1
|
Zhu Q, Cheang I, Guo Q, Lu X, Li Y, Yao W, Zhang H, Li X. Serum IGFBP5 as a predictor of major adverse cardiac events in patients with acute myocardial infarction. Int J Cardiol 2024; 411:132268. [PMID: 38880418 DOI: 10.1016/j.ijcard.2024.132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a serious condition with high mortality rates. Early risk stratification is of significant importance to assess the prognosis. Insulin-like growth factor-binding protein 5 (IGFBP5) levels in AMI patients and its potential as a prognosis biomarker were unclear. OBJECTIVE To investigate serum IGFBP5 levels in AMI and its prognostic value for short-term major adverse cardiovascular events (MACE). METHODS We collected serum IGFBP5 levels from 200 patients with new-onset AMI and 71 coronary heart disease (CAD) patients without AMI. Linear regression was used to analyze the relationship between IGFBP5 and baseline variables. AMI patients were followed up, and the risk of major adverse cardiovascular events (MACE) was assessed using Kaplan-Meier curve, multivariate Cox models and restricted cubic spline (RCS) analysis. RESULTS During a median follow-up of 217 days, 40 patients developed MACE. Serum IGFBP5 was associated with serum cardiac troponin T (cTnT) and C-reactive protein (CRP) (P = 0.013 and P = 0.013). In multivariable survival analyses, higher IGFBP5 was associated with an increased risk of MACE [HR = 1.183, 95%CI (1.104, 1.268), P < 0.001)]. There was a positive and linear association between IGFBP5 levels and the occurrence of MACE (P for nonlinearity = 0.283). The positive association between IGFBP5 and MACE risk consist across subgroups characterized by demographics and comorbidities. CONCLUSION Serum IGFBP5 was highly expressed in patients with AMI and positively associated with the short-term risk of MACE. Circulating IGFBP5 may be a diagnostic and prognostic indicator for AMI, and further studies with larger sample and longer follow-up are warranted.
Collapse
Affiliation(s)
- Qingqing Zhu
- Division of Cardiac Surgery Intensive Care Unit, Department of Cardiac Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Iokfai Cheang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Qixin Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Xinyi Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Ying Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Wenming Yao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Haifeng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Xinli Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
2
|
Song F, Hu Y, Hong Y, Sun H, Han Y, Mao Y, Wu W, Li G, Wang Y. Deletion of endothelial IGFBP5 protects against ischaemic hindlimb injury by promoting angiogenesis. Clin Transl Med 2024; 14:e1725. [PMID: 38886900 PMCID: PMC11182737 DOI: 10.1002/ctm2.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Angiogenesis is critical for forming new blood vessels from antedating vascular vessels. The endothelium is essential for angiogenesis, vascular remodelling and minimisation of functional deficits following ischaemia. The insulin-like growth factor (IGF) family is crucial for angiogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5), a binding protein of the IGF family, may have places in angiogenesis, but the mechanisms are not yet completely understood. We sought to probe whether IGFBP5 is involved in pathological angiogenesis and uncover the molecular mechanisms behind it. METHODS AND RESULTS IGFBP5 expression was elevated in the vascular endothelium of gastrocnemius muscle from critical limb ischaemia patients and hindlimb ischaemic (HLI) mice and hypoxic human umbilical vein endothelial cells (HUVECs). In vivo, loss of endothelial IGFBP5 (IGFBP5EKO) facilitated the recovery of blood vessel function and limb necrosis in HLI mice. Moreover, skin damage healing and aortic ring sprouting were faster in IGFBP5EKO mice than in control mice. In vitro, the genetic inhibition of IGFBP5 in HUVECs significantly promoted tube formation, cell proliferation and migration by mediating the phosphorylation of IGF1R, Erk1/2 and Akt. Intriguingly, pharmacological treatment of HUVECs with recombinant human IGFBP5 ensued a contrasting effect on angiogenesis by inhibiting the IGF1 or IGF2 function. Genetic inhibition of IGFBP5 promoted cellular oxygen consumption and extracellular acidification rates via IGF1R-mediated glycolytic adenosine triphosphate (ATP) metabolism. Mechanistically, IGFBP5 exerted its role via E3 ubiquitin ligase Von Hippel-Lindau (VHL)-regulated HIF1α stability. Furthermore, the knockdown of the endothelial IGF1R partially abolished the reformative effect of IGFBP5EKO mice post-HLI. CONCLUSION Our findings demonstrate that IGFBP5 ablation enhances angiogenesis by promoting ATP metabolism and stabilising HIF1α, implying IGFBP5 is a novel therapeutic target for treating abnormal angiogenesis-related conditions.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hu Sun
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wei‐Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| |
Collapse
|
3
|
Maxwell S, Okabe J, Kaipananickal H, Rodriguez H, Khurana I, Al-Hasani K, Chow BS, Pitsillou E, Karagiannis TC, Jandeleit-Dahm K, Ma RC, Huang Y, Chan JC, Cooper ME, El-Osta A. Set7 Methyltransferase and Phenotypic Switch in Diabetic Glomerular Endothelial Cells. J Am Soc Nephrol 2024; 35:733-748. [PMID: 38630537 PMCID: PMC11164123 DOI: 10.1681/asn.0000000000000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Key Points Set7 knockout improves diabetic glomerular structure and function and prevents diabetes-induced endothelial–mesenchymal transition (EDMT) by regulating Igfbp5. Set7 knockdown prevents, and (R)-PFI-2 hydrochloride reverses, diabetes-induced EDMT by regulating insulin growth factor binding protein 5. Set7 regulates the phenotypic EDMT switch, and inhibiting the methyltransferase attenuates glomerular injury in diabetic kidney disease. Background Hyperglycemia influences the development of glomerular endothelial cell damage, and nowhere is this more evident than in the progression of diabetic kidney disease (DKD). While the Set7 lysine methyltransferase is a known hyperglycemic sensor, its role in endothelial cell function in the context of DKD remains poorly understood. Methods Single-cell transcriptomics was used to investigate Set7 regulation in a mouse model of DKD, followed by validation of findings using pharmacological and short hairpin RNA inhibition inhibition of Set7. Results Set7 knockout (Set7KO) improved glomerular structure and albuminuria in a mouse model of diabetes. Analysis of single-cell RNA-sequencing data showed dynamic transcriptional changes in diabetic renal cells. Set7KO controls phenotype switching of glomerular endothelial cell populations by transcriptional regulation of the insulin growth factor binding protein 5 (IGFBP5). Chromatin immunoprecipitation assays confirmed that the expression of the IGFBP5 gene was associated with mono- and dimethylation of histone H3 lysine 4 (H3K4me1/2). This generalizability was investigated in human kidney and circulating hyperglycemic cells exposed to TGFβ 1. We showed that the highly selective Set7 inhibitor (R)-PFI-2 hydrochloride attenuated indices associated with renal cell damage and mesenchymal transition, specifically (1 ) reactive oxygen species production, (2 ) IGFBP5 gene regulation, and (3 ) expression of mesenchymal markers. Furthermore, renal benefit observed in Set7KO diabetic mice closely corresponded in human glomerular endothelial cells with (R)-PFI-2 hydrochloride inhibition or Set7 short hairpin RNA silencing. Conclusions Set7 regulates the phenotypic endothelial–mesenchymal transition switch and suggests that targeting the lysine methyltransferase could protect glomerular cell injury in DKD. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_04_25_ASN0000000000000345.mp3
Collapse
Affiliation(s)
- Scott Maxwell
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hanah Rodriguez
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bryna S.M. Chow
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Eleni Pitsillou
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Tom C. Karagiannis
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Institute for Clinical Diabetology, Research Group Diabetic Nephropathy, Heinrich Heine University, Duesseldorf, Germany
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Mark E. Cooper
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| |
Collapse
|
4
|
Wei J, Wang T, Song X, Liu Y, Shu J, Sun M, Diao J, Li J, Li Y, Chen L, Zhang S, Huang P, Qin J. Association of maternal methionine synthase reductase gene polymorphisms with the risk of congenital heart disease in offspring: a hospital-based case-control study. J Matern Fetal Neonatal Med 2023; 36:2211201. [PMID: 37183022 DOI: 10.1080/14767058.2023.2211201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Evidence suggests that periconceptional folic acid supplementation may prevent congenital heart disease (CHD). Methionine synthase reductase (MTRR) is one of the key regulatory enzymes in the folate metabolic pathway. This study aimed to comprehensively evaluate the association of single nucleotide polymorphisms (SNPs) in the maternal MTRR gene with CHD risk in offspring. METHODS A hospital-based case-control study involving 740 mothers of CHD cases and 683 health controls was conducted. RESULTS The study showed that maternal MTRR gene polymorphisms at rs1532268 (C/T vs. C/C: aOR = 1.524; T/T vs. C/C: aOR = 3.178), rs1802059 (G/A vs. G/G: aOR = 1.410; A/A vs. G/G: aOR = 3.953), rs2287779 (G/A vs. G/G: aOR = 0.540), rs16879334 (C/G vs. C/C: aOR = 0.454), and rs2303080 (T/A vs. T/T: aOR = 0.546) were associated with the risk of CHD. And seven haplotypes were observed to be associated with the risk of CHD, T-G-A haplotype (OR = 1.298), C-A-C-C (OR = 4.824) and A-G haplotype (OR = 1.751) were associated with increased risk of CHD in offspring; A-A-A (OR = 0.773), T-A-A (OR = 0.557), G-A-C-C (OR = 0.598) and G-C (OR = 0.740) were associated with decreased risk of CHD in offspring. CONCLUSIONS Maternal MTRR gene polymorphisms were associated with CHD in offspring, and its haplotypes have affected the occurrence of CHD. Furthermore, given the complexity and heterogeneity of CHD, the mechanisms by which these factors influence offspring cardiac development remain unknown, and studies in larger samples in an ethnically diverse population are needed.
Collapse
Affiliation(s)
- Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingyi Diao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yihuan Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Letao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Huang
- Hunan Children's Hospital, Changsha, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China
| |
Collapse
|
5
|
Duan F, Li H, Lu H. In vivo and molecular docking studies of the pathological mechanism underlying adriamycin cardiotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114778. [PMID: 36989556 DOI: 10.1016/j.ecoenv.2023.114778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Adriamycin (ADR), one of the most effective broad-spectrum antitumor chemotherapeutic agents in clinical practice, is used to treat solid tumors as well as hematological malignancies in adults and children. However, long-term ADR use causes several adverse reactions, including time- and dose-dependent cardiotoxicity, which limit its clinical application. In addition, the mechanism by which ADR induces cardiotoxicity remains unclear. Therefore, we used zebrafish as animal models to evaluate ADR toxicity during embryonic heart development owing to the similarity of this process in zebrafish to that in humans. Exposure of zebrafish embryos to 1.25, 2.5, and 5 mg/L ADR induced abnormal embryonic development, with the occurrence of cardiac malformations, pericardial edema, decreased movement speed and activity, and increased distance between the venous sinus and the arterial bulb (SV-BA). ADR exposure induced dysregulated cardiogenesis during the precardiac mesoderm formation period. We also observed irregular expression of cardiac-related genes, an upregulation of apoptotic gene expression, and a dose-dependent increase in oxidative stress levels. Furthermore, oxidative stress-induced apoptosis exerted deleterious effects on cardiac development in zebrafish embryos, and treatment with astaxanthin (ATX) alleviated these heart defects. ADR- and Wnt pathway-related genes exhibited good energy and spatial matching, and ADR upregulated the Wnt signaling pathway in zebrafish. Moreover, IWR-1 effectively alleviated ADR-induced heart defects. In conclusion, we demonstrated that the toxic effects of ADR on cardiac development in zebrafish embryos could provide a theoretical basis for explaining the pathogenesis of ADR-induced cardiotoxicity, which occurs through the upregulation of oxidative stress and Wnt signaling pathway, as well as its prevention and treatment in humans. These findings will help develop effective treatment strategies to combat ADR-induced cardiotoxicity and broaden the application of ADR for clinical practice.
Collapse
Affiliation(s)
- Fangfang Duan
- Central Laboratory, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330038, China
| | - Hong Li
- Central Laboratory, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330038, China.
| | - Huiqiang Lu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji'an 343000, China.
| |
Collapse
|
6
|
Bolunduț AC, Lazea C, Mihu CM. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects-A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050812. [PMID: 37238360 DOI: 10.3390/children10050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Congenital heart defects (CHD) are the most common congenital abnormality, with an overall global birth prevalence of 9.41 per 1000 live births. The etiology of CHDs is complex and still poorly understood. Environmental factors account for about 10% of all cases, while the rest are likely explained by a genetic component that is still under intense research. Transcription factors and signaling molecules are promising candidates for studies regarding the genetic burden of CHDs. The present narrative review provides an overview of the current knowledge regarding some of the genetic mechanisms involved in the embryological development of the cardiovascular system. In addition, we reviewed the association between the genetic variation in transcription factors and signaling molecules involved in heart development, including TBX5, GATA4, NKX2-5 and CRELD1, and congenital heart defects, providing insight into the complex pathogenesis of this heterogeneous group of diseases. Further research is needed in order to uncover their downstream targets and the complex network of interactions with non-genetic risk factors for a better molecular-phenotype correlation.
Collapse
Affiliation(s)
- Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Cecilia Lazea
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Hospital, 400370 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Xiong J, Ma F, Ding N, Xu L, Ma S, Yang A, Hao Y, Zhang H, Jiang Y. miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications. Aging Cell 2021; 20:e13485. [PMID: 34592792 PMCID: PMC8520716 DOI: 10.1111/acel.13485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a serious age-related disease, which has a tremendous impact on health care globally. Macrophage inflammation is crucial for the initiation and progression of atherosclerosis, and microRNAs (miRNAs) recently have emerged as potent modulators of inflammation, while the underlying mechanisms of its involvement in homocysteine (Hcy)-mediated macrophage inflammation of atherosclerosis remain largely unknown. Here, we demonstrated that elevated Hcy inhibits the expression of miR-195-3p, which in turn enhances IL-31 expression and thereby causes the secretion of macrophages pro-inflammatory factors IL-1β, IL-6 and TNF-α and accelerate atherosclerosis. Furthermore, we identified that Hcy can induce DNA hypermethylation and H3K9 deacetylation of miR-195-3p promoter due to the increased the binding of DNMT3a and HDAC11 at its promoter. More importantly, Sp1 interacts with DNMT3a suppressed the binding of HDAC11 at miR-195-3p promoter and promoted its transcription. In summary, our results revealed a novel mechanism that transcriptional and epigenetic regulation of miR-195-3p inhibits macrophage inflammation through targeting IL-31, which provides a candidate diagnostic marker and novel therapeutic target in cardiovascular diseases induced by Hcy.
Collapse
Affiliation(s)
- Jiantuan Xiong
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Fang Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Ning Ding
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Lingbo Xu
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Shengchao Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Anning Yang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Yinju Hao
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
- Prenatal Diagnosis Center, General Hospital of Ningxia Medical University Yinchuan China
| | - Yideng Jiang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| |
Collapse
|
8
|
Tang X, Jiang H, Lin P, Zhang Z, Chen M, Zhang Y, Mo J, Zhu Y, Liu N, Chen X. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov 2021; 7:242. [PMID: 34531382 PMCID: PMC8445926 DOI: 10.1038/s41420-021-00629-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is important in ischemic heart disease. Excessive Insulin-like growth factor binding protein-1 (IGFBP-1) amounts are considered to harm cardiomyocytes in acute myocardial infarction. However, the mechanisms by which IGFBP-1 affects cardiomyocytes remain undefined. The present study demonstrated that hypoxia up-regulates IGFBP-1 and HIF-1α protein expression in cardiomyocytes. Subsequent assays showed that IGFBP-1 suppression decreased HIF-1α expression and inhibited hypoxia-induced apoptosis in cardiomyocytes, which was reversed by HIF-1α overexpression, indicating that HIF-1α is essential to IGFBP-1 function in cellular apoptosis. In addition, we showed that IGFBP-1 regulated HIF-1α stabilization through interacting with VHL. The present findings suggest that IGFBP-1–HIF-1α could be targeted for treating ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Huilin Jiang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Peiyi Lin
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Zhenhui Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Meiting Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Junrong Mo
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yongcheng Zhu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Ningning Liu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China. .,Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| | - Xiaohui Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| |
Collapse
|