1
|
Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022; 117:1. [PMID: 35024969 PMCID: PMC8758654 DOI: 10.1007/s00395-022-00909-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023]
Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
Collapse
Affiliation(s)
- Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
2
|
van de Wouw J, Sorop O, van Drie RWA, Joles JA, Danser AHJ, Verhaar MC, Merkus D, Duncker DJ. Reduced nitric oxide bioavailability impairs myocardial oxygen balance during exercise in swine with multiple risk factors. Basic Res Cardiol 2021; 116:50. [PMID: 34435256 PMCID: PMC8387273 DOI: 10.1007/s00395-021-00890-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2021] [Indexed: 10/28/2022]
Abstract
In the present study, we tested the hypothesis that multiple risk factors, including diabetes mellitus (DM), dyslipidaemia and chronic kidney disease (CKD) result in a loss of nitric oxide (NO) signalling, thereby contributing to coronary microvascular dysfunction. Risk factors were induced in 12 female swine by intravenous streptozotocin injections (DM), a high fat diet (HFD) and renal artery embolization (CKD). Female healthy swine (n = 13) on normal diet served as controls (Normal). After 5 months, swine were chronically instrumented and studied at rest and during exercise. DM + HFD + CKD swine demonstrated significant hyperglycaemia, dyslipidaemia and impaired kidney function compared to Normal swine. These risk factors were accompanied by coronary microvascular endothelial dysfunction both in vivo and in isolated small arteries, due to a reduced NO bioavailability, associated with perturbations in myocardial oxygen balance at rest and during exercise. NO synthase inhibition caused coronary microvascular constriction in exercising Normal swine, but had no effect in DM + HFD + CKD animals, while inhibition of phosphodiesterase 5 produced similar vasodilator responses in both groups, indicating that loss of NO bioavailability was principally responsible for the observed coronary microvascular dysfunction. This was associated with an increase in myocardial 8-isoprostane levels and a decrease in antioxidant capacity, while antioxidants restored the vasodilation to bradykinin in isolated coronary small arteries, suggesting that oxidative stress was principally responsible for the reduced NO bioavailability. In conclusion, five months of combined exposure to DM + HFD + CKD produces coronary endothelial dysfunction due to impaired NO bioavailability, resulting in impaired myocardial perfusion at rest and during exercise.
Collapse
Affiliation(s)
- Jens van de Wouw
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Oana Sorop
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Ruben W A van Drie
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377, LMU Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
| | - Dirk J Duncker
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands.
| |
Collapse
|
3
|
Abstract
Activation of the neuro-hormonal system is a pathophysiological consequence of heart failure. Neuro-hormonal activation promotes metabolic changes, such as insulin resistance, and determines an increased use of non-carbohydrate substrates for energy production. Fasting blood ketone bodies as well as fat oxidation are increased in patients with heart failure, yielding a state of metabolic inefficiency. The net result is additional depletion of myocardial adenosine triphosphate, phosphocreatine and creatine kinase levels with further decreased efficiency of mechanical work. In this context, manipulation of cardiac energy metabolism by modification of substrate use by the failing heart has produced positive clinical results. The results of current research support the concept that shifting the energy substrate preference away from fatty acid metabolism and towards glucose metabolism could be an effective adjunctive treatment in patients with heart failure. The additional use of drugs able to partially inhibit fatty acids oxidation in patients with heart failure may therefore yield a significant protective effect for clinical symptoms and cardiac function improvement, and simultaneously ameliorate left ventricular remodelling. Certainly, to clarify the exact therapeutic role of metabolic therapy in heart failure, a large multicentre, randomised controlled trial should be performed.
Collapse
|
4
|
Balestra GM, Mik EG, Eerbeek O, Specht PAC, van der Laarse WJ, Zuurbier CJ. Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure? Respir Res 2015; 16:6. [PMID: 25645252 PMCID: PMC4320611 DOI: 10.1186/s12931-015-0178-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking. Here we directly evaluated this hypothesis by using a recently reported technique of oxygen-dependent quenching of delayed fluorescence of mitochondrial protoprophyrin IX, to determine the distribution of mitochondrial oxygen tension (mitoPO2) within the right ventricle (RV) subjected to progressive PAH. METHODS PAH was induced through a single injection of monocrotaline (MCT). Control (saline-injected), compensated RV hypertrophy (30 mg/kg MCT; MCT30), and RV failure (60 mg/kg MCT; MCT60) rats were compared 4 wk after treatment. The distribution of mitoPO2 within the RV was determined in mechanically-ventilated, anaesthetized animals, applying different inspired oxygen (FiO2) levels and two increment dosages of dobutamine. RESULTS MCT60 resulted in RV failure (increased mortality, weight loss, increased lung weight), MCT30 resulted in compensated RV hypertrophy. At 30% or 40% FiO2, necessary to obtain physiological arterial PO2 in the diseased animals, RV failure rats had significantly less mitochondria (15% of total mitochondria) in the 0-20 mmHg mitoPO2 range than hypertrophied RV rats (48%) or control rats (54%). Only when oxygen supply was reduced to 21% FiO2, resulting in low arterial PO2 for the MCT60 animals, or when oxygen demand increased with high dose dobutamine, the number of failing RV mitochondria with low oxygen became similar to control RV. In addition, metabolic enzyme analysis revealed similar mitochondrial mass, increased glycolytic hexokinase activity following MCT, with increased lactate dehydrogenase activity only in compensated hypertrophied RV. CONCLUSIONS Our novel observation of increased mitochondrial oxygenation suggests down-regulation of in vivo mitochondrial oxygen consumption, in the absence of hypoxia, with transition towards right ventricular failure induced by pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gianmarco M Balestra
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Egbert G Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Otto Eerbeek
- Department of Anatomy, Embryology and Physiology, AMC, Amsterdam, The Netherlands.
| | - Patricia A C Specht
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | - Coert J Zuurbier
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, AMC, Amsterdam, The Netherlands. .,Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
|
6
|
Reassessment of a suggested pharmacological approach to heart failure: L-arginine is only a marginal NO donor in pigs. J Cardiovasc Pharmacol 2012; 60:262-8. [PMID: 22592773 DOI: 10.1097/fjc.0b013e31825de0bf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES L-Arginine has been tested in various cardiovascular diseases, mainly to improve endothelial function through NO production. However, as the results have been partly unpredictable, we assessed the hemodynamic, energetic and metabolic effects of L-arginine to clarify any potential benefits in postischemic left ventricular (LV) dysfunction. METHODS LV dysfunction was induced by repetitive brief coronary occlusions in 12 anesthetized, open chest pigs. L-Arginine was subsequently infused (bolus 400 mg·kg and continuously for 1 hour, 250 mg·kg·h). Hemodynamic parameters, metabolites of L-arginine and myocardial energetics were assessed sequentially. RESULTS L-Arginine infusions caused a substantial rise in plasma L-arginine (3474 ± 358 μmole·L) accompanied by a 2-fold increase in plasma L-citrulline. No significant alterations in vascular resistance or LV contractility were observed from L-arginine. Mean arterial pressure dropped from 78 ± 11 to 72 ± 10 mm Hg (P = 0.019) and 70 ± 8 mm Hg (P = 0.003) after bolus and infusions, respectively. Myocardial oxygen consumption was unaltered, and myocardial creatine content was not increased after 90 minutes of L-arginine infusion. CONCLUSION L-Arginine infusion did not influence the energetic cost of myocardial contractility, and only minor hemodynamic changes were observed despite a demonstrable turnover of L-arginine. These findings question the use of L-arginine to promote therapeutic NO formation in the acute setting.
Collapse
|
7
|
Takase B, Akima T, Uehata A, Ishihara M, Kurita A. Endothelial Function as a Possible Significant Determinant of Cardiac Function during Exercise in Patients with Structural Heart Disease. Cardiol Res Pract 2010; 2009:927385. [PMID: 20066168 PMCID: PMC2804048 DOI: 10.4061/2009/927385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/10/2009] [Accepted: 10/30/2009] [Indexed: 11/20/2022] Open
Abstract
This study was investigated the role that endothelial function and systemic vascular resistance (SVR) play in determining cardiac function reserve during exercise by a new ambulatory radionuclide monitoring system (VEST) in patients with heart disease. The study population consisted of 32 patients. The patients had cardiopulmonary stress testing using the treadmill Ramp protocol and the VEST. The anaerobic threshold (AT) was autodetermined using the V-slope method. The SVR was calculated by determining the mean blood pressure/cardiac output. Flow-mediated vasodilation (FMD) was measured in the brachial artery to evaluate endotheilial function. FMD and the percent change f'rom rest to AT in SVR correlated with those from rest to AT in ejection fraction and peak ejection ratio by VEST, respectively. Our findings suggest that FMD in the brachial artery and the SVR determined by VEST in patients with heart disease can possibly reflect cardiac function reserve during aerobic exercise.
Collapse
Affiliation(s)
- Bonpei Takase
- Department of Intensive Care Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | |
Collapse
|
8
|
Kaluski E, Uriel N, Milo-Cotter O, Klapholz M. Nitric oxide synthase inhibitors in cardiogenic shock: present and future. Future Cardiol 2009; 4:183-9. [PMID: 19804295 DOI: 10.2217/14796678.4.2.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiogenic shock (CS) accompanying myocardial infarction carries a case fatality rate of 40-50%. Profound myocardial dysfunction is partially reversible, and possibly related to a state of inflammatory storm accompanied by nitric oxide (NO) overproduction. CS survivors enjoy satisfactory longevity and quality of life. The focus of this review is to describe the available data regarding NO synthase (NOS) inhibitors in CS. In view of supportive evidence from mammalian research (inducible-NOS-knockout mice are less susceptible to ischemic and reperfusion injury), therapies mitigating NO overproduction were tested in human CS subjects. Human randomized clinical trials project excellent safety but lack of efficacy. Although the Phase III, multicenter, prospective, randomized, double-blind, placebo-controlled Study to Assess the Safety and Efficacy of Tilarginine Acetate (L-N(G)-monomethyl arginine citrate [L-NMMA]) in CS (TRIUMPH) trial demonstrated lack of clinical benefit of 5-h infusion of L-NMMA in CS, major design issues regarding the optimal timing, dosing, duration and NOS inhibitor need to be addressed prior to rendering this therapy ineffective.
Collapse
Affiliation(s)
- Edo Kaluski
- Director of Cardiac Catheterization Laboratories University Hospital and the University of Medicine & Dentistry, Department of Cardiology, 185 South Orange Ave, MSB I-538 Newark, NJ 07101, USA.
| | | | | | | |
Collapse
|
9
|
Zhang P, Hou M, Li Y, Xu X, Barsoum M, Chen Y, Bache RJ. NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart. Am J Physiol Heart Circ Physiol 2009; 296:H840-6. [PMID: 19168727 DOI: 10.1152/ajpheart.00519.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased reactive oxygen species (ROS) produced by the failing heart can react with nitric oxide (NO), thereby decreasing NO bioavailability. This study tested the hypothesis that increased ROS generation contributes to coronary endothelial dysfunction in the failing heart. Congestive heart failure (CHF) was produced in six dogs by ventricular pacing at 240 beats/min for 4 wk. Studies were performed at rest and during treadmill exercise under control conditions and after treatment with the NADPH oxidase inhibitor and antioxidant apocynin (4 mg/kg iv). Apocynin caused no significant changes in heart rate, aortic pressure, left ventricular (LV) systolic pressure, LV end-diastolic pressure, or maximum rate of LV pressure increase at rest or during exercise in normal or CHF dogs. Apocynin caused no change in coronary blood flow (CBF) in normal dogs but increased CBF at rest and during exercise in animals with CHF (P < 0.05). Intracoronary ACh caused dose-dependent increases of CBF that were blunted in CHF. Apocynin had no effect on the response to ACh in normal dogs but augmented the response to ACh in CHF dogs (P < 0.05). The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were significantly greater in failing than in normal myocardium. Furthermore, coelenterazine chemiluminescence for O(2)(-) was more than twice normal in failing myocardium, and this difference was abolished by apocynin. Western blot analysis of myocardial lysates demonstrated that the p47(phox) and p22(phox) subunits of NADPH were significantly increased in the failing hearts, while real-time PCR demonstrated that Nox2 mRNA was significantly increased. The data indicate that increased ROS generation in the failing heart is associated with coronary endothelial dysfunction and suggest that NADPH oxidase may contribute to this abnormality.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Medicine, University of Minnesota Health Sciences Center, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstracts of the 5th International Meeting on Intensive Cardiac Care, October 14-16, 2007, Tel Aviv, Israel. ACTA ACUST UNITED AC 2007; 9:134-74. [PMID: 17917844 DOI: 10.1080/17482940701649731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide and cardiac function. Life Sci 2007; 81:779-93. [PMID: 17707439 DOI: 10.1016/j.lfs.2007.07.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 07/16/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO) participates in the control of contractility and heart rate, limits cardiac remodeling after an infarction and contributes to the protective effect of ischemic pre- and postconditioning. Low concentrations of NO, with production of small amounts of cGMP, inhibit phosphodiesterase III, thus preventing the hydrolysis of cAMP. The subsequent activation of a protein-kinase A causes the opening of sarcolemmal voltage-operated and sarcoplasmic ryanodin receptor Ca(2+) channels, thus increasing myocardial contractility. High concentrations of NO induce the production of larger amounts of cGMP which are responsible for a cardiodepression in response to an activation of protein kinase G (PKG) with blockade of sarcolemmal Ca(2+) channels. NO is also involved in reduced contractile response to adrenergic stimulation in heart failure. A reduction of heart rate is an evident effect of NO-synthase (NOS) inhibition. It is noteworthy that the direct effect of NOS inhibition can be altered if baroreceptors are stimulated by increases in blood pressure. Finally, NO can limit the deleterious effects of cardiac remodeling after myocardial infarction possibly via the cGMP pathway. The protective effect of NO is mainly mediated by the guanylyl cyclase-cGMP pathway resulting in activation of PKG with opening of mitochondrial ATP-sensitive potassium channels and inhibition of the mitochondrial permeability transition pores. NO acting on heart is produced by vascular and endocardial endothelial NOS, as well as neuronal and inducible synthases. In particular, while in the basal control of contractility, endothelial synthase has a predominant role, the inducible isoform is mainly responsible for the cardiodepression in septic shock.
Collapse
Affiliation(s)
- R Rastaldo
- Department of Neurosciences, Physiology Division, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Traverse JH, Chen Y, Hou M, Li Y, Bache RJ. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res 2007; 100:1643-9. [PMID: 17478726 DOI: 10.1161/circresaha.107.150219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.
Collapse
Affiliation(s)
- Jay H Traverse
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
13
|
Kaluski E, Hendler A, Blatt A, Uriel N. Nitric oxide synthase inhibitors in post-myocardial infarction cardiogenic shock--an update. Clin Cardiol 2007; 29:482-8. [PMID: 17133844 PMCID: PMC6654158 DOI: 10.1002/clc.4960291103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cardiogenic shock (CS) in acute myocardial infarction, after successful coronary angioplasty, still carries a case fatality rate of 50%. These patients succumb to a systemic metabolic storm, superimposed on extensive myocardial necrosis and stunning. Nitric oxide (NO) overproduction contributes to the pathophysiology of this morbid state. Current data regarding the physiologic effects of NO and nitric oxide synthase (NOS) inhibitors on the cardiovascular system are reviewed. Clinical trials assessing the safety and efficacy of NOS inhibitors in CS are summarized.
Collapse
Affiliation(s)
- Edo Kaluski
- Department of Cardiology, Assaf Harofeh Medical Center, Zrifin, Israel.
| | | | | | | |
Collapse
|
14
|
Zhao X, Chen YR, He G, Zhang A, Druhan LJ, Strauch AR, Zweier JL. Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol 2006; 292:H1541-50. [PMID: 17114245 DOI: 10.1152/ajpheart.00264.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it has been shown that endothelial nitric oxide synthase (eNOS)-derived nitric oxide downregulates mitochondrial oxygen consumption during early reperfusion, its effects on inducible NOS (iNOS) induction and myocardial injury during late reperfusion are unknown. Wild-type (WT) and eNOS(-/-) mice were subjected to 30 min of coronary ligation followed by reperfusion. Expression of iNOS mRNA and protein levels and peroxynitrite production were lower in postischemic myocardium of eNOS(-/-) mice than levels in WT mice 48 h postreperfusion. Significantly improved hemodynamics (+/-dP/dt, left ventricular systolic pressure, mean arterial pressure), increased rate pressure product, and reduced myocardial infarct size (18 +/- 2.5% vs. 31 +/- 4.6%) were found 48 h after reperfusion in eNOS(-/-) mice compared with WT mice. Myocardial infarct size was also significantly decreased in WT mice treated with the specific iNOS inhibitor 1400W (20.5 +/- 3.4%) compared with WT mice treated with PBS (33.9 +/- 5.3%). A marked reperfusion-induced hyperoxygenation state was observed by electron paramagnetic resonance oximetry in postischemic myocardium, but Po(2) values were significantly lower from 1 to 72 h in eNOS(-/-) than in WT mice. Cytochrome c-oxidase activity and NADH dehydrogenase activity were significantly decreased in postischemic myocardium in WT and eNOS(-/-) mice compared with baseline control, respectively, and NADH dehydrogenase activity was significantly higher in eNOS(-/-) than in WT mice. Thus deficiency of eNOS exerted a sustained beneficial effect on postischemic myocardium 48 h after reperfusion with preserved mitochondrial function, which appears to be due to decreased iNOS induction and decreased iNOS-derived peroxynitrite in postischemic myocardium.
Collapse
Affiliation(s)
- Xue Zhao
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hou M, Hu Q, Chen Y, Zhao L, Zhang J, Bache RJ. Acute Effects of Febuxostat, a Nonpurine Selective Inhibitor of Xanthine Oxidase, in Pacing Induced Heart Failure. J Cardiovasc Pharmacol 2006; 48:255-63. [PMID: 17110808 DOI: 10.1097/01.fjc.0000249961.61451.da] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated whether xanthine oxidase inhibition with febuxostat enhances left ventricular (LV) function and improves myocardial high energy phosphates (HEP) in dogs with pacing-induced heart failure (CHF). Febuxostat (2.2 mg/kg over 10 minutes followed by 0.06 mg/kg/min) caused no change of LV function or myocardial oxygen consumption (MVO2) at rest or during treadmill exercise in normal dogs. In dogs with CHF, febuxostat increased LV dP/dtmax at rest and during heavy exercise (P < 0.05), indicating improved LV function with no change of MVO2. Myocardial adenosine triphosphate (ATP) and phosphocreatine (PCr) were examined using 31P nuclear magnetic resonance spectroscopy in the open chest state. In normal dogs, febuxostat increased PCr/ATP during basal conditions and during high workload produced by dobutamine + dopamine (P < 0.05). PCr/ATP was decreased in animals with CHF; in these animals, febuxostat (given after completing basal and high workload measurements with vehicle) tended to increase PCr/ATP during basal conditions with no effect during catecholamine stimulation. Thus, febuxostat improved LV performance in awake dogs with CHF, but caused only a trend toward increased PCr/ATP in the open chest state. It is possible that the antecedent high workload condition prior to drug administration blunted the effect of febuxostat on HEP in the CHF animals. Alternatively, beneficial effects of febuxostat on LV performance in the failing heart may not involve HEP.
Collapse
Affiliation(s)
- Mingxiao Hou
- Division of Cardiology, Department of Medicine, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK. Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 2003; 17:417-25. [PMID: 12631581 DOI: 10.1096/fj.02-0722com] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased reduction of glucose via the polyol pathway enzyme aldose reductase (AR) has been linked to the development of secondary diabetic complications. Because AR is a redox-sensitive protein, which in vitro is readily modified by NO donors, we tested the hypothesis that NO may be a physiological regulator of AR. We found that administration of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) increased sorbitol accumulation in the aorta of nondiabetic and diabetic rats, whereas treatment with L-arginine (a precursor of NO) or nitroglycerine patches prevented sorbitol accumulation. When incubated ex vivo with high glucose, sorbitol accumulation was increased by L-NAME and prevented by L-arginine in strips of aorta from rats or wild-type, but not eNOS-deficient, mice. Exposure to NO donors also inhibited AR and prevented sorbitol accumulation in rat aortic vascular smooth muscle cells (VSMC) in culture. The NO donors also increased the incorporation of radioactivity in the AR protein immunoprecipitated from VSMC in which the glutathione pool was prelabeled with [35S]-cysteine. Based on these observations, we suggest that NO regulates the vascular synthesis of polyols by S-thiolating AR; therefore, increasing NO synthesis or bioavailability may be useful in preventing diabetes-induced changes in the polyol pathway.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
BACKGROUND Endogenous nitric oxide (NO) has been reported to inhibit oxygen consumption in the normal heart, so that nonselective inhibition of NO synthase (NOS) caused an increase of myocardial oxygen consumption (MVO2). Although endothelial NOS responses are depressed in congestive heart failure (CHF), inducible NOS (iNOS) may be expressed in failing myocardium. METHODS AND RESULTS This study tested the hypothesis that NOS inhibition would increase MVO2 in the failing heart. CHF was produced in dogs by use of the rapid ventricular pacing model. In comparison with normal values, animals with CHF had reduced coronary blood flow and MVO2 at rest, with a blunted response to treadmill exercise. Selective iNOS inhibition with S-methylisothiourea (1.5 mg/kg IC) increased left ventricular systolic pressure and left ventricular dP/dt and caused an increase in MVO2 at rest and during exercise (P<0.05), with a parallel upward shift in the relationship between MVO2 and rate-pressure product. In contrast, S-methylisothiourea had no effect on MVO2 or coronary flow in normal animals, although nonselective NOS inhibition with N(G)-nitro-L-arginine did cause an increase of MVO2 in normal and in CHF animals. CONCLUSIONS The results indicate that endogenous NO can modulate MVO2 in failing hearts, but unlike the normal heart, this NO appears to be produced, at least in part, by iNOS.
Collapse
Affiliation(s)
- YingJie Chen
- Department of Medicine, Division of Cardiology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|