial cells and neurons in the SFO of HF mice. C-MitoHF increased the level of ROS and cytosolic free double-strand DNA (dsDNA), and activated cGAS in cultured brain endothelial cells. Furthermore, C-MitoHF highly expressed DHODH, which interacted with cGAS to facilitate endothelial cGAS activation. C-MitoHF aggravated endothelial inflammation, microglial/astroglial activation, and neuronal sensitization in the SFO of HF mice, which could be ameliorated by cGAS KD in the ECs of the SFO. Further analysis showed C-MitoHF failed to exacerbate sympathoexcitation and myocardial sympathetic hyperinnervation in cGAS KD HF mice. C-MitoHF promoted myocardial fibrosis and hypertrophy, and cardiac systolic dysfunction in HF mice, which could be ameliorated by cGAS KD. CONCLUSION Collectively, we demonstrated that damaged C-MitoHF highly expressed DHODH, which promoted endothelial cGAS activation in the SFO, hence aggravating the sympathoexcitation and myocardial injury in HF mice, suggesting that C-Mito might be the novel therapeutic target for sympathoexcitation in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Dajun Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| |
Collapse
|
7
|
Cai X, Zou P, Hong L, Chen Y, Zhan Y, Liu Y, Shao L. RNA methylation reading protein YTHDF2 relieves myocardial ischemia-reperfusion injury by downregulating BNIP3 via m 6A modification. Hum Cell 2023; 36:1948-1964. [PMID: 37500815 DOI: 10.1007/s13577-023-00956-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BNIP3 is reported to be involved in hypoxia-induced mitochondrial defect and cell death in cardiomyocytes. However, little is known about the specific function and molecular mechanism of BNIP3-mediated mitophagy in myocardial ischemia-reperfusion injury (MIRI). Herein, this study explored the mechanism regulating BNIP3-modulated mitophagy in MIRI. Rat cardiomyocytes (H9c2 cells) underwent transfection and hypoxia/reoxygenation (H/R) treatment, followed by cell viability and apoptosis detection. Gain-of-function assays were conducted in rats before MIRI modeling, followed by the monitoring of cardiac changes and the evaluation of cardiac function, myocardial infarction area, and apoptosis in myocardial tissues. The levels of creatine kinase MB (CK-MB), cardiac troponin I (cTnI), lactic dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), p62, and LC3 II/LC3 I were tested in rat serum or H9c2 cells. The co-localization of LC3 and TOMM20 was analyzed. The interaction of BNIP3 with YTHDF2 was assessed. H/R treatment decreased cell viability and p62 and SOD levels while elevating cell apoptosis, the levels of CK-MB, cTnI, LDH, MDA, ROS, and LC3 II/LC3 I, the number of autophagosomes, and the co-localization of LC3 and TOMM20 in cardiomyocytes, which were neutralized by downregulating BNIP3 or upregulating YTHDF2. Moreover, upregulation of YTHDF2 repressed myocardial injury and mitophagy in MIRI rats. Mechanistically, YTHDF2 mediated BNIP3 expression by recognizing methylated BNIP3. Upregulation of BNIP3 counteracted the suppressive effect of YTHDF2 overexpression on H/R-induced injury and mitophagy in cardiomyocytes. The RNA methylation reading protein YTHDF2 ameliorated MIRI by downregulating BNIP3 via m6A modification.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yanmei Chen
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
8
|
Burzyńska M, Uryga A, Załuski R, Goździk A, Adamik B, Robba C, Goździk W. Cerebrospinal Fluid and Serum Biomarker Insights in Aneurysmal Subarachnoid Haemorrhage: Navigating the Brain-Heart Interrelationship for Improved Patient Outcomes. Biomedicines 2023; 11:2835. [PMID: 37893210 PMCID: PMC10604203 DOI: 10.3390/biomedicines11102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The pathophysiological mechanisms underlying severe cardiac dysfunction after aneurysmal subarachnoid haemorrhage (aSAH) remain poorly understood. In the present study, we focused on two categories of contributing factors describing the brain-heart relationship. The first group includes brain-specific cerebrospinal fluid (CSF) and serum biomarkers, as well as cardiac-specific biomarkers. The secondary category encompasses parameters associated with cerebral autoregulation and the autonomic nervous system. A group of 15 aSAH patients were included in the analysis. Severe cardiac complications were diagnosed in seven (47%) of patients. In the whole population, a significant correlation was observed between CSF S100 calcium-binding protein B (S100B) and brain natriuretic peptide (BNP) (rS = 0.62; p = 0.040). Additionally, we identified a significant correlation between CSF neuron-specific enolase (NSE) with cardiac troponin I (rS = 0.57; p = 0.025) and BNP (rS = 0.66; p = 0.029), as well as between CSF tau protein and BNP (rS = 0.78; p = 0.039). Patients experiencing severe cardiac complications exhibited notably higher levels of serum tau protein at day 1 (0.21 ± 0.23 [ng/mL]) compared to those without severe cardiac complications (0.03 ± 0.04 [ng/mL]); p = 0.009. Impaired cerebral autoregulation was noted in patients both with and without severe cardiac complications. Elevated serum NSE at day 1 was related to impaired cerebral autoregulation (rS = 0.90; p = 0.037). On the first day, a substantial, reciprocal correlation between heart rate variability low-to-high frequency ratio (HRV LF/HF) and both GFAP (rS = -0.83; p = 0.004) and S100B (rS = -0.83; p = 0.004) was observed. Cardiac and brain-specific biomarkers hold the potential to assist clinicians in providing timely insights into cardiac complications, and therefore they contribute to the prognosis of outcomes.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Clinical Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.B.); (W.G.)
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Rafał Załuski
- Department of Neurosurgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Anna Goździk
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Barbara Adamik
- Clinical Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.B.); (W.G.)
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy;
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16145 Genoa, Italy
| | - Waldemar Goździk
- Clinical Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.B.); (W.G.)
| |
Collapse
|