1
|
Matsutake R, Fujimoto T, Ichinose M, Watanabe K, Fujii N, Nishiyasu T. The blood flow and vascular responses in dynamically exercising skeletal muscles evoked by combination of cold stimulation and voluntary apnea in humans. Eur J Appl Physiol 2025; 125:1179-1190. [PMID: 39589449 DOI: 10.1007/s00421-024-05643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE We evaluated (1) the combined effects of cold stimulation and voluntary breath holding (apnea) on heart rate, blood pressure, blood flow and vascular responses in dynamically exercising muscles in humans, and (2) if some interactions exist between cold stimulation and apnea on the cardiovascular responses. METHODS Nine males and 1 female performed three trials entailing a dynamic two-legged knee extension exercise at a constant workload that elicited heart rates around 100 beats min-1. During the trials the participants performed either: (1) immersed their right hand into ice water maintained at 4 °C (cold pressor test; CPT); (2) performed maximal-duration apnea; and (3) performed a combination of CPT and apnea. Leg blood flow (LBF) and cardiac output (CO) were measured simultaneously using two Doppler ultrasound systems. RESULTS CPT induced a rise in mean arterial pressure (MAP) (P < 0.05) but had no significant effect on CO or exercising leg vascular conductance (LVC). Apnea evoked large pressor responses, bradycardia and decreases in CO, LBF and LVC (all P < 0.05). The increase in MAP induced by combined CPT and apnea was smaller than the sum of those induced separately by CPT or apnea (P < 0.05). Combined CPT and apnea decreased LBF and LVC to a similar extent as apnea alone. CONCLUSION Addition of local cold stimulation to apnea does not enhance pressor responses or vasoconstriction within active muscles. This suggests that maximum voluntary apnea evokes massive vasoconstriction, even within exercising muscles, which cannot be enhanced by additional sympathetic stimulation.
Collapse
Affiliation(s)
- Ryoko Matsutake
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Tomomi Fujimoto
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Kazuhito Watanabe
- Faculty of Education and Human Studies, Akita University, Akita, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
2
|
Brown CV, Patrician A, Tremblay JC, Brewster LM, Barak O, Drvis I, Dujic G, Dujic Z, Ainslie PN. Cardiovascular and hematological responses to a dry dynamic apnea in breath hold divers. Am J Physiol Regul Integr Comp Physiol 2024; 327:R442-R456. [PMID: 39102462 DOI: 10.1152/ajpregu.00081.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the 1) cardiovascular response and 2) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (F = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; P < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (P < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; P < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.NEW & NOTEWORTHY This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.
Collapse
Affiliation(s)
- Courtney V Brown
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| | - Alexander Patrician
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - L Madden Brewster
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| | - Otto Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Goran Dujic
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Šoltanska, Split, Croatia
| | - Philip N Ainslie
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| |
Collapse
|
3
|
Fujii N, Ishii Y, Moriyama S, Matsutake R, Sengoku Y, Nishiyasu T. Fast Competitive Swimmers Demonstrate a Diminished Diving Reflex. Scand J Med Sci Sports 2024; 34:e14745. [PMID: 39434518 DOI: 10.1111/sms.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Competitive swimmers complete 50-m front crawl swimming without breathing or with a limited number of breaths. Breath holding during exercise can trigger diving reflex including bradycardia and diminished active muscle blood flow, whereas oxygen supply to vital organ such as brain is maintained. We hypothesized that swimmers achieving faster time in 50-m front crawl with limited number of breaths demonstrate a blunted diving reflex of cardiac and active muscle blood flow responses with elevated cerebral perfusion to counteract peripheral and central fatigues. Twenty-eight competitive swimmers (12 females) underwent a 50-m front crawl swimming time trial with minimum respiratory interruptions, following which they were categorized into two groups: Fast (n = 13) and Slow (n = 15). Additionally, they performed knee extension exercises with maximal voluntary breath- holding, wherein leg blood flow (Doppler ultrasound), cardiac output (Modelflow), heart rate (electrocardiogram), and middle cerebral artery mean blood velocity (transcranial Doppler ultrasound) were evaluated. The pattern of leg blood flow response differed between the two groups (p = 0.031) with the Fast group experiencing a delayed onset of reductions in leg blood flow (p = 0.035). The onset of bradycardia was also delayed in the Fast group (p = 0.014), with this group demonstrating a higher value of the lowest heart rate (between-trial difference in average: 15.9 [3.73, 28.2] beats/min) and cardiac output (between-trial difference in median: 2.84 L/min) (both, p ≤ 0.013). Middle cerebral artery mean blood velocity was similar between the groups (all p ≥ 0.112). We show that swimmers with superior performance in 50-m front crawl swim with limited breaths display a diminished diving reflex.
Collapse
Affiliation(s)
- Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Ishii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shodai Moriyama
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryoko Matsutake
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Sengoku
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Nobuhiro N, Heng P, Naoyuki H. The interaction of breath holding and muscle mechanoreflex on cardiovascular responses in breath-hold divers and non-breath-hold divers. Eur J Appl Physiol 2024; 124:2183-2192. [PMID: 38441687 PMCID: PMC11199284 DOI: 10.1007/s00421-024-05431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 06/27/2024]
Abstract
Cardiovascular responses to diving are characterized by two opposing responses: tachycardia resulting from exercise and bradycardia resulting from the apnea. The convergence of bradycardia and tachycardia may determine the cardiovascular responses to diving. The purpose of this study was to investigate the interaction of breath holding and muscle mechanoreflex on cardiovascular responses in breath-hold divers (BHDs) and non-BHDs. We compared the cardiovascular responses to combined apnea and the mechanoreflex in BHDs and non-BHDs. All participants undertook three trials-apnea, passive leg cycling (PLC), and combined trials-for 30 s after rest. Cardiovascular variables were measured continuously. Nine BHD (male:female, 4:5; [means ± SD] age, 35 ± 6 years; height, 168.6 ± 4.6 cm; body mass, 58.4 ± 5.9 kg) and eight non-BHD (male:female, 4:4; [means ± SD] age, 35 ± 7 years; height, 163.9 ± 9.1 cm; body mass, 55.6 ± 7.2 kg) participants were included. Compared to the resting baseline, heart rate (HR) and cardiac output (CO) significantly decreased during the combined trial in the BHD group, while they significantly increased during the combined trials in the non-BHD group (P < 0.05). Changes in the HR and CO were significantly lower in the BHD group than in the non-BHD group in the combined trial (P < 0.05). These results suggest that bradycardia with apnea in BHDs is prioritized over tachycardia with the mechanoreflex, whereas that in non-BHDs is not. This finding implies that diving training changes the interaction between apnea and the mechanoreflex in cardiovascular control.
Collapse
Affiliation(s)
- Nakamura Nobuhiro
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Peng Heng
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Hayashi Naoyuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
5
|
Moriyama S, Ichinose M, Dobashi K, Matsutake R, Sakamoto M, Fujii N, Nishiyasu T. Hypercapnia elicits differential vascular and blood flow responses in the cerebral circulation and active skeletal muscles in exercising humans. Physiol Rep 2022; 10:e15274. [PMID: 35466573 PMCID: PMC9035754 DOI: 10.14814/phy2.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate the effects of a rise in arterial carbon dioxide pressure (PaCO2) on vascular and blood flow responses in the cerebral circulation and active skeletal muscles during dynamic exercise in humans. Thirteen healthy young adults (three women) participated in hypercapnia and normocapnia trials. In both trials, participants performed a two‐legged dynamic knee extension exercise at a constant workload that increased heart rate to roughly 100 beats min−1. In the hypercapnia trial, participants performed the exercise with spontaneous breathing while end‐tidal carbon dioxide pressure (PETCO2), an index of PaCO2, was held at 60 mmHg by inhaling hypercapnic gas (O2: 20.3 ± 0.1%; CO2: 6.0 ± 0.5%). In the normocapnia trial, minute ventilation during exercise was matched to the value in the hypercapnia trial by performing voluntary hyperventilation with PETCO2 clamped at baseline level (i.e., 40–45 mmHg) through inhalation of mildly hypercapnic gas (O2: 20.6 ± 0.1%; CO2: 2.7 ± 1.0%). Middle cerebral artery mean blood velocity and the cerebral vascular conductance index were higher in the hypercapnia trial than in the normocapnia trial. By contrast, vascular conductance in the exercising leg was lower in the hypercapnia trial than in the normocapnia trial. Blood flow to the exercising leg did not differ between the two trials. These results demonstrate that hypercapnia‐induced vasomotion in active skeletal muscles is opposite to that in the cerebral circulation. These differential vascular responses may cause a preferential rise in cerebral blood flow.
Collapse
Affiliation(s)
- Shodai Moriyama
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory School of Business Administration Meiji University Tokyo Japan
| | - Kohei Dobashi
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
- Faculty of Education Hokkaido University of Education Hokkaido Japan
| | - Ryoko Matsutake
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Mizuki Sakamoto
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba City Ibaraki Japan
| |
Collapse
|
6
|
Di Giacomo A, Ghiani GM, Todde F, Tocco F. Cardiovascular Responses to Simultaneous Diving and Muscle Metaboreflex Activation. Front Physiol 2021; 12:730983. [PMID: 34744773 PMCID: PMC8569620 DOI: 10.3389/fphys.2021.730983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background: The aim of study was to assess hemodynamic changes during the simultaneous activation of muscle metaboreflex (MM) and diving reflex (DR) in a laboratory setting. We hypothesized that as long as the exercise intensity is mild DR can overwhelm the MM. Methods: Ten trained divers underwent all four phases (randomly assigned) of the following protocol. (A) Postexercise muscle ischemia session (PEMI): 3 min of resting followed by 3 min of handgrip at 30% of maximum force, followed immediately by 3 min of PEMI on the same arm induced by inflating a sphygmomanometer. Three minutes of recovery was further allowed after the cuff was deflated for a total of 6 min of recovery. (B) Control exercise recovery session: the same rest-exercise protocol used for A followed by 6 min of recovery without inflation. (C) DR session: the same rest-exercise protocol used for A followed by 1 min of breath-hold (BH) with face immersion in cold water. (D) PEMI-DR session: the same protocol used for A with 60 s of BH with face immersion in cold water during the first minute of PEMI. Stroke volume (SV), heart rate (HR), and cardiac output (CO) were collected by means of an impedance method. Results: At the end of apnea, HR was decreased in condition C and D with respect to A (−40.8 and −40.3%, respectively vs. −9.1%; p < 0.05). Since SV increase was less pronounced at the same time point (C = +32.4 and D = +21.7% vs. A = +6.0; p < 0.05), CO significantly decreased during C and D with respect to A (−23 and −29.0 vs. −1.4%, respectively; p < 0.05). Conclusion: Results addressed the hypothesis that DR overcame the MM in our setting.
Collapse
Affiliation(s)
- Annalisa Di Giacomo
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| | - Giovanna Maria Ghiani
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Todde
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| | - Filippo Tocco
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Bouten J, De Bock S, Bourgois G, de Jager S, Dumortier J, Boone J, Bourgois JG. Heart Rate and Muscle Oxygenation Kinetics During Dynamic Constant Load Intermittent Breath-Holds. Front Physiol 2021; 12:712629. [PMID: 34366898 PMCID: PMC8339880 DOI: 10.3389/fphys.2021.712629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: Acute apnea evokes bradycardia and peripheral vasoconstriction in order to conserve oxygen, which is more pronounced with face immersion. This response is contrary to the tachycardia and increased blood flow to muscle tissue related to the higher oxygen consumption during exercise. The aim of this study was to investigate cardiovascular and metabolic responses of dynamic dry apnea (DRA) and face immersed apnea (FIA). Methods: Ten female volunteers (17.1 ± 0.6 years old) naive to breath-hold-related sports, performed a series of seven dynamic 30 s breath-holds while cycling at 25% of their peak power output. This was performed in two separate conditions in a randomized order: FIA (15°C) and DRA. Heart rate and muscle tissue oxygenation through near-infrared spectroscopy were continuously measured to determine oxygenated (m[O2Hb]) and deoxygenated hemoglobin concentration (m[HHb]) and tissue oxygenation index (mTOI). Capillary blood lactate was measured 1 min after the first, third, fifth, and seventh breath-hold. Results: Average duration of the seven breath-holds did not differ between conditions (25.3 s ± 1.4 s, p = 0.231). The apnea-induced bradycardia was stronger with FIA (from 134 ± 4 to 85 ± 3 bpm) than DRA (from 134 ± 4 to 100 ± 5 bpm, p < 0.001). mTOI decreased significantly from 69.9 ± 0.9% to 63.0 ± 1.3% (p < 0.001) which is reflected in a steady decrease in m[O2Hb] (p < 0.001) and concomitant increase in m[HHb] (p = 0.001). However, this was similar in both conditions (0.121 < p < 0.542). Lactate was lower after the first apnea with FIA compared to DRA (p = 0.038), while no differences were observed in the other breath-holds. Conclusion: Our data show strong decreases in heart rate and muscle tissue oxygenation during dynamic apneas. A stronger bradycardia was observed in FIA, while muscle oxygenation was not different, suggesting that FIA did not influence muscle oxygenation. An order of mechanisms was observed in which, after an initial tachycardia, heart rate starts to decrease after muscle tissue deoxygenation occurs, suggesting a role of peripheral vasoconstriction in the apnea-induced bradycardia. The apnea-induced increase in lactate was lower in FIA during the first apnea, probably caused by the stronger bradycardia.
Collapse
Affiliation(s)
- Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sander De Bock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Gil Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jasmien Dumortier
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
8
|
Ichinose M, Nakabayashi M, Ono Y. Sympathoexcitation constrains vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. Am J Physiol Heart Circ Physiol 2018; 315:H242-H253. [DOI: 10.1152/ajpheart.00010.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We used diffuse correlation spectroscopy to investigate sympathetic vasoconstriction, local vasodilation, and integration of these two responses in the skeletal muscle microvasculature of 20 healthy volunteers. Diffuse correlation spectroscopy probes were placed on the flexor carpi radialis muscle or vastus lateralis muscle, and a blood flow index was derived continuously. We measured hemodynamic responses during sympathoexcitation induced by forehead cooling, after which the effects of the increased sympathetic tone on vasodilatory responses during postocclusive reactive hyperemia (PORH) were examined. PORH was induced by releasing arterial occlusion (3 min) in an arm or leg. To increase sympathetic tone during PORH, forehead cooling was begun 60 s before the occlusion release and ended 60 s after the release. During forehead cooling, mean arterial pressure rose significantly and was sustained at an elevated level. Significant vasoconstriction and decreases in blood flow index followed by gradual blunting of the vasoconstriction also occurred. The time course of these responses is in good agreement with previous observations in animals. The acute sympathoexcitation diminished the peak vasodilation during PORH only in the vastus lateralis muscle, but it hastened the decline in vasodilation after the peak in both the flexor carpi radialis muscle and vastus lateralis muscle. Consequently, the total vasodilatory response assessed as the area of the vascular conductance during the first minute of PORH was significantly diminished in both regions. We conclude that, in humans, the integrated effects of sympathetic vasoconstriction and local vasodilation have an important role in vascular regulation and control of perfusion in the skeletal muscle microcirculation. NEW & NOTEWORTHY We used diffuse correlation spectroscopy to demonstrate that acute sympathoexcitation constrains local vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. This finding indicates that integration of sympathetic vasoconstriction and local vasodilation is importantly involved in vascular regulation and the control of perfusion of the skeletal muscle microcirculation in humans.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Mikie Nakabayashi
- Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| |
Collapse
|