1
|
Puhl SL, Kazakov A, Müller A, Fries P, Wagner DR, Böhm M, Maack C, Devaux Y. Adenosine A1 receptor activation attenuates cardiac hypertrophy and fibrosis in response to α1 -adrenoceptor stimulation in vivo. Br J Pharmacol 2015; 173:88-102. [PMID: 26406609 DOI: 10.1111/bph.13339] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenosine has been proposed to exert anti-hypertrophic effects. However, the precise regulation and the role of the different adenosine receptor subtypes in the heart and their effects on hypertrophic signalling are largely unknown. We aimed to characterize expression and function of adenosine A1 receptors following hypertrophic stimulation in vitro and in vivo. EXPERIMENTAL APPROACH Pro-hypertrophic stimuli and adenosine A1 receptor stimulation of neonatal rat cardiomyocytes and male C57/Bl6 mice, sc. drug administration, real-time PCR, (3) [H]-leucine-incorporation assay, immunostaining, tissue staining, Western blots, gravimetric analyses and echocardiography were applied in this study. KEY RESULTS In neonatal rat cardiomyocyte cultures, phenylephrine, but not angiotensin II or insulin-like growth factor 1 (IGF1), up-regulated adenosine A1 receptors concentration-dependently. The hypertrophic phenotype (cardiomyocyte size, sarcomeric organization, total protein synthesis, c-fos expression) mediated by phenylephrine (10 μM), but not that by angiotensinII (1 μM) or IGF1 (20 ng·mL(-1) ), was counteracted by the selective A1 receptor agonist, N6-cyclopentyladenosine. In C57/BL6 mice, continuous N6-cyclopentyladenosine infusion (2 mg·kg(-1) ·day(-1) ; 21 days) blunted phenylephrine (120 mg·kg(-1) ·day(-1) ; 21 days) induced hypertrophy (heart weight, cardiomyocyte size and fetal genes), fibrosis, MMP 2 up-regulation and generation of oxidative stress - all hallmarks of maladaptive remodelling. Concurrently, phenylephrine administration increased expression of adenosine A1 receptors. CONCLUSIONS AND IMPLICATIONS We have presented evidence for a negative feedback mechanism attenuating pathological myocardial hypertrophy following α1 -adrenoceptor stimulation. Our results suggest adenosine A1 receptors as potential targets for therapeutic strategies to prevent transition from compensated myocardial hypertrophy to decompensated heart failure due to chronic cardiac pressure overload.
Collapse
Affiliation(s)
- S-L Puhl
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - A Kazakov
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - A Müller
- Klinik for interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - P Fries
- Klinik for interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - D R Wagner
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - M Böhm
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - C Maack
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Y Devaux
- Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
2
|
Del Ry S, Moscato S, Bianchi F, Morales MA, Dolfi A, Burchielli S, Cabiati M, Mattii L. Altered expression of connexin 43 and related molecular partners in a pig model of left ventricular dysfunction with and without dipyrydamole therapy. Pharmacol Res 2015; 95-96:92-101. [PMID: 25836920 DOI: 10.1016/j.phrs.2015.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
Gap junctions (GJ) mediate electrical coupling between cardiac myocytes, allowing the spreading of the electrical wave responsible for synchronized contraction. GJ function can be regulated by modulation of connexon densities on membranes, connexin (Cx) phosphorylation, trafficking and degradation. Recent studies have shown that adenosine (A) involves Cx43 turnover in A1 receptor-dependent manner, and dipyridamole increases GJ coupling and amount of Cx43 in endothelial cells. As the abnormalities in GJ organization and regulation have been described in diseased myocardium, the aim of the present study was to assess the regional expression of molecules involved in GJ regulation in a model of left ventricular dysfunction (LVD). For this purpose the distribution and quantitative expression of Cx43, its phosphorylated form pS368-Cx43, PKC phosphorylated substrates, RhoA and A receptors, were investigated in experimental models of right ventricular-pacing induced LVD, undergoing concomitant dipyridamole therapy or placebo, and compared with those obtained in the myocardium from sham-operated minipigs. Results demonstrate that an altered pattern of factors involved in Cx43-made GJ regulation is present in myocardium of a dysfunctioning left ventricle. Furthermore, dipyridamole treatment, which shows a mild protective role on left ventricular function, seems to act through modulating the expression and activation of these factors as confirmed by in vitro experiments on cardiomyoblastic cell line H9c2 cells.
Collapse
Affiliation(s)
- Silvia Del Ry
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Stefania Moscato
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | - Francesco Bianchi
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | - Maria Aurora Morales
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Amelio Dolfi
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy
| | | | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Laboratory Biochemistry and Molecular Biology, CNR, Italy Clinical Physiology, Pisa, Italy
| | - Letizia Mattii
- Department of Clinic and Experimental Medicine, Section Histology, University of Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11:1-46. [PMID: 25527177 PMCID: PMC4336308 DOI: 10.1007/s11302-014-9436-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/09/2023] Open
Abstract
This review is a historical account about purinergic signalling in the heart, for readers to see how ideas and understanding have changed as new experimental results were published. Initially, the focus is on the nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory nerves, as well as in intracardiac neurons. Control of the heart by centers in the brain and vagal cardiovascular reflexes involving purines are also discussed. The actions of adenine nucleotides and nucleosides on cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac fibroblasts, and coronary blood vessels are described. Cardiac release and degradation of ATP are also described. Finally, the involvement of purinergic signalling and its therapeutic potential in cardiac pathophysiology is reviewed, including acute and chronic heart failure, ischemia, infarction, arrhythmias, cardiomyopathy, syncope, hypertrophy, coronary artery disease, angina, diabetic cardiomyopathy, as well as heart transplantation and coronary bypass grafts.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
4
|
Ahmad S, Elsherbiny NM, Bhatia K, Elsherbini AM, Fulzele S, Liou GI. Inhibition of adenosine kinase attenuates inflammation and neurotoxicity in traumatic optic neuropathy. J Neuroimmunol 2014; 277:96-104. [PMID: 25457840 DOI: 10.1016/j.jneuroim.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/03/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Traumatic optic neuropathy (TON) is associated with apoptosis of retinal ganglion cells. Local productions of reactive oxygen species and inflammatory mediators from activated microglial cells have been hypothesized to underlie apoptotic processes. We previously demonstrated that the anti-inflammatory effect of adenosine, through A2A receptor activation had profound protective influence against retinal injury in traumatic optic neuropathy. This protective effect is limited due to rapid cellular re-uptake of adenosine by equilibrative nucleotside transporter-1 (ENT1) or break down by adenosine kinase (AK), the key enzyme in adenosine clearance pathway. Further, the use of adenosine receptors agonists are limited by systemic side effects. Therefore, we seek to investigate the potential role of amplifying the endogenous ambient level of adenosine by pharmacological inhibition of AK. We tested our hypothesis by comparing TON-induced retinal injury in mice with and without ABT-702 treatment, a selective AK inhibitor (AKI). The retinal-protective effect of ABT-702 was demonstrated by significant reduction of Iba-1, ENT1, TNF-α, IL-6, and iNOS/nNOS protein or mRNA expression in TON as revealed by western blot and real time PCR. TON-induced superoxide anion generation and nitrotyrosine expression were reduced in ABT-702 treated mice retinal sections as determined by immunoflourescence. In addition, ABT-702 attenuated p-ERK1/2 and p-P38 activation in LPS induced activated mouse microglia cells. The results of the present investigation suggested that ABT-702 had a protective role against marked TON-induced retinal inflammation and damage by augmenting the endogenous therapeutic effects of site- and event-specific accumulation of extracellular adenosine.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA; Departmet of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia.
| | - Nehal M Elsherbiny
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kanchan Bhatia
- Departmet of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmed M Elsherbini
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Georgia Regents University (GRU), Augusta, GA, USA
| | - Gregory I Liou
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA.
| |
Collapse
|
5
|
Gan XT, Taniai S, Zhao G, Huang CX, Velenosi TJ, Xue J, Urquhart BL, Karmazyn M. CD73-TNAP crosstalk regulates the hypertrophic response and cardiomyocyte calcification due to α1 adrenoceptor activation. Mol Cell Biochem 2014; 394:237-46. [PMID: 24894822 DOI: 10.1007/s11010-014-2100-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Cluster of differentiation 73 (CD73) is an ecto-5' nucleotidase which catalyzes the conversion of AMP to adenosine. One of the many functions of adenosine is to suppress the activity of tissue nonspecific alkaline phosphatase (TNAP), an enzyme important in regulating intracellular calcification. Since myocardial calcification is associated with various cardiac disease states, we studied the individual roles and crosstalk between CD73 and TNAP in regulating myocyte responses to the α1 adrenoceptor agonist phenylephrine in terms of calcification and hypertrophy. Cultured neonatal rat cardiomyocytes were treated with 10 µM phenylephrine for 24 h in the absence or presence of the stable adenosine analog 2-chloro-adenosine, the TNAP inhibitor tetramisole or the CD73 inhibitor α,β-methylene ADP. Phenylephrine produced marked hypertrophy as evidenced by significant increases in myocyte surface area and ANP gene expression, as well as calcification determined by Alizarin Red S staining. These responses were associated with reduced CD73 gene and protein expression and CD73 activity. Conversely, TNAP expression and activity were significantly increased although both were suppressed by 2-chloro-adenosine. CD73 inhibition alone significantly reduced myocyte-derived adenosine levels by >50 %, and directly induced hypertrophy and calcification in the absence of phenylephrine. These responses and those to phenylephrine were abrogated by TNAP inhibition. We conclude that TNAP contributes to the hypertrophic effect of phenylephrine, as well as its ability to produce cardiomyocyte calcification. These responses are minimized by CD73-dependent endogenously produced adenosine.
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
7
|
Antiadrenergic effect of adenosine involves connexin 43 turn-over in H9c2 cells. Eur J Pharmacol 2013; 715:56-61. [DOI: 10.1016/j.ejphar.2013.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 01/06/2023]
|
8
|
Elsherbiny NM, Ahmad S, Naime M, Elsherbini AM, Fulzele S, Al-Gayyar MM, Eissa LA, El-Shishtawy MM, Liou GI. ABT-702, an adenosine kinase inhibitor, attenuates inflammation in diabetic retinopathy. Life Sci 2013; 93:78-88. [PMID: 23770229 DOI: 10.1016/j.lfs.2013.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022]
Abstract
AIMS This study was undertaken to determine the effect of an adenosine kinase inhibitor (AKI) in diabetic retinopathy (DR). We have shown previously that adenosine signaling via A2A receptors (A2AAR) is involved in retinal protection from diabetes-induced inflammation. Here we demonstrate that AKI-enhanced adenosine signaling provides protection from DR in mice. MAIN METHODS We targeted AK, the key enzyme in adenosine metabolism, using a treatment regime with the selective AKI, ABT-702 (1.5mg/kg intraperitoneally twice a week) commencing at the beginning of streptozotocin-induced diabetes at the age of eight weeks. This treatment, previously demonstrated to increase free adenosine levels in vivo, was maintained until the age of 16 weeks. Retinal inflammation was evaluated using Western blot, Real-Time PCR and immuno-staining analyses. Role of A2AAR signaling in the anti-inflammation effect of ABT-702 was analyzed in Amadori-glycated-albumin (AGA)-treated microglial cells. KEY FINDINGS At 16 weeks, when diabetic mice exhibit significant signs of retinal inflammation including up-regulation of oxidative/nitrosative stress, A2AAR, ENT1, Iba1, TNF-α, ICAM1, retinal cell death, and down-regulation of AK, the ABT-702 treated group showed lower signs of inflammation compared to control animals receiving the vehicle. The involvement of adenosine signaling in the anti-inflammation effect of ABT-702 was supported by the TNF-α release blocking effect of A2AAR antagonist in AGA-treated microglial cells. SIGNIFICANCE These results suggest a role for AK in regulating adenosine receptor signaling in the retina. Inhibition of AK potentially amplifies the therapeutic effects of site- and event-specific accumulation of extracellular adenosine, which is of highly translational impact.
Collapse
|
9
|
Zeidan A, Siam A, Al Kaabba A, Mohammad M, Khatib S. The ability of phosphodiesterase-5 inhibitors sildenafil and ordonafil to reverse L-NAME induced cardiac hypertrophy in the rabbit: possible role of calcineurin and p38. Can J Physiol Pharmacol 2012; 90:1247-55. [PMID: 22913522 DOI: 10.1139/y2012-098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phosphodiesterase 5 inhibitors (PDE-5Is) can suppress and (or) reverse pressure overload induced myocardial hypertrophy. This study investigated the suppressive effect of 2 PDE-5Is (sildenafil and ordonafil) on N-nitro-l-arginine methyl ester (L-NAME)-induced cardiac hypertrophy in rabbit heart, and examined their possible mechanism of action. L-NAME increased left ventricular thickness to 6.1± 0.18 mm from 4.6 ± 0.13 mm (p < 0.05), which regressed after treatment with either sildenafil or ordonafil to 5.1 ± 0.1 mm and 4.8 ± 0.2 mm, respectively (p < 0.05). Phenylephrine increased neonatal rat ventricular myocyte cell surface area to 131% ± 3% of the control value, which was associated with significant increment in ERK1/2 to 143% ± 5% of the control value (p < 0.05). Ordonafil and sildenafil decreased cell surface area to 95% ± 3% and 90% ± 1% of the control value, respectively. Both drugs decreased ERK1/2 to 88% ± 4% of the control value. Calcineurin activity was significantly decreased after 1 h of treatment with 0.1 mg·L(-1) ordonafil (1.15 ± 0.05, p < 0.05). For sildenafil (0.1 mg·L(-1)), calcineurin activity significantly decreased only after 24 h of incubation (22%). Also p38 activation was attenuated by ordonafil and sildenafil (0.1 mg·L(-1)). It is suggested that both drugs have the ability to reverse L-NAME-induced cardiac hypertrophy and suppress phenylphrine-induced myocyte hypertrophy, and that these effects may be mediated through the attenuation of calcineurin and its downstream signaling pathways (p38) in neonatal rat ventricular myocytes.
Collapse
Affiliation(s)
- Asad Zeidan
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Lebanon
| | | | | | | | | |
Collapse
|
10
|
Liao Y, Lin L, Lu D, Fu Y, Bin J, Xu D, Kitakaze M. Activation of adenosine A1 receptor attenuates tumor necrosis factor-α induced hypertrophy of cardiomyocytes. Biomed Pharmacother 2011; 65:491-5. [PMID: 21993001 DOI: 10.1016/j.biopha.2011.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor (TNF)-α has been implicated in the pathogenesis of cardiac hypertrophy, while the activation of adenosine receptors has been shown to exert antihypertrophic effect on the heart. However, it remains unknown whether adenosine can attenuate hypertrophy induced by TNF-α. This study was aimed to address this issue using transverse aortic constriction (TAC) mouse models and cultured neonatal rat cardiomyocytes. Plasma TNF-α was significantly increased in hypertrophied hearts (Sham vs TAC group: 46.8±2.5 vs 67.0±1.6pg/ml, P=0.021), while myocardial TNF-α level, expression of TNF receptor 1 and TNF-α-converting enzyme were positively correlated with heart weight to body weight ratio (r=0.930, 0.676 and 0.891, respectively, P<0.01-0.05). Myocardial adenosine levels were increased significantly at 4 weeks (Sham vs TAC group: 16.15±1.59 vs 86.54±13.49 nmol/mg protein, P<0.01) and decreased from 6 to 11 weeks after TAC. N6-cyclopentyladenosine, an adenosine A1 receptor agonist inhibited protein synthesis of cardiomyocytes induced by TNF-α in a dose-dependent manner. This antihypertrophic effect could not be mimicked by agonists of A2a, A2b and A3 adenosine receptors. These findings indicate that TNF-α signal system plays important role in the process of cardiac hypertrophy, and activation of adenosine receptor 1 inhibits hypertrophy of cardiomyocytes induced by TNF-α.
Collapse
MESH Headings
- ADAM Proteins/biosynthesis
- ADAM Proteins/genetics
- ADAM17 Protein
- Adenosine/administration & dosage
- Adenosine/analogs & derivatives
- Adenosine/analysis
- Adenosine/blood
- Adenosine/pharmacology
- Adenosine/physiology
- Adenosine A1 Receptor Agonists/administration & dosage
- Adenosine A1 Receptor Agonists/pharmacology
- Animals
- Animals, Newborn
- Aorta
- Aortic Valve Stenosis/complications
- Cardiomyopathy, Hypertrophic/drug therapy
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/prevention & control
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Ligation
- Lung/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Size
- Rats
- Receptor, Adenosine A1/physiology
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/analysis
- Tumor Necrosis Factor-alpha/physiology
- Tumor Necrosis Factor-alpha/toxicity
Collapse
Affiliation(s)
- Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ. Adenosine kinase regulation of cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 2011; 300:H1722-32. [PMID: 21335462 DOI: 10.1152/ajpheart.00684.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k.
Collapse
Affiliation(s)
- John T Fassett
- Univ. of Minnesota, Mayo Mail Code 508, 401 Delaware St. SE, Minneapolis, MN55455 .
| | | | | | | | | | | | | |
Collapse
|
12
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|