1
|
Dunn RA, Fry LA, Sekiguchi Y, Benjamin CL, Manning CN, Huggins RA, Stearns RL, Casa DJ. Effect of Heat Acclimatization, Heat Acclimation, and Intermittent Heat Training on Maximal Oxygen Uptake. Sports Health 2025; 17:305-311. [PMID: 38708678 PMCID: PMC11569670 DOI: 10.1177/19417381241249470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Maximal oxygen uptake (VO2max) is an important determinant of endurance performance. Heat acclimation/acclimatization (HA/HAz) elicits improvements in endurance performance. Upon heat exposure reduction, intermittent heat training (IHT) may alleviate HA/HAz adaptation decay; however, corresponding VO2max responses are unknown. HYPOTHESIS VO2max is maintained after HAz/HA; IHT mitigates decrements in aerobic power after HAz/HA. STUDY DESIGN Interventional study. LEVEL OF EVIDENCE Level 3. METHODS A total of 27 male endurance runners (mean ± SD; age, 36 ± 12 years; body mass, 73.03 ± 8.97 kg; height, 178.81 ± 6.39 cm) completed VO2max testing at 5 timepoints; baseline, post-HAz, post-HA, and weeks 4 and 8 of IHT (IHT4, IHT8). After baseline testing, participants completed HAz, preceded by 5 days of HA involving exercise to induce hyperthermia for 60 minutes in the heat (ambient temperature, 39.13 ± 1.37°C; relative humidity, 51.08 ± 8.42%). Participants were assigned randomly to 1 of 3 IHT groups: once-weekly, twice-weekly, or no IHT. Differences in VO2max, velocity at VO2max (vVO2), and maximal heart rate (HRmax) at all 5 timepoints were analyzed using repeated-measure analyses of variance with Bonferroni corrections post hoc. RESULTS No significant VO2max or vVO2 differences were observed between baseline, post-HAz, or post-HA (P = 0.36 and P = 0.09, respectively). No significant group or time effects were identified for VO2max or vVO2 at post-HA, IHT4, and IHT8 (P = 0.67 and P = 0.21, respectively). Significant HRmax differences were observed between baseline and post-HA tests (P < 0.01). No significant group or time HRmax differences shown for post-HA, IHT4, and IHT8 (P = 0.59). CONCLUSION VO2max was not reduced among endurance runners after HA/HAz and IHT potentially due to participants' similar aerobic training status and high aerobic fitness levels. CLINICAL RELEVANCE HAz/HA and IHT maintain aerobic power in endurance runners, with HAz/HA procuring reductions in HRmax.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Lauren A. Fry
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas and Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Courteney L. Benjamin
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut and Department of Kinesiology, Samford University, Birmingham, Alabama
| | - Ciara N. Manning
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Robert A. Huggins
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Rebecca L. Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
2
|
Muhamad SN, Lim FL, Md Akim A, Karuppiah K, Mohd Shabri NSA, How V. Association between physiological responses and heat shock protein 70 (HSP70) expressions in the vulnerable populations of Kuala Lumpur. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1-11. [PMID: 38616509 DOI: 10.1080/09603123.2024.2340125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Continued heat exposure can cause physiological and cellular responses. This study investigated the association between physiological responses and heat shock protein 70 (HSP70) expressions in Kuala Lumpur's urban vulnerable population. We conducted a cross-sectional study involving 54 participants from four areas classified as experiencing moderate to strong heat stress. Physiological measurements included core body temperature, heart rate, and diastolic and systolic blood pressure. RT-qPCR and ELISA were also performed on blood samples to assess HSP70 gene and protein expressions. Despite indoor heat stress, participants maintained normal physiological parameters while there were significant indications of HSP70 expression at both the gene and protein levels. However, our study found no significant correlation (p > 0.05) between physiological responses and HSP70 expressions. This study shows no interaction between physiological responses and HSP70 expressions in the study population, revealing the complex mechanisms of indoor heat stress in vulnerable individuals.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fang Lee Lim
- Department of Environmental Engineering, Universiti Tunku Abdul Rahman, Faculty of Engineering and Green Technology, Kampar, Perak, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Dunn RA, Tinsley GM, Palmer TB, Benjamin CL, Sekiguchi Y. The Efficacy of Nutritional Strategies and Ergogenic Aids on Acute Responses and Chronic Adaptations to Exertional-Heat Exposure: A Narrative Review. Nutrients 2024; 16:3792. [PMID: 39599581 PMCID: PMC11597519 DOI: 10.3390/nu16223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Global warming is attributed to an increased frequency of high ambient temperatures and humidity, elevating the prevalence of high-temperature-related illness and death. Evidence over recent decades highlights that tailored nutritional strategies are essential to improve performance and optimise health during acute and chronic exertional-heat exposure. Therefore, the purpose of this review is to discuss the efficacy of various nutritional strategies and ergogenic aids on responses during and following acute and chronic exertional-heat exposure. An outline is provided surrounding the application of various nutritional practices (e.g., carbohydrate loading, fluid replacement strategies) and ergogenic aids (e.g., caffeine, creatine, nitrate, tyrosine) to improve physiological, cognitive, and recovery responses to acute exertional-heat exposure. Additionally, this review will evaluate if the magnitude and time course of chronic heat adaptations can be modified with tailored supplementation practices. This review highlights that there is robust evidence for the use of certain ergogenic aids and nutritional strategies to improve performance and health outcomes during exertional-heat exposure. However, equivocal findings across studies appear dependent on factors such as exercise testing modality, duration, and intensity; outcome measures in relation to the ergogenic aid's proposed mechanism of action; and sex-specific responses. Collectively, this review provides evidence-based recommendations and highlights areas for future research that have the potential to assist with prescribing specific nutritional strategies and ergogenic aids in populations frequently exercising in the heat. Future research is required to establish dose-, sex-, and exercise-modality-specific responses to various nutritional practices and ergogenic aid use for acute and chronic exertional-heat exposure.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Ty B. Palmer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| |
Collapse
|
4
|
Chaiyasing R, Jinagool P, Wipassa V, Kusolrat P, Aengwanich W. Impact of rising temperature on physiological and biochemical alterations that affect the viability of blood cells in American bullfrog crossbreeds. Heliyon 2024; 10:e32416. [PMID: 38933952 PMCID: PMC11200338 DOI: 10.1016/j.heliyon.2024.e32416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The study aimed to examine the impact of increasing environmental temperatures on physiological changes, oxidative stress, nitric oxide production, total antioxidant capacity, and blood cell viability in American bullfrog crossbreeds. Frogs and frog blood cells were exposed to temperature ranges of 25-33 °C and 25-37 °C, respectively. Physiological parameters (body temperature, pulse rate, ventilation rate, and oxygen saturation) and biochemical parameters (total antioxidant power, hydrogen peroxide, malondialdehyde, nitric oxide, and mitochondrial activity) were measured at every 2 °C increment. Results showed that body temperature rose with increased environmental temperature (P < 0.05). Pulse rates at 33 °C were higher than those at 25-31 °C (P < 0.05). Ventilation rates at 31 °C exceeded those at 25 °C and 27 °C (P < 0.05). Oxygen saturation levels remained stable at 25-33 °C (P > 0.05). Total antioxidant power at 25 °C was greater than at 27-37 °C (P < 0.05). Hydrogen peroxide levels at 27 °C were higher compared to 25 °C and 31-37 °C (P < 0.05). Malondialdehyde levels at 25-33 °C were higher than at 35 °C and 37 °C (P < 0.05). Nitric oxide levels at 37 °C were higher than at 25-33 °C (P < 0.05), and at 35 °C were higher than at 25-31 °C (P < 0.05). Blood cell viability at 25-31 °C was higher than at 37 °C (P < 0.05). These results suggest that at an environmental temperature of 33 °C, the frogs' body temperature approached 31 °C or higher, and were likely to be harmful to the frogs. Finally, the environmental temperature that caused frog blood cell death was 37 °C.
Collapse
Affiliation(s)
| | - Pailin Jinagool
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Vajara Wipassa
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Prayuth Kusolrat
- Faculty of Science and Technology, Nakhonratchasima Rajabhat University, Nakhonratchasima, 30000, Thailand
| | - Worapol Aengwanich
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| |
Collapse
|
5
|
Deshayes TA, Sodabi DGA, Dubord M, Gagnon D. Shifting focus: Time to look beyond the classic physiological adaptations associated with human heat acclimation. Exp Physiol 2024; 109:335-349. [PMID: 37885125 PMCID: PMC10988689 DOI: 10.1113/ep091207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Planet Earth is warming at an unprecedented rate and our future is now assured to be shaped by the consequences of more frequent hot days and extreme heat. Humans will need to adapt both behaviorally and physiologically to thrive in a hotter climate. From a physiological perspective, countless studies have shown that human heat acclimation increases thermoeffector output (i.e., sweating and skin blood flow) and lowers cardiovascular strain (i.e., heart rate) during heat stress. However, the mechanisms mediating these adaptations remain understudied. Furthermore, several possible benefits of heat acclimation for other systems and functions involved in maintaining health and performance during heat stress remain to be elucidated. This review summarizes recent advances in human heat acclimation, with emphasis on recent studies that (1) advanced our understanding of the mechanisms mediating improved thermoeffector output and (2) investigated adaptations that go beyond those classically associated with heat acclimation. We highlight that these studies have contributed to a better understanding of the integrated physiological responses underlying human heat acclimation while leaving key unanswered questions that will need to be addressed in the future.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Dèwanou Gilles Arnaud Sodabi
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Marianne Dubord
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| |
Collapse
|
6
|
Gagnon D, Barry H, Barhdadi A, Oussaid E, Mongrain I, Lemieux Perreault LP, Dubé MP. A dataset of proteomic changes during human heat stress and heat acclimation. Sci Data 2023; 10:877. [PMID: 38062080 PMCID: PMC10703874 DOI: 10.1038/s41597-023-02809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hotter climates have important impacts on human health and performance. Yet, the cellular and molecular responses involved in human heat stress and acclimation remain understudied. This dataset includes physiological measurements and the plasma concentration of 2,938 proteins collected from 10 healthy adults, before and during passive heat stress that was performed both prior to and after a 7-day heat acclimation protocol. Physiological measurements included body temperatures, sweat rate, cutaneous vascular conductance, blood pressure, and skin sympathetic nerve activity. The proteomic dataset was generated using the Olink Explore 3072 assay, enabling a high-multiplex antibody-based assessment of protein changes based on proximity extension assay technology. The data need to be interpreted in the context of the moderate level of body hyperthermia attained and the specific demographic of young, healthy adults. We have made this dataset publicly available to facilitate research into the cellular and molecular mechanisms involved in human heat stress and acclimation, crucial for addressing the health and performance challenges posed by rising temperatures.
Collapse
Affiliation(s)
- Daniel Gagnon
- Montreal Heart Institute, Montreal, QC, Canada.
- School of Kinesiology and Exercise Science, Université de Montréal, Montreal, QC, Canada.
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
| | - Hadiatou Barry
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Amina Barhdadi
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Essaid Oussaid
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Louis-Philippe Lemieux Perreault
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC, Canada.
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada.
- Department of Medicine and Department of Social and Preventive Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Matias AA, Albin IF, Glickman L, Califano PA, Faller JM, Layec G, Ives SJ. Impact of high intensity interval exercise with and without heat stress on cardiovascular and aerobic performance: a pilot study. BMC Sports Sci Med Rehabil 2023; 15:83. [PMID: 37434243 DOI: 10.1186/s13102-023-00682-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Heat stress during aerobic exercise training may offer an additional stimulus to improve cardiovascular function and performance in a cool-temperate environment. However, there is a paucity of information on the additive effects of high-intensity interval exercise (HIIE) and acute heat stress. We aimed to determine the effects of HIIE in combination with acute heat stress on cardiovascular function and exercise performance. METHODS Twelve active (peak O2 consumption [VO2peak]: 47 ± 8 ml·O2/min/kg) young adults were counterbalanced to six sessions of HIIE in hot (HIIE-H, 30 ± 1 °C, 50 ± 5% relative humidity [RH]) or temperate conditions (HIIE-T, 20 ± 2 °C, 15 ± 10% RH). Resting heart rate (HR), HR variability (HRV), central (cBP) and peripheral blood pressure (pBP), peripheral mean arterial pressure (pMAP), pulse wave velocity (PWV), VO2peak, and 5-km treadmill time-trial were measured pre- and post-training. RESULTS Resting HR and HRV were not significantly different between groups. However, expressed as percent change from baseline, cSBP (HIIE-T: + 0.9 ± 3.6 and HIIE-H: -6.6 ± 3.0%, p = 0.03) and pSBP (HIIE-T: -2.0 ± 4.6 and HIIE-H: -8.4 ± 4.7%, p = 0.04) were lower in the heat group. Post-training PWV was also significantly lower in the heat group (HIIE-T: + 0.4% and HIIE-H: -6.3%, p = 0.03). Time-trial performance improved with training when data from both groups were pooled, and estimated VO2peak was not significantly different between groups (HIIE-T: 0.7% and HIIE-H: 6.0%, p = 0.10, Cohen's d = 1.4). CONCLUSIONS The addition of acute heat stress to HIIE elicited additive adaptations in only cardiovascular function compared to HIIE alone in active young adults in temperate conditions, thus providing evidence for its effectiveness as a strategy to amplify exercise-induced cardiovascular adaptations.
Collapse
Affiliation(s)
- Alexs A Matias
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Isabelle F Albin
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Leah Glickman
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Peter A Califano
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Justin M Faller
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Stephen J Ives
- Department of Health and Human Physiological Sciences, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| |
Collapse
|
8
|
Ravanelli N, Barry H, Bain AR, Vachon L, Martel C, Gagnon D. Impact of passive heat stress and passive heat acclimation on circulating extracellular vesicles: An exploratory analysis. Exp Physiol 2023; 108:344-352. [PMID: 36621798 PMCID: PMC10103847 DOI: 10.1113/ep090823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does passive heat stress and subsequent heat acclimation affect the circulating concentration of extracellular vesicles? What is the main finding and its importance? Passive heat stress increased the circulating concentration of total and platelet extracellular vesicles. Seven days of hot water immersion did not modify the change in circulating concentrations of extracellular vesicles during passive heat stress. ABSTRACT This retrospective exploratory analysis aimed to improve our understanding of the effect of passive heat stress and subsequent heat acclimation on the circulating concentration of extracellular vesicles (EVs). Healthy young adults (four females and six males, 25 ± 4 years of age, 1.72 ± 0.08 m in height and weighing 71.6 ± 9.0 kg) were heated with a water-perfused suit before and after seven consecutive days of hot water immersion. Pre-acclimation, participants were heated until oesophageal temperature increased to ∼1.4°C above baseline values. Post-acclimation, participants were heated until oesophageal temperature reached the same absolute value as the pre-acclimation visit (∼38.2°C). Venous blood samples were obtained before and at the end of passive heating to quantify plasma concentrations of EVs from all cell types (CSFE+ ), all cell types except erythrocytes (CSFE+ MHCI+ ), platelets (CSFE+ MHCI+ CD41+ ), endothelial cells (CSFE+ MHCI+ CD62e+ ), red blood cells (CSFE+ CD235a+ ) and leucocytes (CSFE+ MHCI+ CD45+ ) via flow cytometry. Passive heat stress increased the concentration of CFSE+ EVs (46,150,000/ml [3,620,784, 88,679,216], P = 0.036), CFSE+ MHCI+ EVs (28,787,500/ml [9,851,127, 47,723,873], P = 0.021) and CSFE+ MHCI+ CD41+ EVs (28,343,500/ml [9,637,432, 47,049,568], P = 0.008). The concentration of CSFE+ MHCI+ CD62e+ EVs (94,230/ml [-55,099, 243,559], P = 0.187), CSFE+ CD235a+ EVs (-1,414/ml [-15,709, 12,882], P = 0.403) or CSFE+ MHCI+ CD45+ EVs (-192,915/ml [-690,166, 304,336], P = 0.828) did not differ during heat stress. The change in circulating EVs during passive heat stress did not differ after heat acclimation (thermal state × acclimation interactions, all P ≥ 0.180). These results demonstrate that passive heat stress increases the circulating concentration of total and platelet EVs and that passive heat acclimation does not alter this increase.
Collapse
Affiliation(s)
| | - Hadiatou Barry
- Montreal Heart InstituteMontrealQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontrealQuebecCanada
| | - Anthony R. Bain
- Department of KinesiologyUniversity of WindsorWindsorOntarioCanada
| | - Laurent Vachon
- Montreal Heart InstituteMontrealQuebecCanada
- Department of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Catherine Martel
- Montreal Heart InstituteMontrealQuebecCanada
- Department of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontrealQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontrealQuebecCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
9
|
Horowitz M, Hasin Y. Vascular compliance and left ventricular compliance cross talk: Implications for using long-term heat acclimation in cardiac care. Front Physiol 2023; 14:1074391. [PMID: 36960151 PMCID: PMC10027724 DOI: 10.3389/fphys.2023.1074391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
1) The first evidence of the beneficial impact of Long-Term-Heat-Acclimation (LTHA) on cardio-vascular compliance was the positive inotropic response and improved left ventricular (LV) compliance noted when isolated hearts from LTHA rats were studied. Human echo study demonstrates that passive HA affects the right ventricle and the atria as well. 2) There is a cross-talk between vascular and cardiac compliance. Vascular compliance per se is defined by central venous pressure-Blood volume relationship-Global Vascular Compliance (GVC). It is determined by the sum of the vascular compliance of the vessels in every organ in any physiological state, varies with LTHA and thus influences cardiac performance. LTHA improves endothelial function, increases NO (nitric oxide) production, in-turn stimulating alterations in ECM (extracellular matrix) via the TGF β1-SMAD pathway. 3) LTHA is associated with transformation from fast to slow myosin, heat acclimation ischemic/hypoxic cross-tolerance and alterations in the extracellular matrix. 4) A human translational study demonstrated improved LV compliance following bypass surgery in LTHA subjects compared to controls. 5) Diastolic dysfunction and the impact of comorbidities with vascular and non- vascular origins are major contributors to the syndrome of heart failure with preserved ejection function (HFPEF). Unfortunately, there is a paucity of treatment modalities that improve diastolic dysfunction. 6) In the current mini-review we suggest that LTHA may be beneficial to HFPEF patients by remodeling cardiac compliance and vascular response.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Michal Horowitz,
| | | |
Collapse
|
10
|
Travers G, González-Alonso J, Riding N, Nichols D, Shaw A, Périard JD. Exercise Heat Acclimation With Dehydration Does Not Affect Vascular and Cardiac Volumes or Systemic Hemodynamics During Endurance Exercise. Front Physiol 2021; 12:740121. [PMID: 34867447 PMCID: PMC8633441 DOI: 10.3389/fphys.2021.740121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Permissive dehydration during exercise heat acclimation (HA) may enhance hematological and cardiovascular adaptations and thus acute responses to prolonged exercise. However, the independent role of permissive dehydration on vascular and cardiac volumes, ventricular-arterial (VA) coupling and systemic hemodynamics has not been systematically investigated. Seven males completed two 10-day exercise HA interventions with controlled heart rate (HR) where euhydration was maintained or permissive dehydration (-2.9 ± 0.5% body mass) occurred. Two experimental trials were conducted before and after each HA intervention where euhydration was maintained (-0.5 ± 0.4%) or dehydration was induced (-3.6 ± 0.6%) via prescribed fluid intakes. Rectal (Tre) and skin temperatures, HR, blood (BV) and left ventricular (LV) volumes, and systemic hemodynamics were measured at rest and during bouts of semi-recumbent cycling (55% V̇O2peak) in 33°C at 20, 100, and 180 min. Throughout HA sweat rate (12 ± 9%) and power output (18 ± 7 W) increased (P < 0.05), whereas Tre was 38.4 ± 0.2°C during the 75 min of HR controlled exercise (P = 1.00). Neither HA intervention altered resting and euhydrated exercising Tre, BV, LV diastolic and systolic volumes, systemic hemodynamics, and VA coupling (P > 0.05). Furthermore, the thermal and cardiovascular strain during exercise with acute dehydration post-HA was not influenced by HA hydration strategy. Instead, elevations in Tre and HR and reductions in BV and cardiac output matched pre-HA levels (P > 0.05). These findings indicate that permissive dehydration during exercise HA with controlled HR and maintained thermal stimulus does not affect hematological or cardiovascular responses during acute endurance exercise under moderate heat stress with maintained euhydration or moderate dehydration.
Collapse
Affiliation(s)
- Gavin Travers
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Centre for Human Performance and Rehabilitation, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance and Rehabilitation, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nathan Riding
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - David Nichols
- Sport Development Centre, Loughborough University, Loughborough, United Kingdom
| | - Anthony Shaw
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
11
|
Barry H, Gendron P, Gagnon C, Bherer L, Gagnon D. Passive heat acclimation does not modulate processing speed and executive functions during cognitive tasks performed at fixed levels of thermal strain. Appl Physiol Nutr Metab 2021; 47:261-268. [PMID: 34710341 DOI: 10.1139/apnm-2021-0243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE This study evaluated if passive controlled hyperthermia heat acclimation (HA) modulates cognitive performance during passive heat stress. METHODS Eight healthy adults (25 ± 4 years) underwent 7 consecutive days of hot water immersion (core temperature ≥38.6°C) and a 7-day time-control period. On days 1 and 7 of HA, participants performed a digital Stroop test at baseline, when core temperature reached 38.6°C, and after 60 minutes at a core temperature ≥38.6°C to evaluate reaction time during tasks targeting processing speed (reading and counting) and executive functions (inhibition and switching). On days 1 and 7 of the time-control intervention, participants performed the Stroop test with equivalent amounts of time separating each task as for HA. RESULTS During day 1 of HA, reaction time was quicker during the reading (-44 ms [-71, -17], P<0.01) and counting (-39 ms [-76, -2], P=0.04) tasks when rectal temperature reached 38.6°C, but after a further 60 minutes of heat exposure, reaction time only remained quicker during the reading task (-56 ms [-83, -29], P<0.01). Changes in reaction time during heat exposure were unaffected by subsequent HA (interaction, all P≥0.09). CONCLUSION Seven days of HA does not modulate processing speed and executive functions during passive heat exposure. Novelty: - Whether heat acclimation (HA) to improve cognitive performance during heat exposure remains understudied. - We tested the hypothesis that HA modulates reaction time during cognitive tasks performed at matched levels of thermal strain. - Despite classical signs of HA, reaction time during heat exposure was unaffected by HA.
Collapse
Affiliation(s)
- Hadiatou Barry
- Montreal Heart Institute, 25465, Montreal, Quebec, Canada.,Universite de Montreal, 5622, Montreal, Quebec, Canada;
| | - Philippe Gendron
- Universite du Quebec a Trois-Rivieres, 14847, DSAP, Trois-Rivieres, Quebec, Canada;
| | | | - Louis Bherer
- Montreal Heart Institute, 25465, Montreal, Quebec, Canada.,Universite de Montreal, 5622, Montreal, Quebec, Canada;
| | - Daniel Gagnon
- Montreal Heart Institute, 25465, Montreal, Canada.,Université de Montréal, 5622, Montreal, Canada;
| |
Collapse
|
12
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|