1
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
2
|
Zhang J, Wang L, Kazmierczak K, Yun H, Szczesna-Cordary D, Kawai M. Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calcium-activated tension and stiffness and reduces myofilament Ca 2+ sensitivity. FEBS J 2021; 288:4596-4613. [PMID: 33548158 DOI: 10.1111/febs.15753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms associated with E22K mutation in myosin regulatory light chain (RLC), found to cause hypertrophic cardiomyopathy (HCM) in humans and mice. Specifically, we characterized the mechanical profiles of papillary muscle fibers from transgenic mice expressing human ventricular RLC wild-type (Tg-WT) or E22K mutation (Tg-E22K). Because the two mouse models expressed different amounts of transgene, the B6SJL mouse line (NTg) was used as an additional control. Mechanical experiments were carried out on Ca2+ - and ATP-activated fibers and in rigor. Sinusoidal analysis was performed to elucidate the effect of E22K on tension and stiffness during activation/rigor, tension-pCa, and myosin cross-bridge (CB) kinetics. We found significant reductions in active tension (by 54%) and stiffness (active by 40% and rigor by 54%). A decrease in the Ca2+ sensitivity of tension (by ∆pCa ~ 0.1) was observed in Tg-E22K compared with Tg-WT fibers. The apparent (=measured) rate constant of exponential process B (2πb: force generation step) was not affected by E22K, but the apparent rate constant of exponential process C (2πc: CB detachment step) was faster in Tg-E22K compared with Tg-WT fibers. Both 2πb and 2πc were smaller in NTg than in Tg-WT fibers, suggesting a kinetic difference between the human and mouse RLC. Our results of E22K-induced reduction in myofilament stiffness and tension suggest that the main effect of this mutation was to disturb the interaction of RLC with the myosin heavy chain and impose structural abnormalities in the lever arm of myosin CB. When placed in vivo, the E22K mutation is expected to result in reduced contractility and decreased cardiac output whereby leading to HCM. SUB-DISCIPLINE Bioenergetics. DATABASE The data that support the findings of this study are available from the corresponding authors upon reasonable request. ANIMAL PROTOCOL BK20150353 (Soochow University). RESEARCH GOVERNANCE School of Nursing: Hua-Gang Hu: seuboyh@163.com; Soochow University: Chen Ge chge@suda.edu.cn.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Hang Yun
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, IA, USA
| |
Collapse
|
3
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
4
|
The Molecular Mechanisms of Mutations in Actin and Myosin that Cause Inherited Myopathy. Int J Mol Sci 2018; 19:ijms19072020. [PMID: 29997361 PMCID: PMC6073311 DOI: 10.3390/ijms19072020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022] Open
Abstract
The discovery that mutations in myosin and actin genes, together with mutations in the other components of the muscle sarcomere, are responsible for a range of inherited muscle diseases (myopathies) has revolutionized the study of muscle, converting it from a subject of basic science to a relevant subject for clinical study and has been responsible for a great increase of interest in muscle studies. Myopathies are linked to mutations in five of the myosin heavy chain genes, three of the myosin light chain genes, and three of the actin genes. This review aims to determine to what extent we can explain disease phenotype from the mutant genotype. To optimise our chances of finding the right mechanism we must study a myopathy where there are a large number of different mutations that cause a common phenotype and so are likely to have a common mechanism: a corollary to this criterion is that if any mutation causes the disease phenotype but does not correspond to the proposed mechanism, then the whole mechanism is suspect. Using these criteria, we consider two cases where plausible genotype-phenotype mechanisms have been proposed: the actin “A-triad” and the myosin “mesa/IHD” models.
Collapse
|
5
|
Duggal D, Nagwekar J, Rich R, Huang W, Midde K, Fudala R, Das H, Gryczynski I, Szczesna-Cordary D, Borejdo J. Effect of a myosin regulatory light chain mutation K104E on actin-myosin interactions. Am J Physiol Heart Circ Physiol 2015; 308:H1248-57. [PMID: 25770245 DOI: 10.1152/ajpheart.00834.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is the most common cause of sudden cardiac death in young individuals. Molecular mechanisms underlying this disorder are largely unknown; this study aims at revealing how disruptions in actin-myosin interactions can play a role in this disorder. Cross-bridge (XB) kinetics and the degree of order were examined in contracting myofibrils from the ex vivo left ventricles of transgenic (Tg) mice expressing FHC regulatory light chain (RLC) mutation K104E. Because the degree of order and the kinetics are best studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs in an ex vivo ventricle was minimized to ∼20. Autofluorescence and photobleaching were minimized by labeling the myosin lever arm with a relatively long-lived red-emitting dye containing a chromophore system encapsulated in a cyclic macromolecule. Mutated XBs were significantly better ordered during steady-state contraction and during rigor, but the mutation had no effect on the degree of order in relaxed myofibrils. The K104E mutation increased the rate of XB binding to thin filaments and the rate of execution of the power stroke. The stopped-flow experiments revealed a significantly faster observed dissociation rate in Tg-K104E vs. Tg-wild-type (WT) myosin and a smaller second-order ATP-binding rate for the K104E compared with WT myosin. Collectively, our data indicate that the mutation-induced changes in the interaction of myosin with actin during the contraction-relaxation cycle may contribute to altered contractility and the development of FHC.
Collapse
Affiliation(s)
- D Duggal
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - J Nagwekar
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - R Rich
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - W Huang
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - K Midde
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - R Fudala
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - H Das
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and Department of Pharmacology and Neuroscience, Institute of Aging and Alzheimer's Disease Research, Institute of Cancer Research, Fort Worth, Texas
| | - I Gryczynski
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| | - D Szczesna-Cordary
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida; and
| | - J Borejdo
- Department of Cell Biology & Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
6
|
Farman GP, Muthu P, Kazmierczak K, Szczesna-Cordary D, Moore JR. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on β-myosin cross-bridge mechanics. J Appl Physiol (1985) 2014; 117:1471-7. [PMID: 25324513 DOI: 10.1152/japplphysiol.00798.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of β-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant β-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Gerrie P Farman
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | | | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| |
Collapse
|
7
|
Duggal D, Nagwekar J, Rich R, Midde K, Fudala R, Gryczynski I, Borejdo J. Phosphorylation of myosin regulatory light chain has minimal effect on kinetics and distribution of orientations of cross bridges of rabbit skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2013; 306:R222-33. [PMID: 24285364 DOI: 10.1152/ajpregu.00382.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Force production in muscle results from ATP-driven cyclic interactions of myosin with actin. A myosin cross bridge consists of a globular head domain, containing actin and ATP-binding sites, and a neck domain with the associated light chain 1 (LC1) and the regulatory light chain (RLC). The actin polymer serves as a "rail" over which myosin translates. Phosphorylation of the RLC is thought to play a significant role in the regulation of muscle relaxation by increasing the degree of skeletal cross-bridge disorder and increasing muscle ATPase activity. The effect of phosphorylation on skeletal cross-bridge kinetics and the distribution of orientations during steady-state contraction of rabbit muscle is investigated here. Because the kinetics and orientation of an assembly of cross bridges (XBs) can only be studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs was minimized to ∼20 by limiting the detection volume and concentration of fluorescent XBs. The autofluorescence and photobleaching from an ex vivo sample was reduced by choosing a dye that was excited in the red and observed in the far red. The interference from scattering was eliminated by gating the signal. These techniques decrease large uncertainties associated with determination of the effect of phosphorylation on a few molecules ex vivo with millisecond time resolution. In spite of the remaining uncertainties, we conclude that the state of phosphorylation of RLC had no effect on the rate of dissociation of cross bridges from thin filaments, on the rate of myosin head binding to thin filaments, and on the rate of power stroke. On the other hand, phosphorylation slightly increased the degree of disorder of active cross bridges.
Collapse
Affiliation(s)
- Divya Duggal
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
In the 20 years since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM), an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins, including the myosin essential and regulatory light chains and cardiac myosin binding protein (cMyBP)-C. However, despite the frequency with which myosin binding proteins, especially cMyBP-C, have been linked to inherited cardiomyopathies, the functional consequences of mutations in these proteins and the mechanisms by which they cause disease are still only partly understood. The purpose of this review is to summarize the known disease-causing mutations that affect the major thick filament binding proteins and to relate these mutations to protein function. Conclusions emphasize the impact that discovery of HCM-causing mutations has had on fueling insights into the basic biology of thick filament proteins and reinforce the idea that myosin binding proteins are dynamic regulators of the activation state of the thick filament that contribute to the speed and force of myosin-driven muscle contraction. Additional work is still needed to determine the mechanisms by which individual mutations induce hypertrophic phenotypes.
Collapse
Affiliation(s)
- Samantha P Harris
- Department of Neurobiology, Physiology, and Behavior College of Biological Sciences, University of California, One Shields Ave, Davis, CA 95616, USA.
| | | | | |
Collapse
|
9
|
Abstract
Neuregulin-1 (NRG-1), a ligand of receptor tyrosine kinases of the ErbB family, plays a critical role in cardiovascular development and maintenance of adult heart function. Results from cellular, animal, and clinical experiments have shown NRG-1 to be a promising drug candidate for restoring cardiac function after cardiac injury. Various mechanisms have been suggested to be involved in this process, such as improving sarcomeric structure or cell-cell adhesion, promoting proliferation and survival of cardiac myocytes, balancing Ca(2+) homeostasis, modulating inotropic effects, promoting angiogenesis, and preventing atherosclerosis. However, the contribution of these effects to the restoration of cardiac function remains to be estimated, and it may depend on the specific events that led to heart failure. Meanwhile, distinct and crossed signaling pathways downstream of NRG-1 may play a role in these underlying mechanisms, resulting in a complicated network of signaling mediating the function of NRG-1.
Collapse
Affiliation(s)
- Zhenggang Jiang
- Zensun (Shanghai) Sci & Tech Ltd, No. 68 Ju Li Road, Zhangjiang Hi-Tech Park, Pudong District, Shanghai, 201203, China
| | | |
Collapse
|
10
|
Abstract
Over the last two decades, a large number of mutations have been identified in sarcomeric proteins as a cause of hypertrophic, dilated or restrictive cardiomyopathy. Functional analyses of mutant proteins in vitro have revealed several important functional changes in sarcomeric proteins that might be primarily involved in the pathogenesis of each cardiomyopathy. Creation of transgenic or knock-in animals expressing mutant proteins in their hearts confirmed that these mutations in genes for sarcomeric proteins induced distinct types of cardiomyopathies and provided useful animal models to explore the molecular pathogenic mechanisms and potential therapeutics of cardiomyopathy in vivo. In this review, I discuss the functional consequences of mutations in different sarcomeric proteins found in hypertrophic, dilated, and restrictive cardiomyopathies in conjunction with their effects on cardiac structure and function in vivo and their possible molecular and cellular mechanisms, which underlie the pathogenesis of these inherited cardiomyopathies.
Collapse
Affiliation(s)
- Sachio Morimoto
- Laboratory of Clinical Pharmacology, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
| |
Collapse
|
11
|
Szczesna-Cordary D, Jones M, Moore JR, Watt J, Kerrick WGL, Xu Y, Wang Y, Wagg C, Lopaschuk GD. Myosin regulatory light chain E22K mutation results in decreased cardiac intracellular calcium and force transients. FASEB J 2007; 21:3974-85. [PMID: 17606808 DOI: 10.1096/fj.07-8630com] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glutamic acid to lysine mutation at the 22nd amino acid residue (E22K) in the human cardiac myosin regulatory light chain (RLC) gene causes familial hypertrophic cardiomyopathy (FHC) with a phenotype of midventricular obstruction and septal hypertrophy. Our recent histopathology results have shown that the hearts of transgenic E22K mice (Tg-E22K) resemble those of human patients, demonstrating enlarged interventricular septa and papillary muscles. In this study, we show no effect of the E22K mutation on the kinetics of mutated myosin in its ATP-powered interaction with fluorescently labeled single actin filaments compared to nontransgenic or transgenic wild-type (Tg-WT) control mice. Likewise, no change in cross-bridge dissociation rates (g(app)) was observed in freshly skinned papillary muscle fibers. In contrast, maximal force and ATPase were decreased approximately 20% in Tg-E22K skinned papillary muscle fibers and intracellular [Ca2+] and force transients were significantly decreased in intact papillary muscle fibers from Tg-E22K compared to Tg-WT mice. Moreover, energy metabolism measured in isolated working Tg-E22K mouse hearts perfused under conditions of physiologically relevant levels of metabolic demand was similar in Tg-E22K and control hearts before and after 20 min of no-flow ischemia. Our results suggest that the pathological response observed in the E22K myocardium might be triggered by mutation induced changes in the properties of the RLC Ca2+-Mg2+ site, the state of the Ca2+/Mg2+ occupancy and consequently the Ca2+ buffering ability of the RLC. By decreasing the affinity of the RLC for Ca2+, the E22K mutation most likely promotes a Mg2+-saturated RLC producing less force and ATPase than the Ca2+-saturated RLC of WT fibers. Decreased Ca2+ binding may also lead to faster Ca2+ dissociation kinetics in Tg-E22K intact fibers resulting in decreased duration and amplitude of [Ca2+] and force transients. These changes when placed in vivo would result in higher workloads and consequently cardiac hypertrophy.
Collapse
Affiliation(s)
- Danuta Szczesna-Cordary
- University of Miami School of Medicine, Department of Molecular & Cellular Pharmacology (R-189), P.O. Box 016189, 1600 NW 10 Ave, Rm. 6113, Miami, FL 33101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hernandez OM, Jones M, Guzman G, Szczesna-Cordary D. Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol 2006; 292:H1643-54. [PMID: 17142342 DOI: 10.1152/ajpheart.00931.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The essential light chain of myosin (ELC) is known to be important for structural stability of the alpha-helical lever arm domain of the myosin head, but its function in striated muscle contraction is poorly understood. Two ELC isoforms are expressed in fast skeletal muscle, a long isoform and its NH(2)-terminal approximately 40 amino acid shorter counterpart, whereas only the long ELC is observed in the heart. Biochemical and structural studies revealed that the NH(2)-terminus of the long ELC can make direct contacts with actin, but the effects of the ELC on the affinity of myosin for actin, ATPase, force, and the kinetics of force generating myosin cross-bridges are inconclusive. Myosin containing the long ELC has been shown to have slower cross-bridge kinetics than myosin with the short isoform. A difference was also reported among myosins with long isoforms. Increased shortening velocity was observed in atrial compared with ventricular muscle fibers. The common findings suggest that ELC provides the fine tuning of the myosin motor function, which is regulated in an isoform and tissue-dependent manner. The functional importance of the ELC is further implicated by the discovery of ELC mutations associated with Familial Hypertrophic Cardiomyopathy. The pathological phenotypes vary in severity, but more notably, almost all ELC mutations result in sudden cardiac death at a young age. This review summarizes the functional roles of striated muscle ELC in normal healthy muscle and in disease. Transgenic animal models and phenotypic characterization of ELC-mediated remodeling of the heart are also discussed.
Collapse
Affiliation(s)
- Olga M Hernandez
- Department of Molecular and Cellular Pharmacology, University of Miami, Leonard M. Miller School of Medicine, Miami Florida 33136, USA
| | | | | | | |
Collapse
|