1
|
Hanif A, Edin ML, Zeldin DC, Nayeem MA. Overexpression of Human Soluble Epoxide Hydrolase Exacerbates Coronary Reactive Hyperemia Reduction in Angiotensin-II-Treated Mouse Hearts. J Cardiovasc Pharmacol 2024; 83:46-54. [PMID: 37788350 PMCID: PMC10841723 DOI: 10.1097/fjc.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
ABSTRACT Coronary reactive hyperemia (CRH) is impaired in cardiovascular diseases, and angiotensin-II (Ang-II) exacerbates it. However, it is unknown how Ang-II affects CRH in Tie2-sEH Tr (human-sEH-overexpressed) versus wild-type (WT) mice. sEH-overexpression resulted in CRH reduction in Tie2-sEH Tr versus WT. We hypothesized that Ang-II exacerbates CRH reduction in Tie2-sEH Tr versus WT. The Langendorff system measured coronary flow in Tie2-sEH Tr and WT. The hearts were exposed to 15-second ischemia, and CRH was assessed in 10 mice each. Repayment volume was reduced by 40.50% in WT treated with Ang-II versus WT (7.42 ± 0.8 to 4.49 ± 0.8 mL/g) and 48% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (5.18 ± 0.4 to 2.68 ± 0.3 mL/g). Ang-II decreased repayment duration by 50% in WT-treated with Ang-II versus WT (2.46 ± 0.5 to 1.24 ± 0.4 minutes) and 54% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (1.66 ± 0.4 to 0.76 ± 0.2 minutes). Peak repayment flow was reduced by 11.2% in WT treated with Ang-II versus WT (35.98 ± 0.7 to 32.11 ± 1.4 mL/g) and 4% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (32.18 ± 0.6 to 30.89 ± 1.5 mL/g). Furthermore, coronary flow was reduced by 43% in WT treated with Ang-II versus WT (14.2 ± 0.5 to 8.15 ± 0.8 mL/min/g) and 32% in Tie2-sEH Tr treated with Ang-II versus Tie2-sEH Tr (12.1 ± 0.8 to 8.3 ± 1.2 mL/min/g). Moreover, the Ang-II-AT 1 -receptor and CYP4A were increased in Tie2-sEHTr. Our results demonstrate that Ang-II exacerbates CRH reduction in Tie2-sEH Tr mice.
Collapse
Affiliation(s)
- Ahmad Hanif
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Matthew L. Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Mohammed A. Nayeem
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
2
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
4
|
Cholecystokinin Octapeptide Promotes ANP Secretion through Activation of NOX4-PGC-1 α-PPAR α/PPAR γ Signaling in Isolated Beating Rat Atria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5905374. [PMID: 35770043 PMCID: PMC9236793 DOI: 10.1155/2022/5905374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Atrial natriuretic peptide (ANP), a canonical cardiac hormone, is mainly secreted from atrial myocytes and is involved in the regulation of body fluid, blood pressure homeostasis, and antioxidants. Cholecystokinin (CCK) is also found in cardiomyocytes as a novel cardiac hormone and induces multiple cardiovascular regulations. However, the direct role of CCK on the atrial mechanical dynamics and ANP secretion is unclear. The current study was to investigate the effect of CCK octapeptide (CCK-8) on the regulation of atrial dynamics and ANP secretion. Experiments were performed in isolated perfused beating rat atria. ANP was measured using radioimmunoassay. The levels of hydrogen peroxide (H2O2) and arachidonic acid (AA) were determined using ELISA Kits. The levels of relative proteins and mRNA were detected by Western blot and RT-qPCR. The results showed that sulfated CCK-8 (CCK-8s) rather than desulfated CCK-8 increased the levels of phosphorylated cytosolic phospholipase A2 and AA release through activation of CCK receptors. This led to the upregulation of NADPH oxidase 4 (NOX4) expression levels and H2O2 production and played a negative inotropic effect on atrial mechanical dynamics via activation of ATP-sensitive potassium channels and large-conductance calcium-activated potassium channels. In addition, CCK-8s-induced NOX4 subsequently upregulated peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) expression levels through activation of p38 mitogen-activated protein kinase as well as the serine/threonine kinase signaling, ultimately promoting the secretion of ANP via activation of PPARα and PPARγ. In the presence of the ANP receptor inhibitor, the CCK-8-induced increase of AA release, H2O2 production, and the upregulation of NOX4 and CAT expressions was augmented but the SOD expression induced by CCK-8s was repealed. These findings indicate that CCK-8s promotes the secretion of ANP through activation of NOX4-PGC-1α-PPARα/PPARγ signaling, in which ANP is involved in resistance for NOX4 expression and ROS production and regulation of SOD expression.
Collapse
|
5
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
6
|
Hartmann M, Bibli SI, Tews D, Ni X, Kircher T, Kramer JS, Kilu W, Heering J, Hernandez-Olmos V, Weizel L, Scriba GKE, Krait S, Knapp S, Chaikuad A, Merk D, Fleming I, Fischer-Posovszky P, Proschak E. Combined Cardioprotective and Adipocyte Browning Effects Promoted by the Eutomer of Dual sEH/PPARγ Modulator. J Med Chem 2021; 64:2815-2828. [PMID: 33620196 DOI: 10.1021/acs.jmedchem.0c02063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The metabolic syndrome (MetS) is a constellation of cardiovascular and metabolic symptoms involving insulin resistance, steatohepatitis, obesity, hypertension, and heart disease, and patients suffering from MetS often require polypharmaceutical treatment. PPARγ agonists are highly effective oral antidiabetics with great potential in MetS, which promote adipocyte browning and insulin sensitization. However, the application of PPARγ agonists in clinics is restricted by potential cardiovascular adverse events. We have previously demonstrated that the racemic dual sEH/PPARγ modulator RB394 (3) simultaneously improves all risk factors of MetS in vivo. In this study, we identify and characterize the eutomer of 3. We provide structural rationale for molecular recognition of the eutomer. Furthermore, we could show that the dual sEH/PPARγ modulator is able to promote adipocyte browning and simultaneously exhibits cardioprotective activity which underlines its exciting potential in treatment of MetS.
Collapse
Affiliation(s)
- Markus Hartmann
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, D-60596 Frankfurt am Main, Germany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Centre, D-89075 Ulm, Germany
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Theresa Kircher
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, D-60596 Frankfurt am Main, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Centre, D-89075 Ulm, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| |
Collapse
|
7
|
Real-time measurement of adenosine and ATP release in the central nervous system. Purinergic Signal 2020; 17:109-115. [PMID: 33025425 PMCID: PMC7954901 DOI: 10.1007/s11302-020-09733-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 11/12/2022] Open
Abstract
This brief review recounts how, stimulated by the work of Geoff Burnstock, I developed biosensors that allowed direct real-time measurement of ATP and adenosine during neural function. The initial impetus to create an adenosine biosensor came from trying to understand how ATP and adenosine-modulated motor pattern generation in the frog embryo spinal cord. Early biosensor measurements demonstrated slow accumulation of adenosine during motor activity. Subsequent application of these biosensors characterized real-time release of adenosine in in vitro models of brain ischaemia, and this line of work has recently led to clinical measurements of whole blood purine levels in patients undergoing carotid artery surgery or stroke. In parallel, the wish to understand the role of ATP signalling in the chemosensory regulation of breathing stimulated the development of ATP biosensors. This revealed that release of ATP from the chemosensory areas of the medulla oblongata preceded adaptive changes in breathing, triggered adaptive changes in breathing via activation of P2 receptors, and ultimately led to the discovery of connexin26 as a channel that mediates CO2-gated release of ATP from cells.
Collapse
|
8
|
Samanta PN, Kar S, Leszczynski J. Recent Advances of In-Silico Modeling of Potent Antagonists for the Adenosine Receptors. Curr Pharm Des 2019; 25:750-773. [DOI: 10.2174/1381612825666190304123545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 11/22/2022]
Abstract
The rapid advancement of computer architectures and development of mathematical algorithms offer a
unique opportunity to leverage the simulation of macromolecular systems at physiologically relevant timescales.
Herein, we discuss the impact of diverse structure-based and ligand-based molecular modeling techniques in
designing potent and selective antagonists against each adenosine receptor (AR) subtype that constitutes multitude
of drug targets. The efficiency and robustness of high-throughput empirical scoring function-based approaches
for hit discovery and lead optimization in the AR family are assessed with the help of illustrative examples
that have led to nanomolar to sub-micromolar inhibition activities. Recent progress in computer-aided drug
discovery through homology modeling, quantitative structure-activity relation, pharmacophore models, and molecular
docking coupled with more accurate free energy calculation methods are reported and critically analyzed
within the framework of structure-based virtual screening of AR antagonists. Later, the potency and applicability
of integrated molecular dynamics (MD) methods are addressed in the context of diligent inspection of intricated
AR-antagonist binding processes. MD simulations are exposed to be competent for studying the role of the membrane
as well as the receptor flexibility toward the precise evaluation of the biological activities of antagonistbound
AR complexes such as ligand binding modes, inhibition affinity, and associated thermodynamic and kinetic
parameters.
Collapse
Affiliation(s)
- Pabitra Narayan Samanta
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States
| | - Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, United States
| |
Collapse
|
9
|
Alonso-Andrés P, Martín M, Albasanz JL. Modulation of Adenosine Receptors and Antioxidative Effect of Beer Extracts in in Vitro Models. Nutrients 2019; 11:nu11061258. [PMID: 31163630 PMCID: PMC6628356 DOI: 10.3390/nu11061258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
The fight against neurodegenerative diseases is promoting the searching of nutrients, preferably of wide consumption, with proven effects on health. Beer is widely consumed and has potential benefits on health. In this work, three different extracts from dark beer (DB), non-alcoholic beer (NAB), and lager beer (LB) were assayed at 30 min and 24 h in rat C6 glioma and human SH-SY5Y neuroblastoma cells in order to study their possible protective effects. Cell viability and adenosine A1, A2A, A2B, and A3 receptor gene expression and protein levels were measured in control cells and in cells challenged with hydrogen peroxide as an oxidant stressor. Among the three extracts analyzed, DB showed a greater protective effect against H2O2-induced oxidative stress and cell death. Moreover, a higher A1 receptor level was also induced by this extract. Interestingly, A1 receptor level was also increased by NAB and LB extracts, but to a lower extent, and the protective effect of these extracts against H2O2 was lower. This possible correlation between protection and A1 receptor level was observed at 24 h in both C6 and SH-SY5Y cells. In summary, different beer extracts modulate, to a different degree, adenosine receptors expression and protect both glioma and neuroblastoma cells from oxidative stress.
Collapse
Affiliation(s)
- Patricia Alonso-Andrés
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| |
Collapse
|
10
|
Elevated ecto-5'-nucleotidase: a missing pathogenic factor and new therapeutic target for sickle cell disease. Blood Adv 2019; 2:1957-1968. [PMID: 30097462 DOI: 10.1182/bloodadvances.2018015784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/30/2018] [Indexed: 01/11/2023] Open
Abstract
Although excessive plasma adenosine is detrimental in sickle cell disease (SCD), the molecular mechanism underlying elevated circulating adenosine remains unclear. Here we report that the activity of soluble CD73, an ectonucleotidase producing extracellular adenosine, was significantly elevated in a murine model of SCD and correlated with increased plasma adenosine. Mouse genetic studies demonstrated that CD73 activity contributes to excessive induction of plasma adenosine and thereby promotes sickling, hemolysis, multiorgan damage, and disease progression. Mechanistically, we showed that erythrocyte adenosine 5'-monophosphate-activated protein kinase (AMPK) was activated both in SCD patients and in the murine model of SCD. AMPK functions downstream of adenosine receptor ADORA2B signaling and contributes to sickling by regulating the production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity. Preclinically, we reported that treatment of α,β-methylene adenosine 5'-diphosphate, a potent CD73 specific inhibitor, significantly decreased sickling, hemolysis, multiorgan damage, and disease progression in the murine model of SCD. Taken together, both human and mouse studies reveal a novel molecular mechanism contributing to the pathophysiology of SCD and identify potential therapeutic strategies to treat SCD.
Collapse
|
11
|
Yadav VR, Teng B, Mustafa SJ. Enhanced A 1 adenosine receptor-induced vascular contractions in mesenteric artery and aorta of in L-NAME mouse model of hypertension. Eur J Pharmacol 2018; 842:111-117. [PMID: 30347181 DOI: 10.1016/j.ejphar.2018.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 01/28/2023]
Abstract
L-NAME-induced hypertension is commonly used to study endothelial dysfunction and related vascular effects. It has been reported that genetic deletion of A1 adenosine receptor (AR) reduces blood pressure (BP) increases in mice and thus, suggesting the involvement of A1AR. Thus, we sought to determine whether A1AR-induced vascular responses were altered in this mouse model of hypertension. L-NAME (1 mg/ml) was given in the drinking water for 28 days to mice. The BP was monitored using non-invasive tail-cuff system. Muscle tension studies were performed using DMT for mesenteric arteries (MAs) and organ bath for aorta. Protein expression was analyzed by western blot. Significantly, higher systolic and mean arterial blood pressure was noted in L-NAME mice. In MAs, higher 2-Chloro-N6-cyclopentyladenosine (CCPA, selective A1AR agonist) induced contractions in hypertensive mice were observed. This enhanced contraction was inhibited by HET0016 (Cytochrome 450 4A inhibitor, 10 µM, 15 min). Contrary, 5'-(N-Ethylcarboxamido) adenosine (NECA, non-selective AR agonist) induced vascular responses were comparable in both groups. Pinacidil (KATP channel opener) induced relaxation was significantly increased in hypertensive mice. In aorta, CCPA-induced contractions were enhanced and inhibited by HET0016 in hypertensive mice. Notably, NECA-induced contractions in aorta were enhanced in hypertensive mice. Higher expressions of A1AR and Cyp4A were noted in MAs of hypertensive mice. In addition, in aorta, higher A1AR and comparable Cyp4A levels were observed in hypertensive mice. A1AR-induced vascular contractions were enhanced in hypertensive mice aorta and MAs. Cyp4A plays a role in altered vascular responses in MAs.
Collapse
Affiliation(s)
- Vishal R Yadav
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Bunyen Teng
- Coagulation and Blood Research Task Area, US Army Institute of Surgical Research, San Antonio, TX, USA
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Center for Translational Science Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
12
|
Effect of Soluble Epoxide Hydrolase on the Modulation of Coronary Reactive Hyperemia: Role of Oxylipins and PPARγ. PLoS One 2016; 11:e0162147. [PMID: 27583776 PMCID: PMC5008628 DOI: 10.1371/journal.pone.0162147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
Coronary reactive hyperemia (CRH) is a physiological response to ischemic insult that prevents the potential harm associated with an interruption of blood supply. The relationship between the pharmacologic inhibition of soluble epoxide hydrolase (sEH) and CRH response to a brief ischemia is not known. sEH is involved in the main catabolic pathway of epoxyeicosatrienoic acids (EETs), which are converted into dihydroxyeicosatrienoic acids (DHETs). EETs protect against ischemia/reperfusion injury and have numerous beneficial physiological effects. We hypothesized that inhibition of sEH by t-AUCB enhances CRH in isolated mouse hearts through changing the oxylipin profiles, including an increase in EETs/DHETs ratio. Compared to controls, t-AUCB-treated mice had increased CRH, including repayment volume (RV), repayment duration, and repayment/debt ratio (p < 0.05). Treatment with t-AUCB significantly changed oxylipin profiles, including an increase in EET/DHET ratio, increase in EpOME/DiHOME ratio, increase in the levels of HODEs, decrease in the levels of mid-chain HETEs, and decrease in prostanoids (p < 0.05). Treatment with MS-PPOH (CYP epoxygenase inhibitor) reduced CRH, including RV (p < 0.05). Involvement of PPARγ in the modulation of CRH was demonstrated using a PPARγ-antagonist (T0070907) and a PPARγ-agonist (rosiglitazone). T0070907 reduced CRH (p < 0.05), whereas rosiglitazone enhanced CRH (p < 0.05) in isolated mouse hearts compared to the non-treated. These data demonstrate that sEH inhibition enhances, whereas CYP epoxygenases-inhibition attenuates CRH, PPARγ mediate CRH downstream of the CYP epoxygenases-EET pathway, and the changes in oxylipin profiles associated with sEH-inhibition collectively contributed to the enhanced CRH.
Collapse
|
13
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Nayeem MA. Deletion of soluble epoxide hydrolase enhances coronary reactive hyperemia in isolated mouse heart: role of oxylipins and PPARγ. Am J Physiol Regul Integr Comp Physiol 2016; 311:R676-R688. [PMID: 27488890 DOI: 10.1152/ajpregu.00237.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
The relationship between soluble epoxide hydrolase (sEH) and coronary reactive hyperemia (CRH) response to a brief ischemic insult is not known. Epoxyeicosatrienoic acids (EETs) exert cardioprotective effects in ischemia/reperfusion injury. sEH converts EETs into dihydroxyeicosatrienoic-acids (DHETs). Therefore, we hypothesized that knocking out sEH enhances CRH through modulation of oxylipin profiles, including an increase in EET/DHET ratio. Compared with sEH+/+, sEH-/- mice showed enhanced CRH, including greater repayment volume (RV; 28% higher, P < 0.001) and repayment/debt ratio (32% higher, P < 0.001). Oxylipins from the heart perfusates were analyzed by LC-MS/MS. The 14,15-EET/14,15-DHET ratio was 3.7-fold higher at baseline (P < 0.001) and 5.6-fold higher post-ischemia (P < 0.001) in sEH-/- compared with sEH+/+ mice. Likewise, the baseline 9,10- and 12,13-EpOME/DiHOME ratios were 3.2-fold (P < 0.01) and 3.7-fold (P < 0.001) higher, respectively in sEH-/- compared with sEH+/+ mice. 13-HODE was also significantly increased at baseline by 71% (P < 0.01) in sEH-/- vs. sEH+/+ mice. Levels of 5-, 11-, 12-, and 15-hydroxyeicosatetraenoic acids were not significantly different between the two strains (P > 0.05), but were decreased postischemia in both groups (P = 0.02, P = 0.04, P = 0.05, P = 0.03, respectively). Modulation of CRH by peroxisome proliferator-activated receptor gamma (PPARγ) was demonstrated using a PPARγ-antagonist (T0070907), which reduced repayment volume by 25% in sEH+/+ (P < 0.001) and 33% in sEH-/- mice (P < 0.01), and a PPARγ-agonist (rosiglitazone), which increased repayment volume by 37% in both sEH+/+ (P = 0.04) and sEH-/- mice (P = 0.04). l-NAME attenuated CRH in both sEH-/- and sEH+/+ These data demonstrate that genetic deletion of sEH resulted in an altered oxylipin profile, which may have led to an enhanced CRH response.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina; and
| | | | - Mohammed A Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia;
| |
Collapse
|
14
|
Zhou X, Teng B, Mustafa SJ. Sex Difference in Coronary Endothelial Dysfunction in Apolipoprotein E Knockout Mouse: Role of NO and A2A Adenosine Receptor. Microcirculation 2016. [PMID: 26201383 DOI: 10.1111/micc.12222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Sex plays an important role in the pathophysiology of cardiovascular diseases. This study aims to investigate how sex impacts on the coronary flow regulation during atherosclerosis. METHODS ApoE KO mouse fed with western diet were used for atherosclerosis model. Coronary RH and flow response were measured using Langendorff-perfused isolated hearts. RESULTS Coronary RH and A23187-induced NO-dependent flow increases were significantly reduced in female (by ~28% and 48%, respectively), but not in male atherosclerotic mice. However, SNP-induced coronary vasodilation remains intact in both sexes of ApoE KO mice. L-NAME (NOS inhibitor) reduced baseline flow and RH to a lesser extent in ApoE KO (by ~19% and 31%) vs. WT (~30% and 59%, respectively), and abolished the sex difference in RH. In contrast, SCH58261 (a selective A2A AR antagonist) reduced the baseline flow and RH to a greater extent in atherosclerotic mice, but did not affect the sex difference. Immunofluorescent staining of coronary arteries showed a similar A2A AR upregulation in both sexes of ApoE KO mice. CONCLUSIONS Our results suggest that during atherosclerosis, female mice are more susceptible to NO-dependent endothelial dysfunction and the upregulation of A2A AR may serve as a compensatory mechanism to counteract the compromised endothelial function.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA.,Center for Cardiovascular and Respiratory Sciences and West Virginia Clinical & Translational Science Institute, Morgantown, West Virginia, USA
| | - Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA.,Center for Cardiovascular and Respiratory Sciences and West Virginia Clinical & Translational Science Institute, Morgantown, West Virginia, USA
| | - S J Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA.,Center for Cardiovascular and Respiratory Sciences and West Virginia Clinical & Translational Science Institute, Morgantown, West Virginia, USA
| |
Collapse
|
15
|
Guo D, Heitman LH, IJzerman AP. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev 2016; 117:38-66. [DOI: 10.1021/acs.chemrev.6b00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Labazi H, Teng B, Zhou Z, Mustafa SJ. Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. J Mol Cell Cardiol 2016; 90:30-7. [PMID: 26654777 PMCID: PMC4729563 DOI: 10.1016/j.yjmcc.2015.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 02/08/2023]
Abstract
Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Animals
- Coronary Circulation/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Heart/drug effects
- Heart/physiopathology
- Humans
- Male
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Organ Culture Techniques
- Phenethylamines/pharmacology
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Signal Transduction
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Hicham Labazi
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - Bunyen Teng
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - Zhichao Zhou
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
17
|
Yadav VR, Nayeem MA, Tilley SL, Mustafa SJ. Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: role for A1 and A2B adenosine receptors. Br J Pharmacol 2015; 172:4959-69. [PMID: 26227882 DOI: 10.1111/bph.13265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Stimulation of the A1 adenosine receptor and angiotensin II receptor type-1 (AT1 receptor) causes vasoconstriction through activation of cytochrome P450 4A (CYP4A) and ERK1/2. Thus, we hypothesized that acute angiotensin II activation alters the vasomotor response induced by the non-selective adenosine receptor agonist, NECA, in mouse mesenteric arteries (MAs). EXPERIMENTAL APPROACH We used a Danish Myo Technology wire myograph to measure muscle tension in isolated MAs from wild type (WT), A1 receptor and A2B receptor knockout (KO) mice. Western blots were performed to determine the expression of AT1 receptors and CYP4A. KEY RESULTS Acute exposure (15 min) to angiotensin II attenuated the NECA-dependent vasodilatation and enhanced vasoconstriction. This vasoconstrictor effect of angiotensin II in NECA-treated MAs was abolished in A1 receptor KO mice and in WT mice treated with the A1 receptor antagonist DPCPX, CYP4A inhibitor HET0016 and ERK1/2 inhibitor PD98059. In MAs from A2B receptor KO mice, the vasoconstrictor effect of angiotensin II on the NECA-induced response was shown to be dependent on A1 receptors. Furthermore, in A2B receptor KO mice, the expression of AT1 receptors and CYP4A was increased and the angiotensin II-induced vasoconstriction enhanced. In addition, inhibition of KATP channels with glibenclamide significantly reduced NECA-induced vasodilatation in WT mice. CONCLUSIONS AND IMPLICATIONS Acute angiotensin II stimulation enhanced A1 receptor-dependent vasoconstriction and inhibited A2B receptor-dependent vasodilatation, leading to a net vasoconstriction and altered vasomotor response to NECA in MAs. This interaction may be important in the regulation of BP.
Collapse
Affiliation(s)
- Vishal R Yadav
- Department of Physiology and Pharmacology, School of Medicine, Morgantown, WV, USA
| | - Mohammed A Nayeem
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, School of Medicine, Morgantown, WV, USA.,West Virginia Center for Translational Science Institute, Morgantown, WV, USA
| |
Collapse
|
18
|
Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol (1985) 2015; 119:1173-82. [PMID: 26316513 DOI: 10.1152/japplphysiol.00350.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a major signaling nucleoside that orchestrates cellular and tissue adaptation under energy depletion and ischemic/hypoxic conditions by activation of four G protein-coupled receptors (GPCR). The regulation and generation of extracellular adenosine in response to stress are critical in tissue protection. Both mouse and human studies reported that extracellular adenosine signaling plays a beneficial role during acute states. However, prolonged excess extracellular adenosine is detrimental and contributes to the development and progression of various chronic diseases. In recent years, substantial progress has been made to understand the role of adenosine signaling in different conditions and to clarify its significance during the course of disease progression in various organs. These efforts have and will identify potential therapeutic possibilities for protection of tissue injury at acute stage by upregulation of adenosine signaling or attenuation of chronic disease progression by downregulation of adenosine signaling. This review is to summarize current progress and the importance of adenosine signaling in different disease stages and its potential therapeutic effects.
Collapse
Affiliation(s)
- Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas; Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, Texas; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Zhou Z, Rajamani U, Labazi H, Tilley SL, Ledent C, Teng B, Mustafa SJ. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts. Purinergic Signal 2015; 11:263-73. [DOI: 10.1007/s11302-015-9451-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
|
20
|
Zhou X, Teng B, Tilley S, Ledent C, Mustafa SJ. Metabolic hyperemia requires ATP-sensitive K+ channels and H2O2 but not adenosine in isolated mouse hearts. Am J Physiol Heart Circ Physiol 2014; 307:H1046-55. [PMID: 25108010 DOI: 10.1152/ajpheart.00421.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 μM) nor selective A2AAR blockade by SCH-58261 (1 μM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 μM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 μM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia
| | - Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia
| | - Stephen Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | | | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia;
| |
Collapse
|