1
|
Hathorn B, Haykowsky MJ, Almandoz J, Pandey A, Sarma S, Hearon CM, Babb TG, Balmain BN, Fu Q, Zaha VG, Levine BD, Nelson MD. Insights Into the Role of Obesity in Heart Failure With Preserved Ejection Fraction Pathophysiology and Management. Can J Cardiol 2025:S0828-282X(25)00199-0. [PMID: 40122162 DOI: 10.1016/j.cjca.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
Heart failure (HF) is a significant global health issue, categorized by left ventricular ejection fraction, being either reduced (HFrEF < 0.40) or preserved (HFpEF > 0.50), or in the middle of this range. Although the overall incidence of HF remains stable, HFpEF cases are increasing, representing about 50% of all HF cases. Outcomes for HFpEF are similar to those for HFrEF, leading to substantial health-care resource use. Despite extensive research over the past 2 decades, the prognosis and mortality rates for HFpEF remain high. A key feature of HFpEF is exercise intolerance, characterized by severe exertional dyspnea and fatigue, which significantly impacts quality of life. The underlying mechanisms of exercise intolerance are not fully understood due to the complex pathophysiology and multisystem involvement. Obesity is a common comorbidity in HFpEF, especially in North America, leading to worsening symptoms, hemodynamics, and mortality rates. Increased adiposity leads to inflammation, hypertension, dyslipidemia, and insulin resistance, and impairing cardiac, vascular, pulmonary, and skeletal muscle function. Therefore, managing obesity is crucial in treating HFpEF. In this review we explore the pathophysiologic mechanisms of HFpEF, emphasizing obesity's role, and we discuss current management strategies while identifying areas needing further research.
Collapse
Affiliation(s)
- Brandon Hathorn
- Applied Physiology and Advanced Imaging Laboratory, University of Texas at Arlington, Arlington, Texas, USA
| | - Mark J Haykowsky
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime Almandoz
- Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Satyam Sarma
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bryce N Balmain
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Qi Fu
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Clinical Imaging Research Center, University of Texas at Arlington, Arlington, Texas, USA
| | - Benjamin D Levine
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, University of Texas at Arlington, Arlington, Texas, USA; Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Clinical Imaging Research Center, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
2
|
Iannetta D, Laginestra FG, Wray DW, Amann M. Dissecting the exercise pressor reflex in heart failure: A multi-step failure. Auton Neurosci 2025; 259:103269. [PMID: 40117701 DOI: 10.1016/j.autneu.2025.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
The contribution of neural feedback originating from exercising limb muscles to the cardiovascular response to exercise was first recognized nearly 100 years ago. Today, it is well established that this influence is initiated by the activation of group III and IV sensory neurons with terminal endings located within contracting skeletal muscle. During exercise, these sensory neurons project feedback related to intramuscular mechanical and metabolic perturbations to medullary neural circuits which reflexively evoke decreases in parasympathetic and increases in sympathetic nervous system activity with the purpose of optimizing central and peripheral hemodynamics. Considerable evidence from animal and human studies suggests that the function of this regulatory control system, known as the exercise pressor reflex (EPR), is abnormal in heart failure and exaggerates sympatho-excitation which impairs the hemodynamic response to exercise and contributes to the functional limitations characterizing these patients. This review briefly introduces the key determinants of EPR control in health and covers the impact of heart failure on the integrity of each of its components and overall function. These include the sensitivity of group III/IV muscle afferents, afferent signal transmission in the spinal cord, and the central integration and processing of sensory feedback within the brainstem. Importantly, although most data relevant for this review come from studies in HFrEF, the limited HFpEF-specific insights are included when available. While arguably not part of the EPR, we also discuss the impact of heart failure on the exercise-induced increase of intramuscular stimuli of group III/IV muscle afferents and end-organ responsiveness to sympathetic/neurochemical stimulation.
Collapse
Affiliation(s)
- Danilo Iannetta
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States of America; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | | | - D Walter Wray
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America; Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, United States of America
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States of America; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America; Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, United States of America
| |
Collapse
|
3
|
Salah HM, Gupta R, Hicks AJ, Mahmood K, Haglund NA, Bindra AS, Antoine SM, Garcia R, Yehya A, Yaranov DM, Patel PP, Feliberti JP, Rollins AT, Rao VN, Letarte L, Raje V, Alam AH, McCANN P, Raval NY, Howard B, Fudim M. Baroreflex Function in Cardiovascular Disease. J Card Fail 2025; 31:117-126. [PMID: 39341547 DOI: 10.1016/j.cardfail.2024.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 10/01/2024]
Abstract
The baroreflex system is involved in modulating several physiological functions of the cardiovascular system and can modulate cardiac output, blood pressure, and cardiac electrophysiology directly and indirectly. In addition, it is involved in regulating neurohormonal pathways involved in the cardiovascular function, such as the renin-angiotensin-aldosterone system and vasopressin release. Baroreflex dysfunction is characterized by sympathetic overactivation and parasympathetic withdrawal and is associated with several cardiovascular diseases, such as hypertension, heart failure, and coronary artery disease. Targeting the baroreflex system via invasive (eg, baroreflex activation therapy and endovascular baroreceptor amplification) and noninvasive approaches (eg, slow breathing exercises and exercise training) has emerged as a novel pathway to manage cardiovascular diseases. Studies examining the long-term safety and efficacy of such interventions in various cardiovascular diseases are needed.
Collapse
Affiliation(s)
- Husam M Salah
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina
| | - Richa Gupta
- MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Advanced Heart Failure Program, Georgetown University School of Medicine, Washington, DC
| | - Albert J Hicks
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kiran Mahmood
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas A Haglund
- Minneapolis Heart Institute, Allina Health at Abbott Northwestern Hospital, Minneapolis, Minnesota
| | | | - Steve M Antoine
- Michael E DeBakey Veterans Affairs Hospital and Baylor College of Medicine, Center for Cardiovascular Disease Prevention, Houston, Texas
| | - Rachel Garcia
- Atrium Health Sanger Heart & Vascular Institute, Charlotte, North Carolina
| | - Amin Yehya
- Sentara Advanced Heart Failure Center, Norfolk, Virginia
| | - Dmitry M Yaranov
- Department of Cardiology, Baptist Memorial Hospital, Memphis, Tennessee
| | | | - Jason P Feliberti
- University of South Florida Heart and Vascular Institute, Transplant Cardiology, Tampa, Florida
| | - Allman T Rollins
- Advanced Heart Failure, Inova Schar Heart and Vascular, Falls Church, Virginia
| | - Vishal N Rao
- Dvision of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | | | - Vikram Raje
- Georgia Heart Institute, Gainesville, Georgia
| | - Amit H Alam
- New York University Grossman School of Medicine, New York University Langone Health, New York, New York
| | | | | | - Brian Howard
- Wellstar Cardiovascular Medicine, Marietta, Georgia
| | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
4
|
Chang JWH, Ramchandra R. The sympathetic nervous system in heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:209-218. [PMID: 39438394 DOI: 10.1007/s10741-024-10456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The sympathetic nervous system (SNS) is a major mediator of cardiovascular physiology during exercise in healthy people. However, its role in heart failure with preserved ejection fraction (HFpEF), where exercise intolerance is a cardinal symptom, has remained relatively unexplored. The present review summarizes and critically explores the currently limited data on SNS changes in HFpEF patients with a particular emphasis on caveats of the data and the implications for its subsequent interpretation. While direct measurements of SNS activity in HFpEF patients is scarce, modest increases in resting levels of muscle sympathetic nerve activity are apparent, although this may be due to the co-morbidities associated with the syndrome rather than HFpEF per se. In addition, despite some evidence for dysfunctional sympathetic signaling in the heart, there is no clear evidence for elevated cardiac sympathetic nerve activity. The lack of a compelling prognostic benefit with use of β-blockers in HFpEF patients also suggests a lack of sympathetic hyperactivity to the heart. Similarly, while renal and splanchnic denervation studies have been performed in HFpEF patients, there is no concrete evidence that the sympathetic nerves innervating these organs exhibit heightened activity. Taken together, the totality of data suggests limited evidence for elevated sympathetic nerve activity in HFpEF and that any SNS perturbations that do occur are not universal to all HFpEF patients. Finally, how the SNS responds during exertion in HFpEF patients remains unknown and requires urgent investigation.
Collapse
Affiliation(s)
- Joshua W-H Chang
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Rohit Ramchandra
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Iacovelli JJ, Alpenglow JK, Ratchford SM, Craig JC, Simmons JM, Zhao J, Reese V, Bunsawat K, Ma CL, Ryan JJ, Wray DW. Statin therapy improves locomotor muscle microvascular reactivity in patients with heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H859-H865. [PMID: 39120468 PMCID: PMC11482264 DOI: 10.1152/ajpheart.00427.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Peripheral microvascular dysfunction has been documented in patients with heart failure with preserved ejection fraction (HFpEF), which may be related to elevated levels of inflammation and oxidative stress. Unfortunately, few strategies have been identified to effectively ameliorate this disease-related derangement. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10 mg daily) on lower limb microvascular reactivity, functional capacity, and biomarkers of inflammation and oxidative stress in patients with HFpEF (statin, n = 8, 76 ± 6 yr; placebo, n = 8, 68 ± 9 yr). The passive limb movement (PLM)-induced hyperemic response and 6-min walk test (6MWT) distance were evaluated to assess ambulatory muscle microvascular function and functional capacity, respectively. Circulating biomarkers were also measured to assess the contribution of changes in inflammation and redox balance to these outcomes. The total hyperemic response to PLM, assessed as leg blood flow area under the curve (LBFAUC), increased following the statin intervention (pre, 60 ± 68 mL; post, 164 ± 90 mL; P < 0.01), whereas these variables were unchanged in the placebo group (P = 0.99). There were no significant differences in 6MWT distance following statin or placebo intervention. Malondialdehyde (MDA), a marker of lipid peroxidation, was significantly reduced following the statin intervention (pre, 0.68 ± 0.10; post, 0.51 ± 0.11; P < 0.01) while other circulating biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve locomotor muscle microvascular reactivity in patients with HFpEF, which may be due, in part, to a diminution in oxidative stress.NEW & NOTEWORTHY This was the first study to investigate the impact of statin administration on locomotor muscle microvascular function in patients with HFpEF. In support of our hypothesis, the total hyperemic response to PLM, assessed as leg blood flow area under the curve, increased, and malondialdehyde, a marker of oxidative damage, was reduced following the statin intervention. Together, these data provide new evidence for the efficacy of statin administration to improve locomotor muscle microvascular reactivity in patients with HFpEF, which may be due, in part, to reduced oxidative stress.
Collapse
Affiliation(s)
- Jarred J Iacovelli
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy K Alpenglow
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jonah M Simmons
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Jia Zhao
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Van Reese
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Internal Medicine, Salt Lake City, Utah, United States
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Salt Lake City, Utah, United States
| | - D Walter Wray
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Boyes NG, Khan MR, Luchkanych AMS, Marshall RA, Bare I, Haddad T, Abdalla S, Al-Azem IAM, Morse CJ, Zhai A, Haddad H, Marciniuk DD, Olver TD, Tomczak CR. Elevated sympathetic-mediated vasoconstriction at rest but intact functional sympatholysis during exercise in heart failure with reduced ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H45-H55. [PMID: 38700474 DOI: 10.1152/ajpheart.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) have exaggerated sympathoexcitation and impaired peripheral vascular conductance. Evidence demonstrating consequent impaired functional sympatholysis is limited in HFrEF. This study aimed to determine the magnitude of reduced limb vascular conductance during sympathoexcitation and whether functional sympatholysis would abolish such reductions in HFrEF. Twenty patients with HFrEF and 22 age-matched controls performed the cold pressor test (CPT) [left foot 2-min in -0.5 (1)°C water] alone and with right handgrip exercise (EX + CPT). Right forearm vascular conductance (FVC), forearm blood flow (FBF), and mean arterial pressure (MAP) were measured. Patients with HFrEF had greater decreases in %ΔFVC and %ΔFBF during CPT (both P < 0.0001) but not EX + CPT (P = 0.449, P = 0.199) compared with controls, respectively. %ΔFVC and %ΔFBF decreased from CPT to EX + CPT in patients with HFrEF (both P < 0.0001) and controls (P = 0.018, P = 0.015), respectively. MAP increased during CPT and EX + CPT in both groups (all P < 0.0001). MAP was greater in controls than in patients with HFrEF during EX + CPT (P = 0.025) but not CPT (P = 0.209). In conclusion, acute sympathoexcitation caused exaggerated peripheral vasoconstriction and reduced peripheral blood flow in patients with HFrEF. Handgrip exercise abolished sympathoexcitatory-mediated peripheral vasoconstriction and normalized peripheral blood flow in patients with HFrEF. These novel data reveal intact functional sympatholysis in the upper limb and suggest that exercise-mediated, local control of blood flow is preserved when cardiac limitations that are cardinal to HFrEF are evaded with dynamic handgrip exercise.NEW & NOTEWORTHY Patients with HFrEF demonstrate impaired peripheral blood flow regulation, evidenced by heightened peripheral vasoconstriction that reduces limb blood flow in response to physiological sympathoexcitation (cold pressor test). Despite evidence of exaggerated sympathetic vasoconstriction, patients with HFrEF demonstrate a normal hyperemic response to moderate-intensity handgrip exercise. Most importantly, acute, simultaneous handgrip exercise restores normal limb vasomotor control and vascular conductance during acute sympathoexcitation (cold pressor test), suggesting intact functional sympatholysis in patients with HFrEF.
Collapse
Affiliation(s)
- Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M Rafique Khan
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Adam M S Luchkanych
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Rory A Marshall
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Idris Bare
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Haddad
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sherif Abdalla
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Cameron J Morse
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Alexander Zhai
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Haissam Haddad
- Division of Cardiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darcy D Marciniuk
- Division of Respirology, College of Medicine, University of Saskstchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Alpenglow JK, Bunsawat K, Francisco MA, Broxterman RM, Craig JC, Iacovelli JJ, Weavil JC, Harrison JD, Morgan DE, Silverton NA, Reese VR, Ma CL, Ryan JJ, Wray DW. α-Adrenergic regulation of skeletal muscle blood flow during exercise in patients with heart failure with preserved ejection fraction. J Physiol 2024; 602:3401-3422. [PMID: 38843407 PMCID: PMC11250769 DOI: 10.1113/jp285526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/26/2024] [Indexed: 07/17/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been characterized by lower blood flow to exercising limbs and lower peak oxygen utilization (V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), possibly associated with disease-related changes in sympathetic (α-adrenergic) signaling. Thus, in seven patients with HFpEF (70 ± 6 years, 3 female/4 male) and seven controls (CON) (66 ± 3 years, 3 female/4 male), we examined changes (%Δ) in leg blood flow (LBF, Doppler ultrasound) and legV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ to intra-arterial infusion of phentolamine (PHEN, α-adrenergic antagonist) or phenylephrine (PE, α1-adrenergic agonist) at rest and during single-leg knee-extension exercise (0, 5 and 10 W). At rest, the PHEN-induced increase in LBF was not different between groups, but PE-induced reductions in LBF were lower in HFpEF (-16% ± 4% vs. -26% ± 5%, HFpEF vs. CON; P < 0.05). During exercise, the PHEN-induced increase in LBF was greater in HFpEF at 10 W (16% ± 8% vs. 8% ± 5%; P < 0.05). PHEN increased legV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ in HFpEF (10% ± 3%, 11% ± 6%, 15% ± 7% at 0, 5 and 10 W; P < 0.05) but not in controls (-1% ± 9%, -4% ± 2%, -1% ± 5%; P = 0.24). The 'magnitude of sympatholysis' (PE-induced %Δ LBF at rest - PE-induced %Δ LBF during exercise) was lower in patients with HFpEF (-6% ± 4%, -6% ± 6%, -7% ± 5% vs. -13% ± 6%, -17% ± 5%, -20% ± 5% at 0, 5 and 10 W; P < 0.05) and was positively related to LBF, leg oxygen delivery, legV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and the PHEN-induced increase in LBF (P < 0.05). Together, these data indicate that excessive α-adrenergic vasoconstriction restrains blood flow and limitsV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ of the exercising leg in patients with HFpEF, and is related to impaired functional sympatholysis in this patient group. KEY POINTS: Sympathetic (α-adrenergic)-mediated vasoconstriction is exaggerated during exercise in patients with heart failure with preserved ejection fraction (HFpEF), which may contribute to limitations of blood flow, oxygen delivery and oxygen utilization in the exercising muscle. The ability to adequately attenuate α1-adrenergic vasoconstriction (i.e. functional sympatholysis) within the vasculature of the exercising muscle is impaired in patients with HFpEF. These observations extend our current understanding of HFpEF pathophysiology by implicating excessive α-adrenergic restraint and impaired functional sympatholysis as important contributors to disease-related impairments in exercising muscle blood flow and oxygen utilization in these patients.
Collapse
Affiliation(s)
- Jeremy K. Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, SLC, UT
| | - Kanokwan Bunsawat
- Department of Internal Medicine, Division of Geriatrics, University of Utah, SLC, UT
- Geriatric Research, Education, and Clinical Center, VAMC, SLC, UT
| | | | - Ryan M. Broxterman
- Department of Nutrition and Integrative Physiology, University of Utah, SLC, UT
- Department of Internal Medicine, Division of Geriatrics, University of Utah, SLC, UT
- Geriatric Research, Education, and Clinical Center, VAMC, SLC, UT
| | - Jesse C. Craig
- Department of Internal Medicine, Division of Geriatrics, University of Utah, SLC, UT
- Geriatric Research, Education, and Clinical Center, VAMC, SLC, UT
| | - Jarred J. Iacovelli
- Department of Nutrition and Integrative Physiology, University of Utah, SLC, UT
| | - Joshua C. Weavil
- Geriatric Research, Education, and Clinical Center, VAMC, SLC, UT
| | | | | | - Natalie A. Silverton
- Geriatric Research, Education, and Clinical Center, VAMC, SLC, UT
- Department of Anesthesiology, University of Utah, SLC, UT
| | - Van R. Reese
- Department of Internal Medicine, Division of Geriatrics, University of Utah, SLC, UT
| | - Christy L. Ma
- Department of Internal Medicine, Division of Cardiovascular Medicine, SLC, UT
| | - John J. Ryan
- Department of Internal Medicine, Division of Cardiovascular Medicine, SLC, UT
| | - D. Walter Wray
- Department of Nutrition and Integrative Physiology, University of Utah, SLC, UT
- Department of Internal Medicine, Division of Geriatrics, University of Utah, SLC, UT
- Geriatric Research, Education, and Clinical Center, VAMC, SLC, UT
| |
Collapse
|
8
|
Iacovelli JJ, Alpenglow JK, Ratchford SM, Craig JC, Simmons JM, Zhao J, Reese V, Bunsawat K, Ma CL, Ryan JJ, Wray DW. Statin administration improves vascular function in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2024; 136:877-888. [PMID: 38385181 PMCID: PMC11286274 DOI: 10.1152/japplphysiol.00775.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by impaired vascular endothelial function that may be improved by hydroxy-methylglutaryl-CoA (HMG-CoA) reductase enzyme inhibition. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10 mg daily) on peripheral vascular function and biomarkers of inflammation and oxidative stress in 16 patients with HFpEF [Statin: n = 8, 74 ± 6 yr, ejection fraction (EF) 52-73%; Placebo: n = 8, 67 ± 9 yr, EF 56-72%]. Flow-mediated dilation (FMD) and sustained-stimulus FMD (SS-FMD) during handgrip (HG) exercise, reactive hyperemia (RH), and blood flow during HG exercise were evaluated to assess conduit vessel function, microvascular function, and exercising muscle blood flow, respectively. FMD improved following statin administration (pre, 3.33 ± 2.13%; post, 5.23 ± 1.35%; P < 0.01), but was unchanged in the placebo group. Likewise, SS-FMD, quantified using the slope of changes in brachial artery diameter in response to increases in shear rate, improved following statin administration (pre: 5.31e-5 ± 3.85e-5 mm/s-1; post: 8.54e-5 ± 4.98e-5 mm/s-1; P = 0.03), with no change in the placebo group. Reactive hyperemia and exercise hyperemia responses were unchanged in both statin and placebo groups. Statin administration decreased markers of lipid peroxidation (malondialdehyde, MDA) (pre, 0.652 ± 0.095; post, 0.501 ± 0.094; P = 0.04), whereas other inflammatory and oxidative stress biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular function or exercising limb blood flow, in patients with HFpEF, which may be due in part to reductions in oxidative stress.NEW & NOTEWORTHY This is the first study to investigate the impact of statin administration on vascular function and exercise hyperemia in patients with heart failure with preserved ejection fraction (HFpEF). In support of our hypothesis, both conventional flow-mediated dilation (FMD) testing and brachial artery vasodilation in response to sustained elevations in shear rate during handgrip exercise increased significantly in patients with HFpEF following statin administration, beneficial effects that were accompanied by a decrease in biomarkers of oxidative damage. However, contrary to our hypothesis, reactive hyperemia and exercise hyperemia were unchanged in patients with HFpEF following statin therapy. These data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular reactivity or exercising muscle blood flow in patients with HFpEF, which may be due in part to reductions in oxidative stress.
Collapse
Affiliation(s)
- Jarred J Iacovelli
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jonah M Simmons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Jia Zhao
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Van Reese
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - D Walter Wray
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Bunsawat K, Nelson MD, Hearon CM, Wray DW. Exercise intolerance in heart failure with preserved ejection fraction: Causes, consequences and the journey towards a cure. Exp Physiol 2024; 109:502-512. [PMID: 38063130 PMCID: PMC10984794 DOI: 10.1113/ep090674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for over 50% of all heart failure cases nationwide and continues to rise in its prevalence. The complex, multi-organ involvement of the HFpEF clinical syndrome requires clinicians and investigators to adopt an integrative approach that considers the contribution of both cardiac and non-cardiac function to HFpEF pathophysiology. Thus, this symposium review outlines the key points from presentations covering the contributions of disease-related changes in cardiac function, arterial stiffness, peripheral vascular function, and oxygen delivery and utilization to exercise tolerance in patients with HFpEF. While many aspects of HFpEF pathophysiology remain poorly understood, there is accumulating evidence for a decline in vascular health in this patient group that may be remediable through pharmacological and lifestyle interventions and could improve outcomes and clinical status in this ever-growing patient population.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Michael D. Nelson
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Christopher M. Hearon
- Department of Applied Clinical ResearchThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - D. Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
10
|
Sagmeister P, Rosch S, Fengler K, Kresoja KP, Gori T, Thiele H, Lurz P, Burkhoff D, Rommel KP. Running on empty: Factors underpinning impaired cardiac output reserve in heart failure with preserved ejection fraction. Exp Physiol 2024. [PMID: 38421268 DOI: 10.1113/ep091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is frequently attributed etiologically to an underlying left ventricular (LV) diastolic dysfunction, although its pathophysiology is far more complex and can exhibit significant variations among patients. This review endeavours to systematically unravel the pathophysiological heterogeneity by illustrating diverse mechanisms leading to an impaired cardiac output reserve, a central and prevalent haemodynamic abnormality in HFpEF patients. Drawing on previously published findings from our research group, we propose a pathophysiology-guided phenotyping based on the presence of: (1) LV diastolic dysfunction, (2) LV systolic pathologies, (3) arterial stiffness, (4) atrial impairment, (5) right ventricular dysfunction, (6) tricuspid valve regurgitation, and (7) chronotopic incompetence. Tailored to each specific phenotype, we explore various potential treatment options such as antifibrotic medication, diuretics, renal denervation and more. Our conclusion underscores the pivotal role of cardiac output reserve as a key haemodynamic abnormality in HFpEF, emphasizing that by phenotyping patients according to its individual pathomechanisms, insights into personalized therapeutic approaches can be gleaned.
Collapse
Affiliation(s)
- Paula Sagmeister
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Sebastian Rosch
- Department of Cardiology, University Hospital Mainz, Mainz, Germany
| | - Karl Fengler
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | | | - Tommaso Gori
- Department of Cardiology, University Hospital Mainz, Mainz, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Philipp Lurz
- Department of Cardiology, University Hospital Mainz, Mainz, Germany
| | | | - Karl-Philipp Rommel
- Department of Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
- Cardiovascular Research Foundation, New York, New York, USA
| |
Collapse
|
11
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
12
|
Roberts LM, Moreira-Bouchard JD. Impaired functional sympatholysis during exercise in HFpEF: toward understanding exercise intolerance. Am J Physiol Heart Circ Physiol 2023; 325:H892-H895. [PMID: 37682235 DOI: 10.1152/ajpheart.00552.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Lisa M Roberts
- Q.U.E.E.R. Lab, Programs in Human Physiology, Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts, United States
| | - Jesse D Moreira-Bouchard
- Q.U.E.E.R. Lab, Programs in Human Physiology, Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts, United States
| |
Collapse
|