1
|
Muluhie M, Castiglioni L, Rzemieniec J, Mercuriali B, Gelosa P, Sironi L. Montelukast, an available and safe anti-asthmatic drug, prevents maladaptive remodelling and maintains cardiac functionality following myocardial infarction. Sci Rep 2024; 14:3371. [PMID: 38337010 PMCID: PMC10858037 DOI: 10.1038/s41598-024-53936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Preclinical and clinical data indicate that the 5-lipoxygenase pathway becomes activated in cardiovascular diseases suggesting an important role of CysLTs in atherosclerosis and in its ischemic complications. This study aims to investigate the effects of montelukast, a CysLTR-1 antagonist, in a mouse model of myocardial infarction (MI). C57BL/6N female mice were subjected to coronary artery ligation and received montelukast (10 mg/kg/day, intraperitoneal) or vehicle. Montelukast exerted beneficial effects in the infarcted area, decreasing mRNA expression of inflammatory genes, such Il1β and Ccl2 (p < 0.05), at 48 h after MI, and reducing infarct size and preventing ischemic wall thinning (p < 0.05) at 4 weeks. Furthermore, montelukast counteracted maladaptive remodelling of whole heart. Indeed, montelukast reduced LV mass (p < 0.05) and remote wall thickening (p < 0.05), and improved cardiac pumping function, as evidenced by increased global ejection fraction (p < 0.01), and regional contractility in infarcted (p < 0.05) and in remote non-infarcted (p < 0.05) myocardium. Finally, montelukast prevented cardiomyocytes hypertrophy (p < 0.05) in remote myocardium, reducing the phosphorylation of GSK3β, a regulator of hypertrophic pathway (p < 0.05). Our data strongly demonstrate the ability of montelukast to contrast the MI-induced maladaptive conditions, thus sustaining cardiac contractility. The results provide evidences for montelukast "repurposing" in cardiovascular diseases and in particular in myocardial infarction.
Collapse
Affiliation(s)
- Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Benedetta Mercuriali
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
2
|
Seropian IM, Cassaglia P, Miksztowicz V, González GE. Unraveling the role of galectin-3 in cardiac pathology and physiology. Front Physiol 2023; 14:1304735. [PMID: 38170009 PMCID: PMC10759241 DOI: 10.3389/fphys.2023.1304735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Galectin-3 (Gal-3) is a carbohydrate-binding protein with multiple functions. Gal-3 regulates cell growth, proliferation, and apoptosis by orchestrating cell-cell and cell-matrix interactions. It is implicated in the development and progression of cardiovascular disease, and its expression is increased in patients with heart failure. In atherosclerosis, Gal-3 promotes monocyte recruitment to the arterial wall boosting inflammation and atheroma. In acute myocardial infarction (AMI), the expression of Gal-3 increases in infarcted and remote zones from the beginning of AMI, and plays a critical role in macrophage infiltration, differentiation to M1 phenotype, inflammation and interstitial fibrosis through collagen synthesis. Genetic deficiency of Gal-3 delays wound healing, impairs cardiac remodeling and function after AMI. On the contrary, Gal-3 deficiency shows opposite results with improved remodeling and function in other cardiomyopathies and in hypertension. Pharmacologic inhibition with non-selective inhibitors is also protective in cardiac disease. Finally, we recently showed that Gal-3 participates in normal aging. However, genetic absence of Gal-3 in aged mice exacerbates pathological hypertrophy and increases fibrosis, as opposed to reduced fibrosis shown in cardiac disease. Despite some gaps in understanding its precise mechanisms of action, Gal-3 represents a potential therapeutic target for the treatment of cardiovascular diseases and the management of cardiac aging. In this review, we summarize the current knowledge regarding the role of Gal-3 in the pathophysiology of heart failure, atherosclerosis, hypertension, myocarditis, and ischemic heart disease. Furthermore, we describe the physiological role of Gal-3 in cardiac aging.
Collapse
Affiliation(s)
- Ignacio M. Seropian
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
- Servicio de Hemodinamia, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cassaglia
- Departamento de Patología, Instituto de Salud Comunitaria, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
| | - Germán E. González
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Patología, Instituto de Salud Comunitaria, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
3
|
Klösener L, Samolovac S, Barnekow I, König J, Moussavi A, Boretius S, Fuchs D, Haegens A, Hinkel R, Mietsch M. Functional Cardiovascular Characterization of the Common Marmoset ( Callithrix jacchus). BIOLOGY 2023; 12:1123. [PMID: 37627007 PMCID: PMC10452209 DOI: 10.3390/biology12081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Appropriate cardiovascular animal models are urgently needed to investigate genetic, molecular, and therapeutic approaches, yet the translation of results from the currently used species is difficult due to their genetic distance as well as their anatomical or physiological differences. Animal species that are closer to the human situation might help to bridge this translational gap. The common marmoset (Callithrix jacchus) is an interesting candidate to investigate certain heart diseases and cardiovascular comorbidities, yet a basic functional characterization of its hemodynamic system is still missing. Therefore, cardiac functional analyses were performed by utilizing the invasive intracardiac pressure-volume loops (PV loop) system in seven animals, magnetic resonance imaging (MRI) in six animals, and echocardiography in five young adult male common marmosets. For a direct comparison between the three methods, only data from animals for which all three datasets could be acquired were selected. All three modalities were suitable for characterizing cardiac function, though with some systemic variations. In addition, vena cava occlusions were performed to investigate the load-independent parameters collected with the PV loop system, which allowed for a deeper analysis of the cardiac function and for a more sensitive detection of the alterations in a disease state, such as heart failure or certain cardiovascular comorbidities.
Collapse
Affiliation(s)
- Lina Klösener
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Sabine Samolovac
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Ina Barnekow
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jessica König
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amir Moussavi
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Susann Boretius
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg August University, 37077 Göttingen, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics Inc., 1114 AB Amsterdam, The Netherlands
| | | | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Cassaglia P, Penas F, Betazza C, Fontana Estevez F, Miksztowicz V, Martínez Naya N, Llamosas MC, Noli Truant S, Wilensky L, Volberg V, Cevey ÁC, Touceda V, Cicale E, Berg G, Fernández M, Goren N, Morales C, González GE. Genetic Deletion of Galectin-3 Alters the Temporal Evolution of Macrophage Infiltration and Healing Affecting the Cardiac Remodeling and Function after Myocardial Infarction in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1789-1800. [PMID: 32473918 DOI: 10.1016/j.ajpath.2020.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
We studied the role of galectin-3 (Gal-3) in the expression of alternative activation markers (M2) on macrophage, cytokines, and fibrosis through the temporal evolution of healing, ventricular remodeling, and function after myocardial infarction (MI). C57BL/6J and Gal-3 knockout mice (Lgals3-/-) were subjected to permanent coronary ligation or sham. We studied i) mortality, ii) macrophage infiltration and expression of markers of alternative activation, iii) cytokine, iv) matrix metalloproteinase-2 activity, v) fibrosis, and vi) cardiac function and remodeling. At 1 week post-MI, lack of Gal-3 markedly attenuated F4/80+ macrophage infiltration and significantly increased the expression of Mrc1 and Chil1, markers of M2 macrophages at the MI zone. Levels of IL-10, IL-6, and matrix metalloproteinase-2 were significantly increased, whereas tumor necrosis factor-α, transforming growth factor-β, and fibrosis were remarkably attenuated at the infarct zone. In Gal-3 knockout mice, scar thinning ratio, expansion, and cardiac remodeling and function were severely affected from the onset of MI. At 4 weeks post-MI, the natural evolution of fibrosis in Gal-3 knockout mice was also affected. Our results suggest that Gal-3 is essential for wound healing because it regulates the dynamics of macrophage infiltration, proinflammatory and anti-inflammatory cytokine expression, and fibrosis along the temporal evolution of MI in mice. The deficit of Gal-3 affected the dynamics of wound healing, thus aggravating the evolution of remodeling and function.
Collapse
Affiliation(s)
- Pablo Cassaglia
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Federico Penas
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Celeste Betazza
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina; Facultad de Medicina, Pontificia Universidad Católica Argentina (UCA), Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensi Arterial, Buenos Aires, Argentina
| | - Florencia Fontana Estevez
- Facultad de Medicina, Pontificia Universidad Católica Argentina (UCA), Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensi Arterial, Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Facultad de Medicina, Pontificia Universidad Católica Argentina (UCA), Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensi Arterial, Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica-INFIBIOC, Laboratorio de Lípidos y Aterosclerosis, Buenos Aires, Argentina
| | - Nadia Martínez Naya
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - María Clara Llamosas
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Sofía Noli Truant
- Facultad de Farmacia y Bioquímica-CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Luciana Wilensky
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Verónica Volberg
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Ágata C Cevey
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Vanessa Touceda
- Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica-INFIBIOC, Laboratorio de Lípidos y Aterosclerosis, Buenos Aires, Argentina
| | - Eliana Cicale
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Berg
- Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica-INFIBIOC, Laboratorio de Lípidos y Aterosclerosis, Buenos Aires, Argentina
| | - Marisa Fernández
- Facultad de Farmacia y Bioquímica-CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Nora Goren
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Celina Morales
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Germán E González
- Facultad de Medicina-CONICET, Departamento de Patología, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina; Facultad de Medicina, Pontificia Universidad Católica Argentina (UCA), Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensi Arterial, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Effect of Losartan on Mitral Valve Changes After Myocardial Infarction. J Am Coll Cardiol 2017; 70:1232-1244. [PMID: 28859786 DOI: 10.1016/j.jacc.2017.07.734] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND After myocardial infarction (MI), mitral valve (MV) tethering stimulates adaptive leaflet growth, but counterproductive leaflet thickening and fibrosis augment mitral regurgitation (MR), doubling heart failure and mortality. MV fibrosis post-MI is associated with excessive endothelial-to-mesenchymal transition (EMT), driven by transforming growth factor (TGF)-β overexpression. In vitro, losartan-mediated TGF-β inhibition reduces EMT of MV endothelial cells. OBJECTIVES This study tested the hypothesis that profibrotic MV changes post-MI are therapeutically accessible, specifically by losartan-mediated TGF-β inhibition. METHODS The study assessed 17 sheep, including 6 sham-operated control animals and 11 with apical MI and papillary muscle retraction short of producing MR; 6 of the 11 were treated with daily losartan, and 5 were untreated, with flexible epicardial mesh comparably limiting left ventricular (LV) remodeling. LV volumes, tethering, and MV area were quantified by using three-dimensional echocardiography at baseline and at 60 ± 6 days, and excised leaflets were analyzed by histopathology and flow cytometry. RESULTS Post-MI LV dilation and tethering were comparable in the losartan-treated and untreated LV constraint sheep. Telemetered sensors (n = 6) showed no significant losartan-induced changes in arterial pressure. Losartan strongly reduced leaflet thickness (0.9 ± 0.2 mm vs. 1.6 ± 0.2 mm; p < 0.05; 0.4 ± 0.1 mm sham animals), TGF-β, and downstream phosphorylated extracellular-signal-regulated kinase and EMT (27.2 ± 12.0% vs. 51.6 ± 11.7% α-smooth muscle actin-positive endothelial cells, p < 0.05; 7.2 ± 3.5% sham animals), cellular proliferation, collagen deposition, endothelial cell activation (vascular cell adhesion molecule-1 expression), neovascularization, and cells positive for cluster of differentiation (CD) 45, a hematopoietic marker associated with post-MI valve fibrosis. Leaflet area increased comparably (17%) in constrained and losartan-treated sheep. CONCLUSIONS Profibrotic changes of tethered MV leaflets post-MI can be modulated by losartan without eliminating adaptive growth. Understanding the cellular and molecular mechanisms could provide new opportunities to reduce ischemic MR.
Collapse
|
6
|
A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Sci Rep 2017; 7:43920. [PMID: 28266578 PMCID: PMC5339733 DOI: 10.1038/srep43920] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022] Open
Abstract
A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure.
Collapse
|
7
|
Inhibition of the Renin-Angiotensin System Post Myocardial Infarction Prevents Inflammation-Associated Acute Cardiac Rupture. Cardiovasc Drugs Ther 2017; 31:145-156. [DOI: 10.1007/s10557-017-6717-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
González GE, Wilensky L, Cassaglia P, Morales C, Gelpi RJ. Early administration of Enalapril prevents diastolic dysfunction and ventricular remodeling in rabbits with myocardial infarction. Cardiovasc Pathol 2016; 25:208-213. [DOI: 10.1016/j.carpath.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022] Open
|
9
|
Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J Hypertens 2016; 33:144-52. [PMID: 25304471 DOI: 10.1097/hjh.0000000000000358] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Inflammation has been proposed as a key component in the development of hypertension and cardiac remodeling associated with different cardiovascular diseases. However, the role of the proinflammatory cytokine interleukin-6 in the chronic stage of hypertension is not well defined. Here, we tested the hypothesis that deletion of interleukin-6 protects against the development of hypertension, cardiac inflammation, fibrosis, remodeling and dysfunction induced by high salt diet and angiotensin II (Ang II). METHODS Male C57BL/6J and interleukin-6-knock out (KO) mice were implanted with telemetry devices for blood pressure (BP) measurements, fed a 4% NaCl diet, and infused with either vehicle or Ang II (90 ng/min per mouse subcutaneously) for 8 weeks. We studied BP and cardiac function by echocardiography at baseline, 4 and 8 weeks. RESULTS Myocyte cross-sectional area (MCSA), macrophage infiltration, and myocardial fibrosis were also assessed. BP increased similarly in both strains when treated with Ang II and high salt (Ang II-high salt); however, C57BL/6J mice developed a more severe decrease in left ventricle ejection fraction, fibrosis, and macrophage infiltration compared with interleukin-6-KO mice. No differences between strains were observed in MCSA, capillary density and MCSA to capillary density ratio. CONCLUSION In conclusion, absence of interleukin -6 did not alter the development of Ang II-high salt-induced hypertension and cardiac hypertrophy, but it prevented the development of cardiac dysfunction, myocardial inflammation, and fibrosis. This indicates that interleukin-6 plays an important role in hypertensive heart damage but not in the development of hypertension.
Collapse
|
10
|
Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA, Ardell JL. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 2015; 309:H1198-206. [PMID: 26276818 PMCID: PMC4666924 DOI: 10.1152/ajpheart.00393.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022]
Abstract
This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Elizabeth M Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Shannon Ryan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ying Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - J Andrew Armour
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| |
Collapse
|
11
|
Hardwick JC, Ryan SE, Powers EN, Southerland EM, Ardell JL. Angiotensin receptors alter myocardial infarction-induced remodeling of the guinea pig cardiac plexus. Am J Physiol Regul Integr Comp Physiol 2015; 309:R179-88. [PMID: 25947168 PMCID: PMC4504959 DOI: 10.1152/ajpregu.00004.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
Neurohumoral remodeling is fundamental to the evolution of heart disease. This study examined the effects of chronic treatment with an ACE inhibitor (captopril, 3 mg·kg(-1)·day(-1)), AT1 receptor antagonist (losartan, 3 mg·kg(-1)·day(-1)), or AT2 receptor agonist (CGP42112A, 0.14 mg·kg(-1)·day(-1)) on remodeling of the guinea pig intrinsic cardiac plexus following chronic myocardial infarction (MI). MI was surgically induced and animals recovered for 6 or 7 wk, with or without drug treatment. Intracellular voltage recordings from whole mounts of the cardiac plexus were used to monitor changes in neuronal responses to norepinephrine (NE), muscarinic agonists (bethanechol), or ANG II. MI produced an increase in neuronal excitability with NE and a loss of sensitivity to ANG II. MI animals treated with captopril exhibited increased neuronal excitability with NE application, while MI animals treated with CGP42112A did not. Losartan treatment of MI animals did not alter excitability with NE compared with untreated MIs, but these animals did show an enhanced synaptic efficacy. This effect on synaptic function was likely due to presynaptic AT1 receptors, since ANG II was able to reduce output to nerve fiber stimulation in control animals, and this effect was prevented by inclusion of losartan in the bath solution. Analysis of AT receptor expression by Western blot showed a decrease in both AT1 and AT2 receptors with MI that was reversed by all three drug treatments. These data indicate that neuronal remodeling of the guinea pig cardiac plexus following MI is mediated, in part, by activation of both AT1 and AT2 receptors.
Collapse
MESH Headings
- Action Potentials
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 2 Receptor Blockers/pharmacology
- Animals
- Disease Models, Animal
- Electric Stimulation
- Evoked Potentials
- Guinea Pigs
- Heart/innervation
- Male
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Norepinephrine/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Presynaptic/antagonists & inhibitors
- Receptors, Presynaptic/metabolism
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
| | | | | | - E Marie Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Jeffrey L Ardell
- University of California at Los Angeles (UCLA) Neurocardiology Research Center of Excellence, Los Angeles, California; and UCLA Cardiac Arrhythmia Center, Los Angeles, California
| |
Collapse
|
12
|
González GE, Cassaglia P, Noli Truant S, Fernández MM, Wilensky L, Volberg V, Malchiodi EL, Morales C, Gelpi RJ. Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol 2014; 176:1423-5. [PMID: 25150483 DOI: 10.1016/j.ijcard.2014.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/02/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Germán E González
- Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cassaglia
- Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Noli Truant
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Wilensky
- Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Volberg
- Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Celina Morales
- Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Instituto de Fisiopatología Cardiovascular (INFICA), Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Mogi M, Kawajiri M, Tsukuda K, Matsumoto S, Yamada T, Horiuchi M. Serum levels of renin-angiotensin system components in acute stroke patients. Geriatr Gerontol Int 2013; 14:793-8. [PMID: 24279732 DOI: 10.1111/ggi.12167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 11/28/2022]
Abstract
AIM The renin-angiotensin system (RAS) is involved in the pathogenesis of ischemic brain damage, and is suggested to have therapeutic potential in stroke by large clinical trials. However, the changes of serum RAS components in patients with acute stroke are totally unknown. We assessed the serum levels of RAS components in acute stroke patients, and investigated the relationship between RAS and stroke subtype. METHODS Levels of angiotensin-converting enzyme (ACE), ACE2 and angiotensin II in serum from patients with acute stroke (n=117; male 75, female 42, age 69 ± 13 years) were measured by an established enzyme-linked immunosorbent assay method. Diagnosis of subtypes of ischemic stroke was based on the Trial of Org10172 in Acute Stroke Treatment classification. The Kruskal-Wallis test with post-hoc Mann-Whitney U-test with Bonferroni correction was carried out for statistical analysis. RESULTS Classification of stroke was as follows: large-artery atherosclerosis (n=44), cardioembolism (n=33), small-vessel occlusion (n=31), stroke of other determined etiology (n=9). Levels of angiotensin II and ACE did not show significant differences among each group. However, serum ACE2 level was significantly higher in the cardioembolism group than in the small-vessel occlusion group (cardioembolism 13 ± 9.3 ng/mL, large-artery atherosclerosis 10.2 ± 6.8 ng/mL, small-vessel occlusion 7.2 ± 3.7 ng/mL, stroke of other determined etiology 10.2 ± 7.3 ng/mL). ACE2 level showed a positive correlation with serum brain natriuretic peptide level (P=0.031). In contrast, angiotensin II concentration showed a negative correlation with National Institute of Health Stroke Scale score on admission (P=0.023). CONCLUSIONS These findings suggest that changes of serum RAS components could reflect stroke subtypes and predict stroke severity.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Hardwick JC, Ryan SE, Beaumont E, Ardell JL, Southerland EM. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci 2013; 181:4-12. [PMID: 24220238 DOI: 10.1016/j.autneu.2013.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022]
Abstract
Myocardial infarction (MI) is associated with remodeling of the heart and neurohumoral control systems. The objective of this study was to define time-dependent changes in intrinsic cardiac (IC) neuronal excitability, synaptic efficacy, and neurochemical modulation following MI. MI was produced in guinea pigs by ligation of the coronary artery and associated vein on the dorsal surface of the heart. Animals were recovered for 4, 7, 14, or 50 days. Intracellular voltage recordings were obtained in whole mounts of the cardiac neuronal plexus to determine passive and active neuronal properties of IC neurons. Immunohistochemical analysis demonstrated an immediate and persistent increase in the percentage of IC neurons immunoreactive for neuronal nitric oxide synthase. Examination of individual neuronal properties demonstrated that after hyperpolarizing potentials were significantly decreased in both amplitude and time course of recovery at 7 days post-MI. These parameters returned to control values by 50 days post-MI. Synaptic efficacy, as determined by the stimulation of axonal inputs, was enhanced at 7 days post-MI only. Neuronal excitability in absence of agonist challenge was unchanged following MI. Norepinephrine increased IC excitability to intracellular current injections, a response that was augmented post-MI. Angiotensin II potentiation of norepinephrine and bethanechol-induced excitability, evident in controls, was abolished post-MI. This study demonstrates that MI induces both persistent and transient changes in IC neuronal functions immediately following injury. Alterations in the IC neuronal network, which persist for weeks after the initial insult, may lead to alterations in autonomic signaling and cardiac control.
Collapse
Affiliation(s)
- Jean C Hardwick
- Department of Biology, Ithaca College, Ithaca, NY 14850, United States.
| | - Shannon E Ryan
- Department of Biology, Ithaca College, Ithaca, NY 14850, United States
| | - Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Jeffrey L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - E Marie Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
15
|
The Efficacy and Tolerability of Azilsartan in Mice With Left Ventricular Pressure Overload or Acute Myocardial Infarction. J Cardiovasc Pharmacol 2013; 61:437-43. [DOI: 10.1097/fjc.0b013e318288a6d7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Safari F, Bayat G, Shekarforoush S, Hekmatimoghaddam S, Anvari Z, Moghadam MF, Hajizadeh S. Expressional profile of cardiac uncoupling protein-2 following myocardial ischemia reperfusion in losartan- and ramiprilat-treated rats. J Renin Angiotensin Aldosterone Syst 2013; 15:209-17. [PMID: 23372044 DOI: 10.1177/1470320312474050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate the early changes of cardiac uncoupling protein-2 (UCP2) expression following myocardial ischemia reperfusion in rats chronically treated with ramiprilat and losartan. METHODS Male Wistar rats were assigned into seven groups (six in each): intact (control); sham-operated; nontreated rats subjected to ischemia and reperfusion (IR); ramiprilat-treated rats with (Ram+IR) and without ischemia (Ram); losartan treated with (Los+IR) and without ischemia (Los). Quantitative evaluation of UCP2 mRNA was carried out using real-time reverse transcription-polymerase chain reaction (RT-PCR). Mitochondria were isolated, and protein expression was quantified by Western blotting. RESULTS In IR group: UCP2 protein but not mRNA level was increased in the ischemic area of the left ventricle (LV) (172% ± 26.7, p < 0.001 vs. LV of control). Following acute myocardial IR, UCP2 protein levels was increased in the ischemic area of the LV but not in RV, suggesting the local effect of ischemia on UCP2 expression. IR-induced overexpression of UCP2 was suppressed by ramiprilat and losartan. CONCLUSION These findings suggest that losartan and ramiprilat can suppress UCP2 expression following myocardial IR, and by this mechanism may protect the myocardium against IR injury.
Collapse
Affiliation(s)
- Fatemeh Safari
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Bayat
- Department of Physiology, Tarbiat Modares University, Tehran, Iran Department of Physiology and Pharmacology, Faculty of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Seyedhossein Hekmatimoghaddam
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Anvari
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Sohrab Hajizadeh
- Department of Physiology, Tarbiat Modares University, Tehran, Iran Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
17
|
Hardwick JC, Southerland EM, Girasole AE, Ryan SE, Negrotto S, Ardell JL. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease. Am J Physiol Regul Integr Comp Physiol 2012; 303:R950-8. [PMID: 22933026 DOI: 10.1152/ajpregu.00223.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.
Collapse
Affiliation(s)
- Jean C Hardwick
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Kim KS, Abraham D, Williams B, Violin JD, Mao L, Rockman HA. β-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol Heart Circ Physiol 2012; 303:H1001-10. [PMID: 22886417 DOI: 10.1152/ajpheart.00475.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pharmacological blockade of the ANG II type 1 receptor (AT1R) is a common therapy for treatment of congestive heart failure and hypertension. Increasing evidence suggests that selective engagement of β-arrestin-mediated AT1R signaling, referred to as biased signaling, promotes cardioprotective signaling. Here, we tested the hypothesis that a β-arrestin-biased AT1R ligand TRV120023 would confer cardioprotection in response to acute cardiac injury compared with the traditional AT1R blocker (ARB), losartan. TRV120023 promotes cardiac contractility, assessed by pressure-volume loop analyses, while blocking the effects of endogenous ANG II. Compared with losartan, TRV120023 significantly activates MAPK and Akt signaling pathways. These hemodynamic and biochemical effects were lost in β-arrestin-2 knockout (KO) mice. In response to cardiac injury induced by ischemia reperfusion injury or mechanical stretch, pretreatment with TRV120023 significantly diminishes cell death compared with losartan, which did not appear to be cardioprotective. This cytoprotective effect was lost in β-arrestin-2 KO mice. The β-arrestin-biased AT1R ligand, TRV120023, has cardioprotective and functional properties in vivo, which are distinct from losartan. Our data suggest that this novel class of drugs may provide an advantage over conventional ARBs by supporting cardiac function and reducing cellular injury during acute cardiac injury.
Collapse
Affiliation(s)
- Ki-Seok Kim
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abohashem-Aly AA, Meng X, Li J, Sadaria MR, Ao L, Wennergren J, Fullerton DA, Raeburn CD. DITPA, A Thyroid Hormone Analog, Reduces Infarct Size and Attenuates the Inflammatory Response Following Myocardial Ischemia. J Surg Res 2011; 171:379-85. [DOI: 10.1016/j.jss.2011.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
20
|
Safari F, Hajizadeh S, Shekarforoush S, Bayat G, Foadoddini M, Khoshbaten A. Influence of ramiprilat and losartan on ischemia reperfusion injury in rat hearts. J Renin Angiotensin Aldosterone Syst 2011; 13:29-35. [DOI: 10.1177/1470320311426025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypothesis/introduction: Our aim was to investigate whether a non-hypotensive dose of ramiprilat and losartan has myocardial protective effects during myocardial ischemia/reperfusion in vivo. Materials and methods: Three groups of rats were given 10 mg/kg per day of losartan for one (L-1W), four (L-4W) or 10 (L-10W) weeks. Another three groups were given 50 µg/kg per day of ramiprilat for one (R-1W), four (R-4W) or 10 (R-10W) weeks. The animals underwent 30 min of left anterior descending artery occlusion and subsequent reperfusion for 120 min. Results: Myocardial infarct size (IS) was reduced in R-1W (28.4 ± 6.3%, p < 0.001), R-4W (27.8 ± 7.4, p < 0.001), L-4W (31.8 ± 6%, p < 0.05) and L-10W (25.3 ± 5.7, p < 0.001) groups compared with a saline group (48.3 ± 7.8%). A significant reduction in the number of ventricular ectopic beats (VEBs) was noted in groups R-1W (209 ± 41, p < 0.01), R-4W (176 ± 39, p < 0.01), L-4W (215 ± 52, p < 0.05) and L-10W (191 ± 61, p < 0.01 vs. saline 329 ± 48). The incidence of irreversible ventricular fibrillation (VF) and mortality were decreased significantly only in L-10W group. There were no significant decreases in episodes of VT, the incidence of irreversible VF and mortality in all of the groups treated with ramiprilat. Conclusion: These data indicate that losartan and ramiprilat protect the heart against ischemia/reperfusion injury independently of their hemodynamic effects but in a time-dependent manner.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Physiology, Tarbiat Modares University, Tehran, Iran
- Deptartment of Physiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sohrab Hajizadeh
- Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | | | - Gholamreza Bayat
- Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Foadoddini
- Department of Physiology and Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshbaten
- Exercise Physiology Research Center, Baqiatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
D’Annunzio V, Donato M, Fellet A, Buchholz B, Arciuch VGA, Carreras MC, Valdez LB, Zaobornyj T, Morales C, Boveris A, Poderoso JJ, Balaszczuk AM, Gelpi RJ. Diastolic function during hemorrhagic shock in rabbits. Mol Cell Biochem 2011; 359:169-76. [DOI: 10.1007/s11010-011-1011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
|
22
|
Dai W, Kloner RA. Potential role of renin-angiotensin system blockade for preventing myocardial ischemia/reperfusion injury and remodeling after myocardial infarction. Postgrad Med 2011; 123:49-55. [PMID: 21474893 DOI: 10.3810/pgm.2011.03.2263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Experimental and clinical studies have demonstrated that myocardial ischemia induces activation of various components of the renin-angiotensin system (RAS), including angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensins, and angiotensin receptors, in the acute phase of myocardial infarction and the postinfarction remodeling process. Pharmacological inhibition of the RAS by administration of renin inhibitors, ACE inhibitors, and angiotensin receptor blockers has shown beneficial effects on the pathological processes of myocardial infarction in both experimental animal studies and clinical trials. However, the potential mechanisms responsible for the cardioprotection of RAS inhibition remain unclear. In this review, we discuss roles of RAS blocking in the prevention of myocardial ischemia/reperfusion injury and postinfarction remodeling.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute of Good Samaritan Hospital, Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA 90017, USA.
| | | |
Collapse
|
23
|
Animal models of cardiovascular diseases. J Biomed Biotechnol 2011; 2011:497841. [PMID: 21403831 PMCID: PMC3042667 DOI: 10.1155/2011/497841] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/04/2011] [Accepted: 01/17/2011] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.
Collapse
|