1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2025; 603:1729-1779. [PMID: 39340173 PMCID: PMC11955874 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N. Herring
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - O. A. Ajijola
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| | - R. D. Foreman
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - A. V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceUniversity College LondonLondonUK
| | - A. L. Green
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - J. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMNUSA
| | - D. J. Paterson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - J. F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - C. M. Ripplinger
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - C. Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - T. L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - H. J. Wang
- Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - I. H. Zucker
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - J. L. Ardell
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| |
Collapse
|
2
|
Chang JWH, Chen S, Hamilton C, Shanks J, Pachen M, Pauza A, George B, Ramchandra R. Characterization of a novel ovine model of hypertensive heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H1490-H1502. [PMID: 39546298 PMCID: PMC11684944 DOI: 10.1152/ajpheart.00548.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The lack of animal models that accurately represent heart failure with preserved ejection fraction (HFpEF) has been a major barrier to the mechanistic understanding and development of effective therapies for this prevalent and debilitating syndrome characterized by multisystem impairments. Herein, we describe the development and characterization of a novel large animal model of HFpEF in older, female sheep with chronic 2-kidney, 1-clip hypertension. At 6-wk post unilateral renal artery clipping, hypertensive HFpEF sheep had higher mean arterial pressure compared with similarly aged ewes without unilateral renal artery clipping (mean arterial pressure = 112.7 ± 15.9 vs. 76.0 ± 10.1 mmHg, P < 0.0001). The hypertensive HFpEF sheep were characterized by 1) echocardiographic evidence of diastolic dysfunction (lateral e' = 0.11 ± 0.02 vs. 0.14 ± 0.04 m/s, P = 0.011; lateral E/e' = 4.25 ± 0.77 vs. 3.63 ± 0.54, P = 0.028) and concentric left ventricular hypertrophy without overt systolic impairment, 2) elevated directly measured left ventricular end-diastolic pressure (13 ± 5 vs. 0.5 ± 1 mmHg, P = 2.1 × 10-6), and 3) normal directly measured cardiac output. Crucially, these hypertensive HFpEF sheep had impaired exercise capacity as demonstrated by their 1) attenuated cardiac output (P = 0.001), 2) augmented pulmonary capillary wedge pressure (P = 0.026), and 3) attenuated hindlimb blood flow (P = 3.4 × 10-4) responses, during graded treadmill exercise testing. In addition, exercise renal blood flow responses were also altered. Collectively, our data indicates that this novel ovine model of HFpEF may be a useful translational research tool because it exhibits similar and clinically relevant impairments as that of patients with HFpEF.NEW & NOTEWORTHY We show that older, female sheep with chronic 2-kidney, 1-clip hypertension have similar cardiac and noncardiac exercise hemodynamic abnormalities as patients with HFpEF. This clinically relevant, translatable, and novel large animal model of HFpEF may be useful for elucidating mechanisms and developing treatments for this increasingly common syndrome with few clinically impactful therapies.
Collapse
Affiliation(s)
- Joshua W-H Chang
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Siyi Chen
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Charlotte Hamilton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mridula Pachen
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Audrys Pauza
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Bindu George
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Barreto RV, Lima LC, Borszcz FK, de Lucas RD, Denadai BS. Acute physiological responses to eccentric cycling: a systematic review and meta-analysis. J Sports Med Phys Fitness 2023; 63:1051-1068. [PMID: 37410446 DOI: 10.23736/s0022-4707.23.14971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Eccentric cycling (ECCCYC) has attracted considerable interest due to its potential applicability for exercise treatment/training of patients with poor exercise tolerance as well as healthy and trained individuals. Conversely, little is known about the acute physiological responses to this exercise modality, thus challenging its proper prescription. This study aimed to provide precise estimates of the acute physiological responses to ECCCYC in comparison to traditional concentric cycling (CONCYC). EVIDENCE ACQUISITION Searches were performed until November 2021 using the PubMed, Embase, and ScienceDirect databases. Studies that examined individuals' cardiorespiratory, metabolic, and perceptual responses to ECCCYC and CONCYC sessions were included. Bayesian multilevel meta-analysis models were used to estimate the population mean difference between acute physiological responses from ECCCYC and CONCYC bouts. Twenty-one studies were included in this review. EVIDENCE SYNTHESIS The meta-analyses showed that ECCCYC induced lower cardiorespiratory (i.e., V̇O2, V̇E, and HR), metabolic (i.e., [BLa]), and perceptual (i.e., RPE) responses than CONCYC performed at the same absolute power output, while greater cardiovascular strain (i.e., greater increases in HR, Q, MAP, [norepinephrine], and lower SV) was detected when compared to CONCYC performed at the same V̇O2. CONCLUSIONS The prescription of ECCCYC based on workloads used in the CONCYC sessions may be considered safe and, therefore, feasible for the rehabilitation of individuals with poor exercise tolerance. However, the prescription of ECCCYC based on the V̇O2 obtained during CONCYC sessions should be conducted with caution, especially in clinical settings, since there is a high probability of additional cardiovascular overload in this condition.
Collapse
Affiliation(s)
- Renan V Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil -
| | - Leonardo Cr Lima
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando K Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ricardo D de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Benedito S Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
4
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
5
|
Butenas ALE, Rollins KS, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Novel mechanosensory role for acid sensing ion channel subtype 1a in evoking the exercise pressor reflex in rats with heart failure. J Physiol 2022; 600:2105-2125. [PMID: 35343594 PMCID: PMC9893514 DOI: 10.1113/jp282923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fibre muscle afferents, which, in turn, generates reflex increases in sympathetic nerve activity (SNA) and blood pressure (the exercise pressor reflex; EPR). EPR activation in patients and animals with heart failure with reduced ejection fraction (HF-rEF) results in exaggerated increases in SNA and promotes exercise intolerance. In the healthy decerebrate rat, a subtype of acid sensing ion channel (ASIC) on the sensory endings of thin fibre muscle afferents, namely ASIC1a, has been shown to contribute to the metabolically sensitive portion of the EPR (i.e. metaboreflex), but not the mechanically sensitive portion of the EPR (i.e. the mechanoreflex). However, the role played by ASIC1a in evoking the EPR in HF-rEF is unknown. We hypothesized that, in decerebrate, unanaesthetized HF-rEF rats, injection of the ASIC1a antagonist psalmotoxin-1 (PcTx-1; 100 ng) into the hindlimb arterial supply would reduce the reflex increase in renal SNA (RSNA) evoked via 30 s of electrically induced static hindlimb muscle contraction, but not static hindlimb muscle stretch (model of mechanoreflex activation isolated from contraction-induced metabolite-production). We found that PcTx-1 reduced the reflex increase in RSNA evoked in response to muscle contraction (n = 8; mean (SD) ∫ΔRSNA pre: 1343 (588) a.u.; post: 816 (573) a.u.; P = 0.026) and muscle stretch (n = 6; ∫ΔRSNA pre: 688 (583) a.u.; post: 304 (370) a.u.; P = 0.025). Our data suggest that, in HF-rEF rats, ASIC1a contributes to activation of the exercise pressor reflex and that contribution includes a novel role for ASIC1a in mechanosensation that is not present in healthy rats. KEY POINTS: Skeletal muscle contraction results in exaggerated reflex increases in sympathetic nerve activity in heart failure patients compared to healthy counterparts, which likely contributes to increased cardiovascular risk and impaired tolerance for even mild exercise (i.e. activities of daily living) for patients suffering with this condition. Activation of acid sensing ion channel subtype 1a (ASIC1a) on the sensory endings of thin fibre muscle afferents during skeletal muscle contraction contributes to reflex increases in sympathetic nerve activity and blood pressure, at least in healthy subjects. In this study, we demonstrate that ASIC1a on the sensory endings of thin fibre muscle afferents plays a role in both the mechanical and metabolic components of the exercise pressor reflex in male rats with heart failure. The present data identify a novel role for ASIC1a in evoking the exercise pressor reflex in heart failure and may have important clinical implications for heart failure patients.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Stephen T Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Effectiveness and safety of rehabilitation on minimal change nephrotic syndrome in remission for elderly patients with low activity of daily living: a case report. CEN Case Rep 2021; 11:196-202. [PMID: 34623618 DOI: 10.1007/s13730-021-00649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
There are few reports on the rehabilitation of elderly patients with minimal change nephrotic syndrome (MCNS). The purpose of this case study was to evaluate the efficacy and safety of rehabilitation for an elderly patient with MCNS in remission. The patient was an 86-year-old woman. She was admitted to the hospital with a diagnosis of MCNS, and steroid treatment was initiated. She was weaned from dialysis 2 weeks later; however, her activities of daily living (ADL) decreased, and she developed disuse syndrome. After rehabilitation, the patient's ADL, maximum hand grip strength, and gait function improved. There was no recurrence of weight gain or increased proteinuria during rehabilitation, but the estimated glomerular filtration rate decreased. This case suggests that rehabilitation for elderly patients with MCNS in remission can be effective for physical and ADL functions without relapse of MCNS. The effect of exercise therapy on the relationship between exercise therapy and renal function needs to be further investigated by collecting more cases.
Collapse
|
7
|
Chapman CL, Johnson BD, Hostler D, Lema PC, Schlader ZJ. Reliability and agreement of human renal and segmental artery hemodynamics measured using Doppler ultrasound. J Appl Physiol (1985) 2020; 128:627-636. [PMID: 32027544 DOI: 10.1152/japplphysiol.00813.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To optimize study design and data interpretation, there is a need to understand the reliability of Doppler ultrasound-derived measures of blood velocity (BV) measured in the renal and segmental arteries. Thus, this study tested the following two hypotheses: 1) renal and segmental artery BV measured over the current standard of three cardiac cycles have good agreement with measurements over nine cardiac cycles (study 1); and 2) renal and segmental artery BV measurements have relatively poor day-to-day reliability (study 2). In study 1, there was excellent agreement between measurements over three and nine cardiac cycles for BV in both the renal and segmental arteries, as evidenced by BV measurements that were not statistically different (P ≥ 0.68), were highly consistent (r ≥ 0.99, P < 0.01), had a coefficient of variation ≤2.5 ± 1.8%, and 97% (renal artery) and 92% (segmental artery) of the individual differences fell within the 95% limits of agreement. In study 2, there was relatively good day-to-day reliability in renal artery BV as evidenced by no differences between three separate days (P ≥ 0.30), an intraclass correlation coefficient (ICC) of 0.92 (0.78, 0.98), and 7.4 ± 5.5% coefficient of variation. The day-to-day reliability was relatively poor in the segmental artery with an ICC of 0.77 (0.41, 0.93) and 9.0 ± 5.6% coefficient of variation. These findings support measuring renal and segmental artery hemodynamics over three cardiac cycles and the utility in reporting renal BV across days. However, because of the variation across days, hemodynamic responses in the segmental arteries should be reported as changes from baseline when making comparisons across multiple days.NEW & NOTEWORTHY The present study indicates that Doppler ultrasound-derived measures of renal and segmental artery hemodynamics over three cardiac cycles have excellent agreement with those over nine cardiac cycles. These findings support the current practice of measuring renal and segmental artery blood velocity over three cardiac cycles. This study also demonstrates that there is excellent day-to-day reliability for measures of renal artery blood velocity, which supports reporting absolute values of renal artery blood velocity across days. However, it was also found that the day-to-day reliability of segmental artery measurements is relatively poor. Thus, to account for this variability, we suggest that segmental artery hemodynamics be compared as relative changes from baseline across separate days.
Collapse
Affiliation(s)
- Christopher L Chapman
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Penelope C Lema
- Department of Emergency Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Zachary J Schlader
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
8
|
Drew RC. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology. Am J Physiol Regul Integr Comp Physiol 2017; 313:R654-R659. [PMID: 28855178 DOI: 10.1152/ajpregu.00242.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease.
Collapse
Affiliation(s)
- Rachel C Drew
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
9
|
Drew RC, Blaha CA, Herr MD, Cui R, Sinoway LI. Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans. Am J Physiol Regul Integr Comp Physiol 2017; 312:R956-R964. [PMID: 28381456 DOI: 10.1152/ajpregu.00322.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
Abstract
Reflex renal vasoconstriction occurs during exercise, and renal vasoconstriction in response to upper-limb muscle mechanoreflex activation has been documented. However, the renal vasoconstrictor response to muscle mechanoreflex activation originating from lower limbs, with and without local metabolite accumulation, has not been assessed. Eleven healthy young subjects (26 ± 1 yr; 5 men) underwent two trials involving 3-min passive calf muscle stretch (mechanoreflex) during 7.5-min lower-limb circulatory occlusion (CO). In one trial, 1.5-min 70% maximal voluntary contraction isometric calf exercise preceded CO to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex; 70% trial). A control trial involved no exercise before CO (mechanoreflex alone; 0% trial). Beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), mean arterial blood pressure (MAP; photoplethysmographic finger cuff), and heart rate (electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as MAP/RBFV. All baseline cardiovascular variables were similar between trials. Stretch increased RVR and decreased RBFV in both trials (change from CO with stretch: RVR - 0% trial = Δ 10 ± 2%, 70% trial = Δ 7 ± 3%; RBFV - 0% trial = Δ -3.8 ± 1.1 cm/s, 70% trial = Δ -2.7 ± 1.5 cm/s; P < 0.05 for RVR and RBFV). These stretch-induced changes were of similar magnitudes in both trials, e.g., with and without local metabolite accumulation, as well as when thromboxane production was inhibited. These findings suggest that muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction, with and without muscle metaboreflex activation, in healthy humans.
Collapse
Affiliation(s)
- Rachel C Drew
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Ruda Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
10
|
Xing J, Li J. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure. Cell Physiol Biochem 2016; 39:2101-2109. [PMID: 27802438 DOI: 10.1159/000447906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND/AIMS Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA) and blood pressure (BP) responses during static exercise in heart failure (HF). In this study, we examined engagement of bradykinin (BK) in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG) neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. METHODS Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. RESULTS BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. CONCLUSION BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.
Collapse
Affiliation(s)
- Jihong Xing
- Jilin University First Hospital, Norman Bethune College of Medicine, Changchun, China
| | | |
Collapse
|
11
|
Hotta N, Yamamoto K, Ogata H, Maher P, Okumura N, Ishida K. Does degree of alteration in effort sense caused by eccentric exercise significantly affect initial exercise hyperpnea in humans? J Physiol Anthropol 2016; 35:18. [PMID: 27558395 PMCID: PMC4995826 DOI: 10.1186/s40101-016-0107-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022] Open
Abstract
Previous research has shown an exaggeration in exercise hyperpnea 2 days after eccentric exercise (ECC). Enhancement in central command has been suggested as one candidate to account for this effect given that ECC-induced neuromuscular dysfunction increases relative exercise intensity, thus resulting in reinforcement of effort sense. The purpose of this study was, therefore, to elucidate whether the degree of alteration in effort sense caused by ECC affects exercise hyperpnea. Ten subjects performed 20-s single-arm extension-flexion exercises with weight strapped to the wrist, and ventilatory response was measured before (Pre) and 2 days after ECC (D2). Relative exercise intensity at Pre was 5 % of maximal voluntary contraction (MVC) of Pre, whereas that at D2 was 9 % MVC of D2 because of decline in muscle strength. Ventilatory responses were significantly exaggerated at D2 with a significant increase in effort sense. Although effort sense was significantly reduced during exercise at D2 when wrist weight was subtracted to match relative exercise intensity at Pre (5 % MVC of D2), ventilatory responses were still significantly higher than those of Pre. After the disappearance of post-ECC muscle damage, subjects performed the same exercise with weight added (9 % MVC of Pre) so that effort was equalized to match that of D2; however, no significant increase in ventilatory response was detected. The fact that the extent of change in effort sense caused by ECC-induced neuromuscular dysfunction did not affect ventilatory response at the onset of exercise after ECC may suggest that the exaggeration of ventilatory response after ECC is caused by mechanisms other than alteration of the central command.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan.
| | - Kaoru Yamamoto
- Faculty of Human Health Sciences, Meio University, Nago, Okinawa, Japan
| | - Hisayoshi Ogata
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Patrick Maher
- Morioka Junior College, Department of International Cultural Studies, Iwate Prefectural University, Takizawa, Iwate, Japan
| | - Naoya Okumura
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
12
|
Xing J, Lu J, Li J. ASIC3 contributes to the blunted muscle metaboreflex in heart failure. Med Sci Sports Exerc 2016; 47:257-63. [PMID: 24983337 DOI: 10.1249/mss.0000000000000415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION During exercise, the sympathetic nervous system is activated and blood pressure and HR increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that lactic acid stimulates acid-sensing channel subtype 3 (ASIC3), inducing a neurally mediated pressor response. Thus, we hypothesized that the pressor response to ASIC3 stimulation is smaller in HF rats because of attenuation in expression and function of ASIC3 in sensory nerves. METHODS Lactic acid was injected into the arterial blood supply of the hind limb to stimulate ASIC3 in muscle afferent nerves and evoke muscle metaboreceptor response in control rats and HF rats. In addition, western blot analysis was used to examine expression of ASIC3 in dorsal root ganglion (DRG) and patch clamp to examine current response with ASIC3 activation. RESULTS Lactic acid (4 μmol·kg) increased mean arterial pressure by 28 ± 5 mm Hg in controls (n = 6) but only by 16 ± 3 mm Hg (P < 0.05 vs control) in HF (n = 8). In addition, HF decreased the protein levels of ASIC3 in DRG (optical density, 1.03 ± 0.02 in control, vs 0.79 ± 0.03 in HF; P < 0.05; n = 6 in each group). The peak current amplitude of dorsal DRG neuron in response to ASIC3 stimulation is smaller in HF rats than that in control rats. CONCLUSIONS Compared with those in controls, cardiovascular responses to lactic acid administered into the hind limb muscles are blunted in HF rats owing to attenuated ASIC3. This suggests that ASIC3 plays a role in engagement in the attenuated metaboreceptor component of the exercise pressor reflex in HF.
Collapse
Affiliation(s)
- Jihong Xing
- 1Department of Emergency Medicine, The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, CHINA; and 2Heart & Vascular Institute and Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Satoshi Koba
- Division of Integrative Physiology, Tottori University Faculty of Medicine
| |
Collapse
|
14
|
Rapid onset pressor and sympathetic responses to static handgrip in older hypertensive adults. J Hum Hypertens 2014; 29:402-8. [PMID: 25471615 DOI: 10.1038/jhh.2014.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Exaggerated pressor and muscle sympathetic nerve activity (MSNA) responses have been reported during static handgrip in hypertensive (HTN) adults. Recent work suggests that such responses may occur much more rapidly in HTN patients; however, this has not been extensively studied. Thus, we examined the blood pressure (BP) and MSNA responses at the immediate onset of muscle contraction and tested the hypothesis that older HTN adults would exhibit rapid onset pressor and sympathetic responses compared with normotensive (NTN) adults. Heart rate (HR), BP (Finometer) and MSNA (peroneal microneurography) were retrospectively analyzed in 15 HTN (62 ± 1 years; resting BP 153 ± 3/91 ± 5 mm Hg) and 23 age-matched NTN (60 ± 1 years; resting BP 112 ± 1/67 ± 2 mm Hg) subjects during the first 30 s of static handgrip at 30 and 40% of maximal voluntary contraction (MVC). HTN adults demonstrated exaggerated increases in mean BP during the first 10 s of both 30% (NTN: Δ1 ± 1 vs HTN: Δ7 ± 2 mm Hg; P < 0.05) and 40% (NTN: Δ2 ± 1 vs HTN: Δ8 ± 2 mm Hg; P < 0.05) intensity handgrip. Likewise, HTN adults exhibited atypical increases in MSNA within 10 s. Increases in HR were also greater in HTN adults at 10 s of 30% MVC handgrip, although not at 40% MVC. There were no group differences in 10 s pressor or sympathetic responses to a cold pressor test, suggesting no differences in generalized sympathetic responsiveness. Thus, static handgrip evokes rapid onset pressor and sympathetic responses in older HTN adults. These findings suggest that older HTN adults likely have greater cardiovascular risk even during short duration activities of daily living that contain an isometric component.
Collapse
|
15
|
Xing J, Lu J, Li J. Nerve growth factor decreases in sympathetic and sensory nerves of rats with chronic heart failure. Neurochem Res 2014; 39:1564-70. [PMID: 24913185 DOI: 10.1007/s11064-014-1348-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6-20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF.
Collapse
Affiliation(s)
- Jihong Xing
- The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China,
| | | | | |
Collapse
|
16
|
Li J, Gao Z, Lu J, Xing J. Exaggerated Pressor Response in Relation to Attenuated Muscle Temperature Response during Contraction in Ischemic Heart Failure. Front Physiol 2012. [PMID: 23189061 PMCID: PMC3505840 DOI: 10.3389/fphys.2012.00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is known that muscle temperature (Tm) increases with exercise. The purpose of this study was to examine if contraction-induced increase in Tm was altered in rats with heart failure (HF) induced by chronic myocardial infraction (MI) as compared with healthy control animals. A temperature probe was inserted in the triceps surae muscle to continuously measure Tm throughout experiments. Static muscle contraction was induced by electrical stimulation of the sciatic nerve for 1 min. As baseline Tm was 34°C, contraction increased temperature by 1.6 ± 0.18°C in nine health control rats and by 1.0 ± 0.15°C in 10 MI rats (P < 0.05 vs. control). Note that there were no differences in developed muscle tension and muscle weight between the two groups. In addition, muscle contraction increased mean arterial pressure by 23 ± 3 mmHg in control rats and by 31 ± 3 mmHg in MI rats (P < 0.05 vs. control). A regression analysis further shows that there is an inverse liner relationship between the pressor response and static contraction-induced increase in Tm. Our data suggest that Tm increase evoked by contraction is impaired in MI rats. The abnormal alteration in Tm likely modifies the reflex cardiovascular responses in MI via mechanisms of temperature-sensitive receptors on muscle afferent nerves.
Collapse
Affiliation(s)
- Jianhua Li
- Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine Hershey, PA, USA ; Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine Hershey, PA, USA
| | | | | | | |
Collapse
|
17
|
Murai H, Takamura M, Kaneko S. Advantage of recording single-unit muscle sympathetic nerve activity in heart failure. Front Physiol 2012; 3:109. [PMID: 22563318 PMCID: PMC3342584 DOI: 10.3389/fphys.2012.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
Elevated sympathetic activation is a characteristic feature of heart failure (HF). Excessive sympathetic activation under resting conditions has been shown to increase from the early stages of the disease, and is related to prognosis. Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA) by microneurography is the best method for quantifying sympathetic nerve activity in humans. To date, this technique has been used to evaluate the actual central sympathetic outflow to the periphery in HF patients at rest and during exercise; however, because the firing occurrence of sympathetic activation is mainly synchronized by pulse pressure, multiunit MSNA, expressed as burst frequency (bursts/min) and burst incidence (bursts/100 heartbeats), may have limitations for the quantification of sympathetic nerve activity. In HF, multiunit MSNA is near the maximum level, and cannot increase further than the heartbeat. Single-unit MSNA analysis in humans is technically demanding, but provides more detailed information regarding central sympathetic firing. Although a great deal is known about the response of multiunit MSNA to stress, little information is available regarding the responses of single-unit MSNA to physiological stress and disease. The purposes of this review are to describe the differences between multiunit and single-unit MSNA during stress and to discuss the advantages of single-unit MSNA recording in improving our understanding the pathology of increased sympathetic activity in HF.
Collapse
Affiliation(s)
- Hisayoshi Murai
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | | | | |
Collapse
|
18
|
MacIver DH, Dayer MJ, Harrison AJI. A general theory of acute and chronic heart failure. Int J Cardiol 2012; 165:25-34. [PMID: 22483252 DOI: 10.1016/j.ijcard.2012.03.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 12/13/2022]
Abstract
Current concepts of heart failure propose multiple heterogeneous pathophysiological mechanisms. Recently a theoretical framework for understanding chronic heart failure was suggested. This paper develops this framework to include acute heart failure syndromes. We propose that all acute heart failure syndromes may be understood in terms of a relative fall in left ventricular stroke volume. The initial compensatory mechanism is frequently a tachycardia often resulting in a near normal cardiac output. In more severe forms a fall in cardiac output causes hypotension or cardiogenic shock. In chronic heart failure the stroke volume and cardiac output is returned to normal predominantly through ventricular remodeling or dilatation. Ejection fraction is simply the ratio of stroke volume and end-diastolic volume. The resting stroke volume is predetermined by the tissue's needs; therefore, if the ejection fraction changes, the end-diastolic volume must change in a reciprocal manner. The potential role of the right heart in influencing the presentation of left heart disease is examined. We propose that acute pulmonary edema occurs when the right ventricular stroke volume exceeds left ventricular stroke volume leading to fluid accumulation in the alveoli. The possible role of the right heart in determining pulmonary hypertension and raised filling pressures in left-sided heart disease are discussed. Different clinical scenarios are presented to help clarify these proposed mechanisms and the clinical implications of these theories are discussed. Finally an alternative definition of heart failure is proposed.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, Taunton TA1 5DA, UK.
| | | | | |
Collapse
|
19
|
Koba S, Xing J, Sinoway LI, Li J. Bradykinin receptor blockade reduces sympathetic nerve response to muscle contraction in rats with ischemic heart failure. Am J Physiol Heart Circ Physiol 2010; 298:H1438-44. [PMID: 20207818 DOI: 10.1152/ajpheart.00558.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous animal and human studies have suggested that a muscle reflex engaged during contraction leads to heightened levels of sympathetic activity in congestive heart failure (CHF). The present experiment was designed to test the role for bradykinin, which is produced within contracting skeletal muscle and contributes to the muscle reflex through its action on kinin B(2) receptors located on the endings of thin fiber muscle afferents. CHF was induced in rats by myocardial infarction (MI) after coronary artery ligation. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. In the decerebrate rats, we examined renal sympathetic nerve activity (RSNA) during 1 min intermittent (1 to 4 s stimulation to relaxation) contraction of left triceps surae muscles. RSNA responded synchronously as tension was developed, and the response was significantly (P < 0.05) greater in MI rats [+39 +/- 9% s(-1) (integrated RSNA over time); n = 16] with 20 +/- 2% of FS than that in control healthy rats (+19 +/- 2% s(-1); n = 16) with 49 +/- 2% of FS. Tension development did not differ significantly between the two groups of rats. Thirty minutes after intra-arterial injection into the hindlimb circulation of the kinin B(2) receptor antagonist, HOE-140 (2 microg/kg), the RSNA response to contraction was significantly reduced in the MI rats (+26 +/- 7% s(-1)) but not in the control rats (+17 +/- 2% s(-1)). These data suggest that bradykinin within contracting muscle is part of the exaggerated muscle reflex seen in CHF.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Muscle contraction stimulates thin fibre muscle afferents and evokes a reflex increase in blood pressure. In heart failure (HF) this reflex is accentuated. Of note, superoxide and other reactive oxygen species are increased in HF. In this report, we tested the hypothesis that excess superoxide contributes to the exaggerated muscle reflex in HF. HF was induced in rats by coronary artery ligation. Electrically induced 30 s hindlimb muscle contraction in decerebrate rats with myocardial infarction (MI) (left ventricular fractional shortening (FS) = 24 +/- 1%; n = 15) evoked larger (P < 0.05) increases in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) as compared to control rats (FS = 47 +/- 1%; n = 14). In the MI rats, the pressor and RSNA responses to contraction were reduced by intra-arterial injection into the hindlimb circulation of tempol (10 mg), a superoxide dismutase mimetic (DeltaMAP: 22 +/- 2 vs. 11 +/- 1 mmHg; integral DeltaRSNA: 1032 +/- 204 vs. 431 +/- 73 arbitrary units (a.u.); before vs. after tempol; P < 0.05). Tempol also attenuated the RSNA response to 1 min intermittent (1-4 s stimulation to relaxation) bouts of static contraction in the MI rats (116 +/- 17 vs. 72 +/- 11 a.u.; P < 0.05; n = 16). In the control rats, tempol had no effect on these responses. These results suggest that excess superoxide in HF sensitizes mechanically sensitive muscle afferents engaged during contraction. We hypothesize that oxidative stress contributes to the exaggerated muscle reflex in HF.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
21
|
Morris NR, Snyder EM, Beck KC, Johnson BD. Lung-to-lung circulation times during exercise in heart failure. Eur J Appl Physiol 2009; 106:621-7. [PMID: 19381678 DOI: 10.1007/s00421-009-1051-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Circulation time (the transit time for a bolus of blood through the circulatory system) is a potential index of cardiac dysfunction in chronic heart failure (HF). In healthy subjects, circulation time falls as cardiac output (Q) rises during exercise, however little is known about this index in HF. In this study we examined the relationship between lung-to-lung circulation time (LLCT) during exercise in ten HF (53 +/- 14 year, resting ejection fraction = 23 +/- 8%) and control subjects (51 +/- 18 year). We hypothesized that HF patients would have slower LLCT times during exercise when compared to control subjects. Each subject completed two identical incremental exercise tests during which LLCT was measured in one test and Q measured in the other. Q was measured using the open circuit C(2)H(2) washin technique and circulation time measured using an inert gas technique. In HF patients and control subjects, LLCT decreased and Q increased from rest (HF:LLCT = 53.6 +/- 8.2 s, Q = 4.3 +/- 1.1 l min(-1); control: LLCT = 55.3 +/- 10.9 s, Q = 4.5 +/- 0.5 l min(-1)) to peak exercise (HF:LLCT = 20.6 +/- 3.9* s, Q = 8.8 +/- 2.5* l min(-1); control:LLCT = 14.9 +/- 2.4 s, Q = 16.5 +/- 1.2 l min(-1); *P < 0.05 vs control). LLCT was significantly (P < 0.05) slower for the HF group when compared to the control group during submaximal exercise and at peak exercise. However, at a fixed Q the HF subjects had a faster LLCT. We hypothesize that the faster LLCT at a fixed Q for HF patients, may be the result of a more intensive peripheral vasoconstriction of non-active beds and a better redistribution of blood flow.
Collapse
Affiliation(s)
- Norman R Morris
- School of Physiotherapy and Exercise Science, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.
| | | | | | | |
Collapse
|
22
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Momen A, Cui J, McQuillan P, Sinoway LI. Local prostaglandin blockade attenuates muscle mechanoreflex-mediated renal vasoconstriction during muscle stretch in humans. Am J Physiol Heart Circ Physiol 2008; 294:H2184-90. [PMID: 18326807 DOI: 10.1152/ajpheart.00948.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise, muscle mechanoreflex-mediated sympathoexcitation evokes renal vasoconstriction. Animal studies suggest that prostaglandins generated within the contracting muscle sensitize muscle mechanoreflexes. Thus we hypothesized that local prostaglandin blockade would attenuate renal vasoconstriction during ischemic muscle stretch. Eleven healthy subjects performed static handgrip before and after local prostaglandin blockade (6 mg ketorolac tromethamine infused into the exercising forearm) via Bier block. Renal blood flow velocity (RBV; Duplex Ultrasound), mean arterial pressure (MAP; Finapres), and heart rate (HR; ECG) were obtained during handgrip, post-handgrip muscle ischemia (PHGMI) followed by PHGMI with passive forearm muscle stretch (PHGMI + stretch). Renal vascular resistance (RVR, calculated as MAP/RBV) was increased from baseline during all paradigms except during PHGMI + stretch after the ketorolac Bier block trial where RVR did not change from baseline. Before Bier block, RVR rose more during PHGMI + stretch than during PHGMI alone (P < .01). Similar results were found after a saline Bier block trial (Delta53 +/- 13% vs. Delta35 +/- 10%; P < 0.01). However, after ketorolac Bier block, RVR was not greater during PHGMI + stretch than during PHGMI alone [Delta39 +/- 8% vs. Delta40 +/- 12%; P = not significant (NS)]. HR and MAP responses were similar during PHGMI and PHGMI + stretch (P = NS). Passive muscle stretch during ischemia augments renal vasoconstriction, suggesting that ischemia sensitizes mechanically sensitive afferents. Inhibition of prostaglandin synthesis eliminates this mechanoreceptor sensitization-mediated constrictor responses. Thus mechanoreceptor sensitization in humans is linked to the production of prostaglandins.
Collapse
Affiliation(s)
- Afsana Momen
- Heart & Vascular Inst.itute, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
24
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
25
|
Koba S, Xing J, Sinoway LI, Li J. Sympathetic nerve responses to muscle contraction and stretch in ischemic heart failure. Am J Physiol Heart Circ Physiol 2007; 294:H311-21. [PMID: 17965282 DOI: 10.1152/ajpheart.00835.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
26
|
Abstract
A 4–5. (vég-)stádiumú és transzplantált vesebetegek izomereje, állóképessége, cardiovascularis kockázati tényezői, életminősége és a dialízishatásfoka is jelentősen javul a heti 3 × 30–60 perces, 45–60%-os intenzitású testmozgás során, amelyet többnyire a dialízis alatt végez a beteg. A korlátozó tényezők és ellenjavallatok figyelembevételével a vesebetegek többsége számára is kínálni kellene a rehabilitációs programokat.
Collapse
|
27
|
Kindig AE, Hayes SG, Kaufman MP. Blockade of purinergic 2 receptors attenuates the mechanoreceptor component of the exercise pressor reflex. Am J Physiol Heart Circ Physiol 2007; 293:H2995-3000. [PMID: 17766474 DOI: 10.1152/ajpheart.00743.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contraction, can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of this maneuver. During this period of time, group III mechanoreceptors often discharge explosively in response to the sudden tension developed at the onset of contraction. In decerebrated cats, we, therefore, examined the effect of PPADS (10 mg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to contraction and stretch. We found that PPADS significantly attenuated the renal sympathetic response to contraction, with the effect starting 2 s after its onset and continuing throughout its 60-s period. PPADS also significantly attenuated the renal sympathetic nerve response to stretch, but did so after a latency of 10 s. Our findings lead us to conclude that P2 receptors sensitize group III muscle afferents to contraction. The difference in the onset latency between the PPADS-induced attenuation of the renal sympathetic response to contraction and the renal sympathetic response to stretch is probably due to the sensitivities of different populations of group III afferents to ATP released during contraction and stretch.
Collapse
Affiliation(s)
- Angela E Kindig
- Division of Cardiovascular Medicine, University of California Davis, Davis, California, USA
| | | | | |
Collapse
|
28
|
Xing J, Koba S, Kehoe V, Gao Z, Rice K, King N, Sinoway L, Li J. Interstitial norepinephrine concentrations in skeletal muscle of ischemic heart failure. Am J Physiol Heart Circ Physiol 2007; 293:H1190-5. [PMID: 17449553 DOI: 10.1152/ajpheart.00231.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise, sympathetic nerve responses are accentuated in heart failure (HF), and this enhances norepinephrine (NE) release and evokes vasoconstriction. Two key pathophysiological responses could contribute to the greater NE release: 1) increased sympathetic nerve discharge and 2) increased NE in the neurovascular junction for a given level of sympathetic discharge. In this report, we focus on the second of these two general issues and test the following hypotheses: 1) in HF for a given level of sympathetic nerve stimulation, NE concentration in the interstitium (an index of neurovascular NE) would be greater, and 2) the greater interstitial NE concentration would be linked to reduced NE uptake. Studies were performed in rats 8–10 wk after induction of myocardial infarction (MI). Interstitial NE samples were collected from microdialysis probes inserted into the hindlimb muscle. Dialysate concentration of NE was determined by the HPLC method. First, interstitial NE concentration increased during electrical stimulation of the lumbar sympathetic nerves in eight control rats. An increase in interstitial NE concentration was significantly greater in 10 rats with severe MI. Additionally, an NE uptake-1 inhibitor (desipramine, 1 μM) was injected into the arterial blood supply of the muscle in six control and eight MI rats. Desipramine increased interstitial NE concentration by 24% in control and by only 3% ( P < 0.05 vs. control) in MI rats. In conclusion, given levels of electrical stimulation of the lumbar sympathetic nerve lead to higher interstitial NE concentration in HF. This effect is due, in part, to reduced NE uptake-1 in HF.
Collapse
MESH Headings
- Adrenergic Uptake Inhibitors/pharmacology
- Animals
- Cardiac Output, Low/etiology
- Cardiac Output, Low/metabolism
- Cardiac Output, Low/physiopathology
- Chromatography, High Pressure Liquid
- Coronary Vessels/surgery
- Desipramine/pharmacology
- Disease Models, Animal
- Electric Stimulation/methods
- Extracellular Fluid/metabolism
- Hindlimb
- Ligation
- Lumbosacral Plexus/metabolism
- Male
- Microdialysis
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/etiology
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocardial Ischemia/complications
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/physiopathology
- Norepinephrine/metabolism
- Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors
- Norepinephrine Plasma Membrane Transport Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Severity of Illness Index
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Sympathetic Nervous System/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Jihong Xing
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 Univ. Dr., Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gao Z, Xing J, Sinoway L, Li J. P2X receptor-mediated muscle pressor reflex in myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 292:H939-45. [PMID: 17012345 DOI: 10.1152/ajpheart.00911.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A previous report from this laboratory demonstrated that the ATP-sensitive P2X receptor-mediated muscle pressor reflex was augmented in rats with heart failure (HF). The purpose of this study was to better understand the underlying mechanisms for this greater response in HF rats. We examined 1) responsiveness of the P2X receptor to alpha,beta-methylene ATP (alpha,beta-me-ATP), a P2X receptor agonist, in control and HF rats induced by myocardial infarction (MI); 2) the relationship between P2X-induced blood pressure response and left ventricular (LV) function; and 3) the expression of P2X receptors in the dorsal root ganglion (DRG) of control rats and rats with HF. Eight to 14 wk after coronary artery ligation, the severity of the MI was determined by echocardiography. In the first group of the experiment, alpha,beta-me-ATP (0.0625, 0.125, 0.25, and 0.5 mM) was injected into the arterial blood supply of the hindlimb muscles to evoke a pressor response in 17 decerebrated rats (6 controls, 6 small MIs with infarcts of the LV between 10 and 35%, and 5 large MIs with infarcts >35%). The P2X agonist increased blood pressure, and the effect was significantly accentuated in large MI rats compared with small MI rats and control rats. A significant correlation was observed between alpha,beta-me-ATP-evoked pressor response and the LV fractional shortening, an index of LV function. In the second group of the experiment, immunocytochemistry was used to examine the immunoreactivity of P2X receptor in the DRG neurons of small diameter fibers in six healthy control rats, five small MI, and five large MI rats. The percentage of P2X immunostaining-positive neurons in the DRG was markedly greater in large MI rats (52% vs. 29% in controls and 34% in small MIs, P < 0.05). In conclusion, our findings demonstrate that 1) muscle afferent-mediated pressor response of P2X activation was exaggerated in MI animals, and the responsiveness was related to the degree of LV dysfunction; and 2) augmented reflex response was associated with upregulated P2X receptors in the DRG neurons of thin fiber afferent nerves following MI. The data suggest that P2X-mediated responsiveness in the processing of muscle afferent signals may have important implications for understanding cardiovascular responses to exercise in HF.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Blood Pressure
- Decerebrate State
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Ganglia, Spinal/metabolism
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Rate
- Male
- Muscle Contraction
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Neurons, Afferent/metabolism
- Purinergic P2 Receptor Agonists
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X3
- Reflex, Stretch
- Severity of Illness Index
- Sympathetic Nervous System/metabolism
- Sympathetic Nervous System/physiopathology
- Time Factors
- Ventricular Function, Left
Collapse
Affiliation(s)
- Zhaohui Gao
- Heart & Vascular Institute and Department of Medicine, Pennsyvania State College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsyvania 17033, USA
| | | | | | | |
Collapse
|
30
|
Li J, Gao Z, Kehoe V, Sinoway LI. Interstitial K+ concentration in active muscle after myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 292:H808-13. [PMID: 17012361 PMCID: PMC2291533 DOI: 10.1152/ajpheart.00295.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work demonstrated that Na(+)-K(+) pump activity within skeletal muscle is attenuated in myocardial infarction (MI). This may lead to enhanced interstitial K(+) concentration ([K(+)](o)) in the muscle. We tested the hypothesis that [K(+)](o) rises with muscle contraction and that, in rats with MI, the rate of rise in [K(+)](o) is greater than it is in control animals. Microdialysis probes were inserted in the skeletal muscle of six healthy control and six MI rats. The ends of the probes were then attached to the K(+) electrodes, and [K(+)](o) was continuously measured. Muscle contraction was induced by electrical stimulation of the sciatic nerves for 1 min. Stimulation at 1 and 3 Hz increased muscle [K(+)](o) by 14.2% and 44.7% in controls and by 22.9% and 62.8% in MI rats (P < 0.05 vs. controls), respectively. When ouabain, an inhibitor of Na(+)-K(+) pump, was added to the perfusate, muscle [K(+)](o) rose significantly. This effect of ouabain was significantly attenuated in MI animals. In conclusion, when compared with that in control animals, an increase of [K(+)](o) in exercising muscle is augmented in MI rats, likely due to an attenuation of Na(+)-K(+) pump activity.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
31
|
Middlekauff HR, Sinoway LI. Increased mechanoreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. J Appl Physiol (1985) 2006; 102:492-4; discussion 496. [PMID: 16990501 DOI: 10.1152/japplphysiol.00994.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Holly R Middlekauff
- David Geffen School of Medicine at UCLA, Department of Medicine (Cardiology), Los Angeles, California, USA.
| | | |
Collapse
|
32
|
Abstract
OBJECTIVE Mechanical support of the circulation is necessary when heart failure becomes refractory to medical support and is typically applied when organ dysfunction occurs as a result of hypoperfusion. However, in timing the intervention, it is important to apply mechanical support before multiple organ failure occurs. The objective of this work is to review the current strategies for mechanical circulatory support in patients with refractory cardiac failure. DESIGN A review of the use of mechanical circulatory support is presented for patients with refractory cardiac failure. PATIENTS Data are taken from human studies that were selected to best exemplify the results that may be obtained from various forms of mechanical circulatory support. INTERVENTIONS Commonly applied forms of mechanical support include mechanical ventilatory support, intraaortic balloon counterpulsation, and hemodialysis or ultrafiltration. If these measures fail, mechanical support of the circulation with ventricular assist devices is possible in specialized centers with expertise in the implantation and management of these devices. The decision to pursue mechanical circulatory support in the critically ill patient is based on the cause of acute decompensation, the potential reversibility of the condition, and the possibility for other treatments to improve the underlying condition or, in highly selected cases, heart transplantation. Newer forms of ventricular assistance that require less surgery are becoming available and may allow use in a broader range of critically ill patients. MAIN RESULTS There is a range of means to mechanically support the circulation in patients with advanced heart failure. CONCLUSIONS A variety of means to support the circulation have found application in the treatment of patients with refractory heart failure. More work is required to best identify populations who will benefit from the therapy and to refine the therapy to reduce associated risks.
Collapse
Affiliation(s)
- John P Boehmer
- Department of Medicine, The Pennsylvania State University College of Medicine, The Penn State Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
33
|
Koba S, Gao Z, Xing J, Sinoway LI, Li J. Sympathetic responses to exercise in myocardial infarction rats: a role of central command. Am J Physiol Heart Circ Physiol 2006; 291:H2735-42. [PMID: 16844916 DOI: 10.1152/ajpheart.00522.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In congestive heart failure (CHF), exaggerated sympathetic activation is observed during exercise, which elicits excess peripheral vasoconstriction. The mechanisms causing this abnormality are not fully understood. Central command is a central neural process that induces parallel activation of motor and cardiovascular systems. This study was undertaken to determine whether central command serves as a mechanism that contributes to the exaggerated sympathetic response to exercise in CHF. In decerebrated rats, renal and lumbar sympathetic nerve responses (RSNA and LSNA, respectively) to 30 s of fictive locomotion were examined. The fictive locomotion was induced by electrical stimulation of the mesencephalic locomotor region (MLR). The study was performed in control animals (fractional shortening > 40%) and animals with myocardial infarctions (MI; fractional shortening < 30%). With low stimulation of the MLR (current intensity = 20 microA), the sympathetic responses were not significantly different in the control (RSNA: +18 +/- 4%; LSNA: +3 +/- 2%) and MI rats (RSNA: +16 +/- 5%; LSNA: +8 +/- 3%). With intense stimulation of the MLR (50 microA), the responses were significantly greater in MI rats (RSNA: +127 +/- 15%; LSNA: +57 +/- 10%) than in the control rats (RSNA: +62 +/- 5%; LSNA: +21 +/- 6%). In this study, the data demonstrate that RSNA and LSNA responses to intense stimulation of the MLR are exaggerated in MI rats. We suggest that intense activation of central command may play a role in evoking exaggerated sympathetic activation and inducing excessive peripheral vasoconstriction during exercise in CHF.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
34
|
Hotta N, Sato K, Sun Z, Katayama K, Akima H, Kondo T, Ishida K. Ventilatory and circulatory responses at the onset of exercise after eccentric exercise. Eur J Appl Physiol 2006; 97:598-606. [PMID: 16767443 DOI: 10.1007/s00421-006-0212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to clarify whether delayed onset muscle soreness (DOMS) and muscle damage after eccentric exercise (ECC) could affect the ventilatory and circulatory responses at the onset of exercise, and whether those effects would continue after the disappearance of DOMS. Ten males participated in this study. We measured ventilatory and circulatory responses at the onset of exercise, for the first 20 s, during knee extension-relaxation voluntary exercise (VOL) and passive movement (PAS), which was achieved by the experimenter alternatively pulling ropes connected to the subjects' ankles for the same period and frequency as during VOL. VOL and PAS were performed before, 2 days after, and 7 days after ECC. The following results were found: (1) the gain of minute ventilation at the onset of VOL at 2 days after ECC was significantly larger than that of before ECC; (2) the gain of minute ventilation at 7 days after ECC during both VOL and PAS was also enhanced significantly as compared to that of before ECC; and (3) heart rate and blood pressure responses were unchanged throughout the experimental period. In conclusion, ventilatory response at the onset of exercise is augmented during DOMS and EIMD after ECC and the enhanced ventilatory response continued after the disappearance of DOMS. It is suggested that enhanced ventilatory response during exercise after ECC is attributed to at least the changes in neural factors and that the mechanisms inducing these augmented ventilatory responses should be different during the period after ECC.
Collapse
Affiliation(s)
- Norio Hotta
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Momen A, Handly B, Kunselman A, Leuenberger UA, Sinoway LI. Influence of sex and active muscle mass on renal vascular responses during static exercise. Am J Physiol Heart Circ Physiol 2006; 291:H121-6. [PMID: 16461376 PMCID: PMC2465208 DOI: 10.1152/ajpheart.00931.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise, reflex renal vasoconstriction helps maintain blood pressure and redistributes blood flow to the contracting muscle. Sex and muscle mass have been shown to influence certain cardiovascular responses to exercise. Whether sex and/or muscle mass influence renal vasoconstrictor responses to exercise is unknown. We studied healthy men (n = 10) and women (n = 10) matched for age and body mass index during handgrip (HG, small muscle mass) and quadriceps contraction (QC, large muscle mass) as beat-to-beat changes in renal blood flow velocity (RBV; duplex ultrasound), mean arterial pressure (MAP; Finapres), and heart rate (ECG) were monitored. Renal vascular resistance (RVR) index was calculated as MAP / RBV. Responses to HG vs. QC were compared in 13 subjects. We found that 1) RVR responses to short (15-s) bouts and fatiguing HG were similar in men and women (change in RVR during 15-s HG at 70% of maximum voluntary contraction = 23 +/- 4 and 31 +/- 4% in men and women, respectively, P = not significant); 2) post-HG circulatory responses were similar in men and women; and 3) HG and QC were similar during short (15-s) bouts (change in RVR during HG at 50% of maximum voluntary contraction = 19 +/- 3 and 18 +/- 5% for arm and leg, respectively, P = not significant). Our findings suggest that muscle reflex-mediated renal vasoconstriction is similar in men and women during static exercise. Moreover, muscle mass does not contribute to the magnitude of the reflex renal vasoconstrictor response seen with muscle contraction.
Collapse
Affiliation(s)
- Afsana Momen
- Department of Medicine/Division of Cardiology, University College of Medicine Milton S. Hershey Medical Center Hershey, PA 17033
| | - Brian Handly
- Department of Medicine/Division of Cardiology, University College of Medicine Milton S. Hershey Medical Center Hershey, PA 17033
| | - Allen Kunselman
- Department of Health Evaluation Sciences Pennsylvania State, University College of Medicine Milton S. Hershey Medical Center Hershey, PA 17033
| | - Urs A. Leuenberger
- Department of Medicine/Division of Cardiology, University College of Medicine Milton S. Hershey Medical Center Hershey, PA 17033
| | - Lawrence I. Sinoway
- Department of Medicine/Division of Cardiology, University College of Medicine Milton S. Hershey Medical Center Hershey, PA 17033
| |
Collapse
|
36
|
Koba S, Yoshida T, Hayashi N. Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats. Exp Physiol 2005; 91:111-9. [PMID: 16210449 DOI: 10.1113/expphysiol.2005.031666] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the role played by the exercise pressor reflex in sympathetic regulation of the renal circulation in rats. In mid-collicular decerebrate rats, mean arterial pressure (MAP), heart rate (HR), left renal cortical blood flow (RCBF) and left renal sympathetic nerve activity (RSNA) were recorded before and during 30 s of static contraction of the left triceps surae muscles evoked by electrical stimulation of the tibial nerve, which activates both metabo- and mechanosensitive muscle afferents, and during 30 s of passive stretch of the left Achilles tendon, which selectively activates mechanosensitive muscle afferents. Static contraction (n = 17, +344 +/- 34 g developed tension) significantly (P < 0.05) increased MAP (+14 +/- 3 mmHg), HR (+6 +/- 1 beats min(-1)) and RSNA (n = 11, +19 +/- 5%) and significantly decreased renal cortical vascular conductance (RCVC, n = 11, -11 +/- 2%). Passive stretch (n = 20, +378 +/- 11 g) also significantly increased MAP (+11 +/- 2 mmHg), HR (+7 +/- 2 beats min(-1)) and RSNA (n = 15, +14 +/- 4%) and significantly decreased RCVC (n = 11, -12 +/- 3%). RCBF showed no significant changes during static contraction or passive stretch. Renal denervation abolished the decrease in RCVC during contraction (n = 12) or stretch (n = 13). These data indicate that both the exercise pressor reflex and its mechanically sensitive component, the muscle mechanoreflex, induced renal cortical vasoconstriction through sympathetic activation in rats.
Collapse
Affiliation(s)
- Satoshi Koba
- Graduate School of Engineering Science, Osaka University, Japan
| | | | | |
Collapse
|
37
|
Hayashi N, Someya N, Endo MY, Miura A, Fukuba Y. Vasoconstriction and blood flow responses in visceral arteries to mental task in humans. Exp Physiol 2005; 91:215-20. [PMID: 16239251 DOI: 10.1113/expphysiol.2005.031971] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vascular responses to mental task in visceral arteries in humans have not been elucidated. We observed the responses in the renal (RA) and superior mesenteric (SMA) arteries to mental stress, using simultaneous pulsed and echo Doppler ultrasound flowmetry. Nine healthy females performed a computerized colour word conflict test (CWT) for 3 min. The mean blood velocity (MBV) in the right RA and SMA, heart rate (HR) and blood pressure were measured. The mean arterial pressure (MAP) was divided by the flow velocity to assess the vascular resistance (VR). The CWT significantly increased the MAP, HR and VR in both arteries from the first minute. During the CWT, flow in the RA decreased significantly at the third minute relative to baseline, while flow in the SMA showed no significant change from the first to the third minute. The degree of vasoconstriction in the RA bed was greater than that in the SMA bed. These results suggest that the mental task causes vasoconstriction in visceral arteries, and imply that it induces differential blood flow and vascular responses in visceral arteries.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Institute of Health Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.
| | | | | | | | | |
Collapse
|
38
|
Sinoway LI, Li J. A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol (1985) 2005; 99:5-22. [PMID: 16036901 DOI: 10.1152/japplphysiol.01405.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we examine the exercise pressor reflex in health and disease. The role of metabolic and mechanical stimulation of thin fiber muscle afferents is discussed. The role ATP and lactic acid play in stimulating and sensitizing these afferents is examined. The role played by purinergic receptors subdivision 2, subtype X, vanilloid receptor subtype 1, and acid-sensing ion channels in mediating the effects of ATP and H+ are discussed. Muscle reflex activation in heart failure is then examined. Data supporting the concept that the metaboreflex is attenuated and that the mechanoreflex is accentuated are presented. The role the muscle mechanoreflex plays in evoking renal vasoconstriction is also described.
Collapse
Affiliation(s)
- Lawrence I Sinoway
- Division of Cardiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
39
|
Abstract
We investigated the effect of disuse atrophy on the magnitude of the muscle mechanoreflex. The left leg of eight rats (6-7 wk, male) was put in a plaster cast for 1 wk. The rats were decerebrated at the midcollicular level. We recorded the pressor and cardioaccelerator responses to 30-s stretch of the calcaneal tendon, which selectively stimulated the muscle mechanosensitive receptors in the left atrophied and right control triceps surae muscles. Atrophied muscles showed significantly lower mass control muscles (1.0 +/- 0.1 vs. 1.4 +/- 0.1 g; P < 0.05). At the same stretch tension (229 +/- 20 g), the pressor response to stretch was significantly greater in the atrophied muscles than in the control muscles (13 +/- 3 vs. 4 +/- 2 mmHg, P < 0.05). The cardioaccelerator response was not significantly different (8 +/- 4 vs. 4 +/- 2 beats/min). Comparing responses at the same relative tension (57 +/- 6 vs. 51 +/- 8% of maximal tension), the pressor response was still significantly greater in the atrophied triceps surae than in the control (14 +/- 4 vs. 4 +/- 2 mmHg; P < 0.05). These results suggest that disuse atrophy increases the magnitude of muscle mechanoreflex.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Institute of Health Science, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|