1
|
Garcia AM, Pietra AE, Turner ME, Da Silva JP, Baybayon-Grandgeorge AN, Sparagna GC, Jeffrey DA, Stauffer BL, Sucharov CC, Miyamoto SD. Impact of Serum Circulating Factors and PDE5 Inhibitor Therapy on Cardiomyocyte Metabolism in Single Ventricle Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646497. [PMID: 40235974 PMCID: PMC11996461 DOI: 10.1101/2025.03.31.646497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background While operative and perioperative care continues to improve for single ventricle congenital heart disease (SV), long-term morbidities and mortality remain high. Importantly, phosphodiesterase-5 inhibitor therapies (PDE5i) are increasingly used, however, little is known regarding the direct myocardial effects of PDE5i therapy in the SV population. Objectives Our group has previously demonstrated that the failing SV myocardium is characterized by increased PDE5 activity and impaired mitochondrial bioenergetics. Here we sought to determine whether serum circulating factors contribute to pathological metabolic remodeling in SV, and whether PDE5i therapy abrogates these changes. Methods Using an established in vitro model whereby primary cardiomyocytes are treated with patient sera +/- PDE5i, we assessed the impact of circulating factors on cardiomyocyte metabolism. Mass spectrometry-based lipidomics and metabolomics were performed to identify phospholipid and metabolite changes. Mitochondrial bioenergetics were assessed using the Seahorse Bioanalyzer and a stable isotope based mitochondrial enzyme activity assay. Relative mitochondrial copy number was quantified using RT-qPCR. Results Our data suggest that serum circulating factors contribute to fundamental changes in cardiomyocyte bioenergetics, including impaired mitochondrial function associated with decreased cardiolipin and other phospholipid species, increased reactive oxygen species (ROS) generation, and altered metabolite milieu. Treatment with PDE5i therapy was sufficient to abrogate a number of these metabolic changes, including a rescue of phosphatidylglycerol levels, a reduction in ROS, improved energy production, and normalization of several key metabolic intermediates. Conclusions Together, these data suggest PDE5i therapy has direct cardiomyocyte effects and contributes to beneficial cardiomyocyte metabolic remodeling in SV failure.
Collapse
|
2
|
Pires Da Silva J, Casa de Vito M, Miyano C, Sucharov CC. Mitochondrial Dysfunction in Congenital Heart Disease. J Cardiovasc Dev Dis 2025; 12:42. [PMID: 39997476 PMCID: PMC11856204 DOI: 10.3390/jcdd12020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Mitochondria play a crucial role in multiple cellular processes such as energy metabolism, generation of reactive oxygen species, excitation-contraction coupling, cell survival and death. Dysfunction of mitochondria contributes to the development of cancer; neuromuscular, cardiovascular/congenital heart disease; and metabolic diseases, including diabetes. Mitochondrial dysfunction can result in excessive reactive oxygen species, a decrease in energy production, mitophagy and apoptosis. All these processes are known to be dysregulated in cardiovascular diseases. The focus of this review is to summarize our current knowledge of mitochondrial dysfunction, including mitophagy and apoptosis, in pediatric congenital heart disease due to maternal diabetes or due to structural cardiac defects, with a focus on single-ventricle congenital heart disease. We also discuss recent mitochondria-targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.P.D.S.); (M.C.d.V.); (C.M.)
| |
Collapse
|
3
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Amdani S, Conway J, George K, Martinez HR, Asante-Korang A, Goldberg CS, Davies RR, Miyamoto SD, Hsu DT. Evaluation and Management of Chronic Heart Failure in Children and Adolescents With Congenital Heart Disease: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e33-e50. [PMID: 38808502 DOI: 10.1161/cir.0000000000001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
With continued medical and surgical advancements, most children and adolescents with congenital heart disease are expected to survive to adulthood. Chronic heart failure is increasingly being recognized as a major contributor to ongoing morbidity and mortality in this population as it ages, and treatment strategies to prevent and treat heart failure in the pediatric population are needed. In addition to primary myocardial dysfunction, anatomical and pathophysiological abnormalities specific to various congenital heart disease lesions contribute to the development of heart failure and affect potential strategies commonly used to treat adult patients with heart failure. This scientific statement highlights the significant knowledge gaps in understanding the epidemiology, pathophysiology, staging, and outcomes of chronic heart failure in children and adolescents with congenital heart disease not amenable to catheter-based or surgical interventions. Efforts to harmonize the definitions, staging, follow-up, and approach to heart failure in children with congenital heart disease are critical to enable the conduct of rigorous scientific studies to advance our understanding of the actual burden of heart failure in this population and to allow the development of evidence-based heart failure therapies that can improve outcomes for this high-risk cohort.
Collapse
|
5
|
Huang Y, Ji W, Zhang J, Huang Z, Ding A, Bai H, Peng B, Huang K, Du W, Zhao T, Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 176:28-50. [PMID: 38280553 DOI: 10.1016/j.actbio.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Treatment effectiveness and biosafety are critical for disease therapy. Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. To further enhance the precision of disease treatment, future research should shift focus from targeted cellular delivery to targeted subcellular delivery. As the cellular powerhouses, mitochondria play an indispensable role in cell growth and regulation and are closely involved in many diseases (e.g., cancer, cardiovascular, and neurodegenerative diseases). The double-layer membrane wrapped on the surface of mitochondria not only maintains the stability of their internal environment but also plays a crucial role in fundamental biological processes, such as energy generation, metabolite transport, and information communication. A growing body of evidence suggests that various diseases are tightly related to mitochondrial imbalance. Moreover, mitochondria-targeted strategies hold great potential to decrease therapeutic threshold dosage, minimize side effects, and promote the development of precision medicine. Herein, we introduce the structure and function of mitochondrial membranes, summarize and discuss the important role of mitochondrial membrane-targeting materials in disease diagnosis/treatment, and expound the advantages of mitochondrial membrane-assisted drug delivery for disease diagnosis, treatment, and biosafety. This review helps readers understand mitochondria-targeted therapies and promotes the application of mitochondrial membranes in drug delivery. STATEMENT OF SIGNIFICANCE: Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. Compared to cell-targeted treatment, targeting of mitochondria for drug delivery offers higher efficiency and improved biosafety and will promote the development of precision medicine. As a natural material, the mitochondrial membrane exhibits excellent biocompatibility and can serve as a carrier for mitochondria-targeted delivery. This review provides an overview of the structure and function of mitochondrial membranes and explores the potential benefits of utilizing mitochondrial membrane-assisted drug delivery for disease treatment and biosafety. The aim of this review is to enhance readers' comprehension of mitochondrial targeted therapy and to advance the utilization of mitochondrial membrane in drug delivery.
Collapse
Affiliation(s)
- Yinghui Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wenhui Ji
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
6
|
Garcia AM, Toni LS, Miyano CA, Sparagna GC, Jonscher R, Phillips EK, Karimpour-Fard A, Chapman HL, Baybayon-Grandgeorge AN, Pietra AE, Selner E, Chatfield KC, Stauffer BL, Sucharov CC, Miyamoto SD. Cardiac Transcriptome Remodeling and Impaired Bioenergetics in Single-Ventricle Congenital Heart Disease. JACC Basic Transl Sci 2023; 8:258-279. [PMID: 37034285 PMCID: PMC10077120 DOI: 10.1016/j.jacbts.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
The mechanisms responsible for heart failure in single-ventricle congenital heart disease are unknown. Using explanted heart tissue, we showed that failing single-ventricle hearts have dysregulated metabolic pathways, impaired mitochondrial function, decreased activity of carnitine palmitoyltransferase activity, and altered functioning of the tricarboxylic acid cycle. Interestingly, nonfailing single-ventricle hearts demonstrated an intermediate metabolic phenotype suggesting that they are vulnerable to development of heart failure in the future. Mitochondrial targeted therapies and treatments aimed at normalizing energy generation could represent a novel approach to the treatment or prevention of heart failure in this vulnerable group of patients.
Collapse
Affiliation(s)
- Anastacia M. Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Lee S. Toni
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carissa A. Miyano
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Genevieve C. Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raleigh Jonscher
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elisabeth K. Phillips
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hailey L. Chapman
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado, USA
| | | | - Ashley E. Pietra
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Emma Selner
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Kathryn C. Chatfield
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Brian L. Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shelley D. Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
7
|
Bautista JS, Falabella M, Flannery PJ, Hanna MG, Heales SJ, Pope SA, Pitceathly RD. Advances in methods to analyse cardiolipin and their clinical applications. Trends Analyt Chem 2022; 157:116808. [PMID: 36751553 PMCID: PMC7614147 DOI: 10.1016/j.trac.2022.116808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.
Collapse
Affiliation(s)
- Javier S. Bautista
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Padraig J. Flannery
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK,Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK
| | - Michael G. Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon J.R. Heales
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon A.S. Pope
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert D.S. Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK, Corresponding author. Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK. (R.D.S. Pitceathly)
| |
Collapse
|
8
|
Medical Therapies for Heart Failure in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9050152. [PMID: 35621863 PMCID: PMC9143150 DOI: 10.3390/jcdd9050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Significant surgical and medical advances over the past several decades have resulted in a growing number of infants and children surviving with hypoplastic left heart syndrome (HLHS) and other congenital heart defects associated with a single systemic right ventricle (RV). However, cardiac dysfunction and ultimately heart failure (HF) remain the most common cause of death and indication for transplantation in this population. Moreover, while early recognition and treatment of single ventricle-related complications are essential to improving outcomes, there are no proven therapeutic strategies for single systemic RV HF in the pediatric population. Importantly, prototypical adult HF therapies have been relatively ineffective in mitigating the need for cardiac transplantation in HLHS, likely due to several unique attributes of the failing HLHS myocardium. Here, we discuss the most commonly used medical therapies for the treatment of HF symptoms in HLHS and other single systemic RV patients. Additionally, we provide an overview of potential novel therapies for systemic ventricular failure in the HLHS and related populations based on fundamental science, pre-clinical, clinical, and observational studies in the current literature.
Collapse
|
9
|
Cole LK, Sparagna GC, Dolinsky VW, Hatch GM. Altered cardiolipin metabolism is associated with cardiac mitochondrial dysfunction in pulmonary vascular remodeled perinatal rat pups. PLoS One 2022; 17:e0263520. [PMID: 35143544 PMCID: PMC8830687 DOI: 10.1371/journal.pone.0263520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary vascular remodeling (PVR) in utero results in the development of heart failure. The alterations that occur in cardiac lipid and mitochondrial bioenergetics during the development of in utero PVR was unknown. In this study, PVR was induced in pups in utero by exposure of pregnant dams to indomethacin and hypoxia and cardiac lipids, echocardiographic function and cardiomyocyte mitochondrial function were subsequently examined. Perinatal rat pups with PVR exhibited elevated left and right cardiac ventricular internal dimensions and reduced ejection fraction and fractional shortening compared to controls. Cardiac myocytes from these pups exhibited increased glycolytic capacity and glycolytic reserve compared to controls. However, respiration with glucose as substrate was unaltered. Fatty acid oxidation and ATP-insensitive respiration were increased in isolated cardiac myocytes from these pups compared to controls indicating a mitochondrial dysfunction. Although abundance of mitochondrial respiratory chain complexes was unaltered, increased trilinoleoyl-lysocardiolipin levels in these pups was observed. A compensatory increase in both cardiolipin and phosphatidylethanolamine content were observed due to increased synthesis of these phospholipids. These data indicate that alterations in cardiac cardiolipin and phospholipid metabolism in PVR rat pups is associated with the mitochondrial bioenergetic and cardiac functional defects observed in their hearts.
Collapse
Affiliation(s)
- Laura K. Cole
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Genevieve C. Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Vernon W. Dolinsky
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Grant M. Hatch
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
10
|
Xu X, Luo D, Xuan Q, Lu P, Yu C, Guan Q. Atlas of metabolism reveals palmitic acid results in mitochondrial dysfunction and cell apoptosis by inhibiting fatty acid β-oxidation in Sertoli cells. Front Endocrinol (Lausanne) 2022; 13:1021263. [PMID: 36237186 PMCID: PMC9552013 DOI: 10.3389/fendo.2022.1021263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the impact of lipotoxicity on male fertility has received extensive attention, especially on Sertoli cells (SCs). In SCs, energy metabolism is important as disorders of energy metabolism result in infertility eventually. However, the underlying mechanism of lipotoxicity on energy metabolism in SCs remains unknown. Advances in high-throughput metabolomics and lipidomics measurement platforms provide powerful tools to gain insights into complex biological systems. Here, we aimed to explore the potential molecular mechanisms of palmitic acid (PA) regulating energy metabolism in SCs based on metabolomics and lipidomics. The results showed that glucose metabolism-related metabolites were not significantly changed, which suggested that PA treatment had little effect on glucose metabolism and may not influence the normal energy supply from SCs to germ cells. However, fatty acid β-oxidation was inhibited according to accumulation of medium- and long-chain acylcarnitines in cells. In addition, the pool of amino acids and the levels of most individual amino acids involved in the tricarboxylic acid (TCA) cycle were not changed after PA treatment in SCs. Moreover, PA treatment of SCs significantly altered the lipidome, including significant decreases in cardiolipin and glycolipids as well as remarkable increases in ceramide and lysophospholipids, which indicated that mitochondrial function was affected and apoptosis was triggered. The increased apoptosis rate of SCs was verified by elevated protein expression levels of Cleaved Caspase-3 and Bax as well as decreased Bcl-2 protein expression level. Together, these findings indicated that PA may result in mitochondrial dysfunction and increased apoptosis by inhibiting fatty acid β-oxidation of SCs.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
| | - Dandan Luo
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Lu
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunxiao Yu
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Qingbo Guan, ; Chunxiao Yu,
| | - Qingbo Guan
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Qingbo Guan, ; Chunxiao Yu,
| |
Collapse
|
11
|
Chatfield KC, Sparagna GC, Specht KS, Whitcomb LA, Omar AK, Miyamoto SD, Wolfe LM, Chicco AJ. Long-chain fatty acid oxidation and respiratory complex I deficiencies distinguish Barth Syndrome from idiopathic pediatric cardiomyopathy. J Inherit Metab Dis 2022; 45:111-124. [PMID: 34821394 DOI: 10.1002/jimd.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022]
Abstract
Barth syndrome (BTHS) is an X-linked disorder that results from mutations in the TAFAZZIN gene, which encodes a phospholipid transacylase responsible for generating the mature form of cardiolipin in inner mitochondrial membranes. BTHS patients develop early onset cardiomyopathy and a derangement of intermediary metabolism consistent with mitochondrial disease, but the precise alterations in cardiac metabolism that distinguish BTHS from idiopathic forms of cardiomyopathy are unknown. We performed the first metabolic analysis of myocardial tissue from BTHS cardiomyopathy patients compared to age- and sex-matched patients with idiopathic dilated cardiomyopathy (DCM) and nonfailing controls. Results corroborate previous evidence for deficiencies in cardiolipin content and its linoleoyl enrichment as defining features of BTHS cardiomyopathy, and reveal a dramatic accumulation of hydrolyzed (monolyso-) cardiolipin molecular species. Respiratory chain protein deficiencies were observed in both BTHS and DCM, but a selective depletion of complex I was seen only in BTHS after controlling for an apparent loss of mitochondrial density in cardiomyopathic hearts. Distinct shifts in the expression of long-chain fatty acid oxidation enzymes and the tissue acyl-CoA profile of BTHS hearts suggest a specific block in mitochondrial fatty acid oxidation upstream of the conventional matrix beta-oxidation cycle, which may be compensated for by a greater reliance upon peroxisomal fatty acid oxidation and the catabolism of ketones, amino acids, and pyruvate to meet cardiac energy demands. These results provide a comprehensive foundation for exploring novel therapeutic strategies that target the adaptive and maladaptive metabolic features of BTHS cardiomyopathy.
Collapse
Affiliation(s)
- Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado, USA
| | - Genevieve C Sparagna
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kalyn S Specht
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Asma K Omar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado, USA
| | - Lisa M Wolfe
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|