1
|
Ricci A, Cataldi A, Gallorini M, di Giacomo V, Rapino M, Di Pietro N, Mantarro M, Piattelli A, Zara S. Angiogenic Events Positively Modulated by Complex Magnetic Fields in an In Vitro Endothelial Cell Model. Cells 2025; 14:332. [PMID: 40072061 PMCID: PMC11898498 DOI: 10.3390/cells14050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
The vascular system is primarily responsible for orchestrating the underlying healing processes to achieve tissue regeneration, thus the promotion of angiogenic events could be a useful strategy to repair injured tissues. Among several approaches to stimulate tissue regeneration, non-invasive devices are currently widely diffused. Complex Magnetic Fields (CMFs) are innovative pulsed multifrequency electromagnetic fields used for their promising results in clinical applications, such as diabetic foot treatment or edema resorption. Nevertheless, few papers are available demonstrating the biological mechanisms involved. In this paper, in order to understand CMFs' capability to promote angiogenic events, Regenerative Tissue Program (RTP) was applied to an in vitro Endothelial Cells (ECs) model. ECs were stimulated with (I) 2 RTP consecutive cycles, (II) with an interval of 8 h (T0 + T8), or (III) 24 h (T0 + T24) from one cycle to another. Results demonstrate that (I) extracellular matrix degradation is promoted through matrix metalloproteinases 2 and 9 modulation, leading to an increased cell migratory capability; (II) CMFs support EC growth, activating Integrin β1-Erk-Cdk2 pathway and sustaining G1/S transition; (III) vessel morphogenesis is promoted when CMFs are applied. In conclusion, the promising clinical results are supported by in vitro analyses which evidence that main angiogenic events are stimulated by CMFs.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.); (V.d.G.); (S.Z.)
| | - Amelia Cataldi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.); (V.d.G.); (S.Z.)
- Ud’A Techlab, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.); (V.d.G.); (S.Z.)
| | - Viviana di Giacomo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.); (V.d.G.); (S.Z.)
| | - Monica Rapino
- Unit of Chieti, Genetic Molecular Institute of CNR, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Adriano Piattelli
- School of Dentistry, UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Susi Zara
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.); (V.d.G.); (S.Z.)
| |
Collapse
|
2
|
Egg M, Kietzmann T. Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer. Redox Biol 2025; 79:103483. [PMID: 39729909 PMCID: PMC11733197 DOI: 10.1016/j.redox.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment. While WEMF have been used therapeutically for musculoskeletal disorders for decades, their role in oncology is still emerging. WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis, among others. This review explores the potential of WEMF in conjunction with reactive oxygen species as a cancer therapy, highlighting WEMFs selective targeting of cancer cells and its non-ionizing nature, which could reduce collateral damage compared to conventional treatments. In addition, synchronization of WEMF with circadian rhythms may further enhance its therapeutic efficacy, as has been demonstrated in other cancer therapies.
Collapse
Affiliation(s)
- Margit Egg
- Institute of Zoology, University Innsbruck, Technikerstraße 25, 6020, Innsbruck, Tyrol, A-6020, Austria.
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
3
|
Nawrot K, Soroko-Dubrovina M, Zielińska P, Dudek K, Howell K. The Application of Infrared Thermography in the Assessment of BEMER Physical Vascular Therapy on Body Surface Temperature in Racing Thoroughbreds: A Preliminary Study. Animals (Basel) 2024; 14:1538. [PMID: 38891585 PMCID: PMC11171224 DOI: 10.3390/ani14111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The study aimed to evaluate the impact of BEMER (Physical Vascular Therapy) on body surface temperature using infrared thermography (IRT) in the distal parts of the forelimbs in Thoroughbreds. The study tested the hypothesis that BEMER therapy leads to an increase in body surface temperature and blood vessel diameter in the distal parts of the forelimbs. The study involved 16 horses, split into 2 groups: active BEMER (n = 8) and sham (n = 8). The active BEMER group had BEMER boots applied to the distal parts of the forelimbs, whereas the sham group had BEMER boots applied without activation of the device. Both groups underwent IRT examination to detect changes in body surface temperature, followed by ultrasonographic examination to assess changes in vein and artery diameter before (BT) and just after (JAT) therapy. The IRT examination was repeated 15 min after BEMER therapy (15AT). There were no significant body surface temperature differences between BT and JAT in any regions of interest (ROIs) in either group. In the active BEMER group, the ROIs did not change significantly at 15AT, compared to the temperatures measured at BT (except for the hooves). At 15AT the temperature of all the ROIs (except the fetlock bone) dropped significantly in the sham group. In the ultrasonographic examination, there was a significant increase in vein and artery diameter in the study group JAT, whereas the sham group had a significant increase only in artery diameter JAT. These results suggest an effect of BEMER on stimulating blood circulation in the distal parts of the forelimbs in clinically healthy horses. IRT did not identify changes in skin surface temperature after BEMER therapy at the distal parts of the forelimbs.
Collapse
Affiliation(s)
- Karolina Nawrot
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-160 Wroclaw, Poland;
| | - Maria Soroko-Dubrovina
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-160 Wroclaw, Poland;
| | - Paulina Zielińska
- Department of Surgery, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland;
| | - Krzysztof Dudek
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Kevin Howell
- Microvascular Diagnostics, Royal Free Hospital, Pond Street, London NW3 2QG, UK;
| |
Collapse
|
4
|
Frachini ECG, Silva JB, Fornaciari B, Baptista MS, Ulrich H, Petri DFS. Static Magnetic Field Reduces Intracellular ROS Levels and Protects Cells Against Peroxide-Induced Damage: Suggested Roles for Catalase. Neurotox Res 2023; 42:2. [PMID: 38095761 DOI: 10.1007/s12640-023-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (H2O2), tert-butyl hydroperoxide (tBHP), H2O2/sodium azide (NaN3) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure. Exposure to SMF accelerated the wound healing of scratched cell monolayers and significantly reduced the H2O2-induced and the tBHP-induced cell deaths. Interestingly, SMF was able to revert the effects of NaN3 (a catalase inhibitor), suggesting an increased activity of catalase under the influence of the magnetic field. In agreement with this hypothesis, SMF significantly reduced the oxidation of DCF-H2, indicating a lower level of intracellular ROS. When the redox imbalance was triggered through photosensitized oxidation, no protection was observed. This observation aligns with the proposed role of catalase in cellular proctetion under SMF. Exposition to SMF should be further validated in vitro and in vivo as a potential therapeutic approach for neurodegenerative disorders.
Collapse
Affiliation(s)
- Emilli Caroline Garcia Frachini
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Barbara Fornaciari
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Maurício S Baptista
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| | - Denise Freitas Siqueira Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
McGraw M, Gilmer G, Bergmann J, Seshan V, Wang K, Pekker D, Modo M, Ambrosio F. Mapping the Landscape of Magnetic Field Effects on Neural Regeneration and Repair: A Combined Systematic Review, Mathematical Model, and Meta-Analysis. J Tissue Eng Regen Med 2023; 2023:5038317. [PMID: 40226417 PMCID: PMC11918650 DOI: 10.1155/2023/5038317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 04/15/2025]
Abstract
Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002-10,000 mT with frequencies of 0-150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.
Collapse
Affiliation(s)
- Meghan McGraw
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana Bergmann
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Biological Sciences in the Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu Seshan
- Institute of Quantum Science and Technology, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - David Pekker
- Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Yang J, Feng Y, Li Q, Zeng Y. Evidence of the static magnetic field effects on bone-related diseases and bone cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:168-180. [PMID: 36462638 DOI: 10.1016/j.pbiomolbio.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Static magnetic fields (SMFs), magnetic fields with constant intensity and orientation, have been extensively studied in the field of bone biology both fundamentally and clinically as a non-invasive physical factor. A large number of animal experiments and clinical studies have shown that SMFs have effective therapeutic effects on bone-related diseases such as non-healing fractures, bone non-union of bone implants, osteoporosis and osteoarthritis. The maintenance of bone health in adults depends on the basic functions of bone cells, such as bone formation by osteoblasts and bone resorption by osteoclasts. Numerous studies have revealed that SMFs can regulate the proliferation, differentiation, and function of bone tissue cells, including bone marrow mesenchymal stem cells (BMSCs), osteoblasts, bone marrow monocytes (BMMs), osteoclasts, and osteocytes. In this paper, the effects of SMFs on bone-related diseases and bone tissue cells are reviewed from both in vivo studies and in vitro studies, and the possible mechanisms are analyzed. In addition, some challenges that need to be further addressed in the research of SMF and bone are also discussed.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Apostolova E, Lukova P, Baldzhieva A, Delattre C, Molinié R, Petit E, Elboutachfaiti R, Nikolova M, Iliev I, Murdjeva M, Kokova V. Structural Characterization and In Vivo Anti-Inflammatory Activity of Fucoidan from Cystoseira crinita (Desf.) Borry. Mar Drugs 2022; 20:714. [PMID: 36421993 PMCID: PMC9693085 DOI: 10.3390/md20110714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of 20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects in the rat paw edema model, and this effect was present during all stages of the experiment. When compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in serum levels of IL-1β in rats treated with both doses of C. crinita fucoidan was observed in comparison to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin. Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Kimura T, Inaka K, Ogiso N. Demonstrative Experiment on the Favorable Effects of Static Electric Field Treatment on Vitamin D3-Induced Hypercalcemia. BIOLOGY 2021; 10:biology10111116. [PMID: 34827108 PMCID: PMC8615207 DOI: 10.3390/biology10111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary Static electric field (SEF) treatment by high-voltage alternating current is a traditional complementary medicine in Japan. Although it is believed that the SEF-induced electric current serves to regulate cellular or humoral responses in patients, the mechanism for SEF treatment remains poorly understood. There have been very few experimental reports on the biological action with SEF treatment. The aim of this study was to elucidate the effects of SEF treatment on vitamin D3 (Vit D3)-induced abnormalities in mice. SEF treatment improved the abnormalities in the renal function tests and the imbalance of serum electrolytes. In addition, this treatment remarkably attenuated the Vit D3-induced tissue injuries (severe tissue calcification in the kidneys, hearts, and stomachs). It was likely that the SEF treatment had some favorable effects on the metabolism of calcium. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes. This study experimentally demonstrates the favorable effects of SEF treatment on Vit D3-induced hypercalcemia. For small animals, the larger the body surface area per body weight becomes, the higher the therapeutic efficacy with SEF treatment. Abstract The purpose of this study was to elucidate the effects of static electric field (SEF) treatment on vitamin D3 (Vit D3)-induced hypercalcemia and renal calcification in mice. The mice were assigned to three groups: Vit D3-treated mice, mice treated with Vit D3 and SEF (Vit D3 + SEF), and untreated mice. After the administration of Vit D3, the Vit D3 + SEF-treated mice were exposed to SEF treatment by a high-voltage alternating current over five days. Serum biochemical examinations revealed that both the creatinine and blood urea nitrogen concentrations were significantly higher in the Vit D3-treated group. Significantly, decreased Cl concentrations, and increased Ca and inorganic phosphorus concentrations, were found in the Vit D3-treated group. In the Vit D3 + SEF-treated group, these parameters returned to the levels of the untreated group. In the Vit D3-treated group, histopathological examinations showed marked multifocal calcification in the lumens of the renal tubules and the renal parenchyma. The myocardium was replaced by abundant granular mineralization (calcification), with degeneration and necrosis of the calcified fibers. The stomach showed calcification of the cardiac mucosa. SEF treatment remarkably attenuated the Vit D3-induced hypervitaminotic injuries. In conclusion, this study provides important evidence that SEF treatment can reduce hypercalcemia and remove calcium deposits from the renal, cardiac, and gastric tissues. SEF treatment is useful in the regulation of disorders caused by an imbalance of serum electrolytes.
Collapse
Affiliation(s)
- Tohru Kimura
- Laboratory Animal Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City 753-8515, Japan;
- Correspondence: ; Tel.: +81-83-933-5877
| | - Kengo Inaka
- Laboratory Animal Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi City 753-8515, Japan;
| | - Noboru Ogiso
- National Center for Geratrics Gerontology, National Institute for Longevity Sciences, Obu City 474-8511, Japan;
| |
Collapse
|
9
|
Moya Gómez A, Font LP, Brône B, Bronckaers A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front Mol Biosci 2021; 8:742596. [PMID: 34557522 PMCID: PMC8453690 DOI: 10.3389/fmolb.2021.742596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke. Based on their characteristics, they can be divided into stationary, pulsed, and sinusoidal EMF. The aim of this review is to provide an extensive literature overview ranging from in vitro to even clinical studies within the field of ischemic stroke of all EMF types. A thorough comparison between EMF types and their effects is provided, as well as an overview of the signal pathways activated in cell types relevant for ischemic stroke such as neurons, microglia, astrocytes, and endothelial cells. We also discuss which steps have to be taken to improve their therapeutic efficacy in the frame of the clinical translation of this promising therapy.
Collapse
Affiliation(s)
- Amanda Moya Gómez
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium.,Department of Biomedical Engineering, Faculty of Telecommunications, Informatics and Biomedical Engineering, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Bert Brône
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium
| | | |
Collapse
|
10
|
Thöni V, Oliva R, Mauracher D, Egg M. Therapeutic Nuclear Magnetic Resonance affects the core clock mechanism and associated Hypoxia-inducible factor-1. Chronobiol Int 2021; 38:1120-1134. [PMID: 33847185 DOI: 10.1080/07420528.2021.1910288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The influence of low intensity electromagnetic fields on circadian clocks of cells and tissues has gained increasing scientific interest, either as a therapeutic tool or as a potential environmental hazard. Nuclear Magnetic Resonance (NMR) refers to the property of certain atomic nuclei to absorb the energy of radio waves under a corresponding magnetic field. NMR forms the basis for Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy and, in a low-intensity form, for NMR therapy (tNMR). Since the circadian clock is bi-directionally intertwined with hypoxic signaling in vertebrates and mammals, we hypothesized that low intensity electromagnetic fields, such as tNMR, might not only affect circadian clocks but also Hypoxia-Inducible Factor-1α (HIF-1α). As master regulator of the hypoxic signaling pathway, HIF-1α is known to dampen the circadian amplitude under reduced oxygen availability, while the hypoxic response of cells and organisms, itself, is tightly clock controlled. In a first experiment, we investigated if tNMR is able to act as Zeitgeber for the core clock mechanism of unsynchronized zebrafish and mouse fibroblast cells, using direct light irradiation and treatment with the glucocorticoid Dexamethasone as references. tNMR significantly affected the cell autonomous clocks of unsynchronized mouse fibroblast cells NIH3-T3, but did not act as a Zeitgeber. Similar to light irradiation and in contrast to treatment with Dexamethasone, tNMR did not synchronize expression profiles of murine clock genes. However, irradiation with tNMR as well as light significantly altered mRNA and protein expression levels of Cryptochrome1, Cryptochrome2 and Clock1 for more than 24 h. Changes in mRNA and protein after different treatment durations, namely 6 and 12 h, appeared to be nonlinear. A nonlinear dose-response relationship is known as hallmark of electromagnetic field induced effects on biological systems. The most prominent alterations were detected in murine HIF-1α protein, again in a nonlinear dose-response. In contrast to murine cells, zebrafish fibroblasts did not respond to tNMR at all. Light, a potent Zeitgeber for the peripheral clocks of fish, led to the expected synchronized clock gene oscillations of high amplitude, as did Dexamethasone. Hence, we conclude, mammalian peripheral clocks are more susceptible to tNMR than the direct light entrainable fish fibroblasts. Although light and tNMR did not act as Zeitgebers for the circadian clocks of unsynchronized murine cells, the significant observed effects might indicate downstream cell-physiological ramifications, which are worth future investigation. However, beside the effects tNMR exerts on the core clock mechanism of mammalian cells, the technology might be the first non-pharmacological approach to modify HIF-1α protein in cells and tissues. HIF-1α and the associated circadian clock play key roles in diseases with underlying ischemic background, such as infarct, stroke, and cancer and, also infectious diseases, such as Covid-19. Hence, low intensity magnetic fields such as tNMR might be of significant medical interest.
Collapse
Affiliation(s)
- Viktoria Thöni
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - Regina Oliva
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - David Mauracher
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - Margit Egg
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Gurhan H, Bruzon R, Kandala S, Greenebaum B, Barnes F. Effects Induced by a Weak Static Magnetic Field of Different Intensities on HT-1080 Fibrosarcoma Cells. Bioelectromagnetics 2021; 42:212-223. [PMID: 33735454 DOI: 10.1002/bem.22332] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
In this study, we investigated the effects of weak static magnetic fields (SMFs) on HT-1080 human fibrosarcoma cells. Exposures to SMFs for four consecutive days were varied from 0.5 to 600 µT for treated units, while exposures to control units were held at 45 µT. Growth rates were measured by comparing cell counts, whereas membrane potentials, mitochondrial calcium, mitochondrial superoxide (O2 - ), nitric oxide (NO), hydrogen peroxide (H2 O2 ), intercellular pH, and oxidative stress were measured by using fluorescent dyes. The relative cell growth rates vary with the angle of the SMFs. Increases in the magnitude of the SMFs increased concentrations of mitochondrial calcium and membrane potential and decreased intracellular pH. H2 O2 , an important reactive oxygen species (ROS), increases at 100 and 200 µT, decreases at 300 and 400 µT and increases again at 500 and 600 µT. Overall, oxidative stress increases slightly with increasing SMFs, while superoxide and NO concentrations decrease. These results indicate that weak SMFs can accelerate and inhibit cell growth rates and induce alterations in ROS. Changes in ROS and oxidative stress are important for various cell functions. Calcium influx into mitochondria was one of the initial steps into the corresponding changes. Bioelectromagnetics. 2021. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| | - Rodolfo Bruzon
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| | - Sahithi Kandala
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| | - Ben Greenebaum
- Department of Physics, University of Wisconsin-Parkside, Kenosha, Wisconsin
| | - Frank Barnes
- Department of Electrical, Computer and Energy, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
12
|
Mayrovitz HN, Astudillo A, Shams E. Finger skin blood perfusion during exposure of ulnar and median nerves to the static magnetic field of a rare-earth magnet: A randomized pilot study. Electromagn Biol Med 2021; 40:1-10. [PMID: 33283550 DOI: 10.1080/15368378.2020.1856682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
This pilot study's goal was to investigate the impacts of static magnetic fields (SMF) on finger skin blood perfusion (SBP) when exposing the ulnar artery and ulnar and medial nerves to a rare earth concentric magnet for 30 minutes. Control SBP was measured in 4th fingers of adults (n = 12, age 26.0 ± 1.4 years) for 15 minutes using laser-Doppler. Then, active-magnets were placed over one arm's ulnar and median nerves at the wrist and sham-magnets placed at corresponding sites on the other arm. Devices were randomly assigned and placed by an investigator "blinded" to device type. The maximum SMF perpendicular to skin was 0.28 T measured 2 mm from magnet surface. The tangential field at this distance was 0.20 T. SBP was analyzed and tested for differential effects attributable to magnets compared to shams in each of the 5-minute intervals over the full 45-minute experiment. Results showed no statistically significant difference between SBP measured on the magnet-treated side compared to the sham side. Magnet and sham side SBP values (mean ± SEM, arbitrary units) prior to device placement were 0.568 ± 0.128 vs. 0.644 ± 0.115, p = .859 and during device placement were 0.627 ± 0.135 vs. 0.645 ± 0.117, p = .857. In conclusion, these findings have failed to uncover any significant effects of the static magnetic field on skin blood perfusion in the young healthy adult population evaluated. Its potential for altering SBP in more mature persons or those with underlying conditions affecting blood flow has not been evaluated but represents the next target of research inquiry. ClinicalTrials.gov registration number is NCT04539704.
Collapse
Affiliation(s)
- Harvey N Mayrovitz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University , Ft. Lauderdale, FL, USA
| | - Andrea Astudillo
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University , Ft. Lauderdale, FL, USA
| | - Elham Shams
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University , Ft. Lauderdale, FL, USA
| |
Collapse
|
13
|
Dakovic D, Mladenovic R, Ristic L, Jevtovic R, Videnovic N, Bukumiric Z. Effectiveness of an intraoral thermoformed splint with magnet device in patients with xerostomia and hyposalivation: A pilot study. J Oral Pathol Med 2020; 50:244-250. [PMID: 33230828 DOI: 10.1111/jop.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/26/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
AIM The aim of the study was to examine the effectiveness of intraoral thermoformed splint with a magnet device over a period of 3 months, that is, to assess acceptability of this method of treatment using both objective and self-reported measures. MATERIALS AND METHODS This study was designed as a prospective clinical pilot trial. 22 patients with xerostomia and hyposalivation were included. Xerostomia was assessed using a 4-question xerostomia questionnaire score and a test for unstimulated salivary flow rates. Evaluations were performed before the treatment and 3 months after the treatment using a thermoformed splint with a magnet device. RESULTS There was a significant reduction in subjective symptoms after using a thermoformed splint with a magnet device for 3 months. For all 4 scored items, there was a statistically significant difference (P < .001) in median VAS scores before and 3 months after treatment. There was also a statistically significant difference in USFR before (0,15 ± 0,04 ml/min) and after treatment (0,24 ± 0,03 mL/min). CONCLUSION Our findings indicate that the use of this device alleviated oral dryness and stimulated the function of the submandibular salivary gland. An intraoral thermoformed splint with a magnet device is safe, physiologically indifferent, useful, and effective in treating xerostomia and hyposalivation.
Collapse
Affiliation(s)
- Dragana Dakovic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Rasa Mladenovic
- Faculty of Medicine, University of Pristina, Kosovska Mitrovica, Serbia
| | - Ljubisa Ristic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | | | - Nebojsa Videnovic
- Faculty of Medicine, University of Pristina, Kosovska Mitrovica, Serbia
| | - Zoran Bukumiric
- Institute of Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Chen G, Zhuo Y, Tao B, Liu Q, Shang W, Li Y, Wang Y, Li Y, Zhang L, Fang Y, Zhang X, Fang Z, Yu Y. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs. Stem Cell Res Ther 2020; 11:487. [PMID: 33198804 PMCID: PMC7667787 DOI: 10.1186/s13287-020-02004-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteoporosis is a common metabolic bone disease without effective treatment. Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to differentiate into multiple cell types. Increased adipogenic differentiation or reduced osteogenic differentiation of BMSCs might lead to osteoporosis. Whether static magnetic fields (SMFs) might influence the adipo-osteogenic differentiation balance of BMSCs remains unknown. Methods The effects of SMFs on lineage differentiation of BMSCs and development of osteoporosis were determined by various biochemical (RT-PCR and Western blot), morphological (staining and optical microscopy), and micro-CT assays. Bioinformatics analysis was also used to explore the signaling pathways. Results In this study, we found that SMFs (0.2–0.6 T) inhibited the adipogenic differentiation of BMSCs but promoted their osteoblastic differentiation in an intensity-dependent manner. Whole genomic RNA-seq and bioinformatics analysis revealed that SMF (0.6 T) decreased the PPARγ-mediated gene expression but increased the RUNX2-mediated gene transcription in BMSCs. Moreover, SMFs markedly alleviated bone mass loss induced by either dexamethasone or all-trans retinoic acid in mice. Conclusions Taken together, our results suggested that SMF-based magnetotherapy might serve as an adjunctive therapeutic option for patients with osteoporosis. Supplementary information Supplementary information accompanies this paper at 10.1186/s13287-020-02004-y.
Collapse
Affiliation(s)
- Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yujuan Zhuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yinxiu Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, 313300, Zhejiang, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, 313300, Zhejiang, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
15
|
Moderate Intensity Static Magnetic Fields Prevent Thrombus Formation in Rats and Mice. Bioelectromagnetics 2019; 41:52-62. [DOI: 10.1002/bem.22232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/09/2019] [Indexed: 12/22/2022]
|
16
|
Frantsiyants EM, Sheiko EA. ANTITUMOR EFFECT OF ELECTROMAGNETIC FIELDS AND THEIR EFFECT ON PAIN IN EXPERIMENTAL AND CLINICAL ONCOLOGY. RESEARCH'N PRACTICAL MEDICINE JOURNAL 2019. [DOI: 10.17709/2409-2231-2019-6-2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review examined and analyzed scientific publications on the effect of electromagnetic fields (EMF) on various systems of the human body and animals with tumors, as well as on pain in the experiment and the clinic. The theoretical foundations and practical results of the use of EMF in various modulations and modes in the goals and objectives of oncology, including how to optimize the process of anesthesia and correct the vital activity of the body's functional systems with a tumor, are consecrated. Information is given on possible physicochemical effects, features, and mechanisms of therapeutic influence at various levels of a living organism. The ability of electromagnetic waves to transfer information both within a single biosystem and at the level of a whole living organism with a tumor is shown. Studies of combined action of EMF and chemotherapy were analyzed. It has been established that there are experimental prerequisites for using this factor in order to induce changes in the permeability of the membranes of tumor cells by increasing the internalization of chemotherapeutic agents and, thus, enhance the antitumor effect. The role of EMF in the induction of apoptosis in tumor cells is shown. It has been shown that chemotherapy together with electromagnetic fields induces apoptosis and has an inhibitory effect on DNA synthesis in osteosarcoma cells, breast cancer, colon cancer, melanoma and other tumors. The role of magnetic fields in order to enhance the analgesic effect was investigated. The analgesic effect is due to the cessation or weakening of nerve impulses from the painful focus due to the elimination of hypoxia, the improvement of microcirculation, and the reduction of edema, it has been shown. Transcranial magnetic therapy is used as an analgesic tool in onconurology. The therapeutic anti-pain effect is associated with the stimulation of the antinociceptive system, an increase in the synthesis of natural analgesics — endorphins with their subsequent release into the cerebrospinal fluid and blood. As it has already been shown, with the increase in the intensity of pain and its duration, all indicators of the quality of life and the results of treatment of the patient deteriorate, so the search for ways to improve the antitumor effectiveness of specialized treatment and eliminate the causes that prevent their implementation continue to be relevant and in demand.
Collapse
|
17
|
Abdulla FA, Alsaadi S, Sadat-Ali M, Alkhamis F, Alkawaja H, Lo S. Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: study protocol for a randomised double-blind placebo-controlled trial. BMJ Open 2019; 9:e024650. [PMID: 31182440 PMCID: PMC6561444 DOI: 10.1136/bmjopen-2018-024650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/22/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The aim of the present study is to investigate the effectiveness of pulsed low-frequency magnetic field (PLFMF) on the management of chronic low back pain (CLBP). METHODS AND ANALYSIS A randomised double-blinded controlled clinical trial will be conducted, involving 200 patients with CLBP. Participants will be randomised in a 1:1 ratio to receive either active PLFMF (experimental arm) or sham treatment (control arm) using a permuted-block design which will be stratified according to three subtypes of musculoskeletal CLBP (nociceptive, peripheral neuropathic or central sanitisation). The intervention consists of three sessions/week for 6 weeks. The primary outcome is the percentage change in Numerical Rating Scale (NRS) pain at week 24 after treatment completion with respect to the baseline. Secondary outcomes include percentage NRS pain during treatment and early after treatment completion, short form 36 quality of life, Roland and Morris Disability Questionnaire; Depression Anxiety Stress Scale 21, Patient Specific Functional Scale, Global perceived effect of condition change, Pittsburgh Sleep Quality Index and Modified Fatigue Impact Scale. Measures will be taken at baseline, 3 and 6 weeks during the intervention and 6, 12 and 24 weeks after completing the intervention. Adverse events between arms will be evaluated. Data will be analysed on an intention-to-treat basis. ETHICS AND DISSEMINATION The study is funded by Imam Abdulrahman Bin Faisal University (IAU). It has been approved by the institutional review board of IAU (IRB- 2017-03-129). The study will be conducted at King Fahd Hospital of the University and will be monitored by the Hospital monitoring office for research and research ethics. The trial is scheduled to begin in September 2018. Results obtained will be presented in international conferences and will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12618000921280, prospectively.
Collapse
Affiliation(s)
- Fuad A Abdulla
- Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saad Alsaadi
- Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mir Sadat-Ali
- Department of Orthopedic Surgery, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fahd Alkhamis
- Department of Neurology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hani Alkawaja
- Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Serigne Lo
- Institute of Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Melanoma Institute Australia, North Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
19
|
Sengupta S, Balla VK. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res 2018; 14:97-111. [PMID: 30109147 PMCID: PMC6090088 DOI: 10.1016/j.jare.2018.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Current popular cancer treatment options, include tumor surgery, chemotherapy, and hormonal treatment. These treatments are often associated with some inherent limitations. For instances, tumor surgery is not effective in mitigating metastases; the anticancer drugs used for chemotherapy can quickly spread throughout the body and is ineffective in killing metastatic cancer cells. Therefore, several drug delivery systems (DDS) have been developed to target tumor cells, and release active biomolecule at specific site to eliminate the side effects of anticancer drugs. However, common challenges of DDS used for cancer treatment, include poor site-specific accumulation, difficulties in entering the tumor microenvironment, poor metastases and treatment efficiency. In this context, non-invasive cancer treatment approaches, with or without DDS, involving the use of light, heat, magnetic field, electrical field and ultrasound appears to be very attractive. These approaches can potentially improve treatment efficiency, reduce recovery time, eliminate infections and scar formation. In this review we focus on the effects of magnetic fields and ultrasound on cancer cells and their application for cancer treatment in the presence of drugs or DDS.
Collapse
Affiliation(s)
- Somoshree Sengupta
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Glass and Ceramic Research Institute Campus, 196 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vamsi K. Balla
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Glass and Ceramic Research Institute Campus, 196 Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
20
|
Wang D, Zhang L, Shao G, Yang S, Tao S, Fang K, Zhang X. 6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28237-28247. [PMID: 30074140 DOI: 10.1007/s11356-018-2868-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Adenosine triphosphate (ATP), an indispensable molecule that provides energy for essentially all cellular processes, has been shown to be affected by some magnetic fields (MFs). Although people are frequently exposed to various static and power frequency MFs in their daily lives, the exact effects of these MFs of different frequencies have not been systematically investigated. Here, we tested 6-mT MFs with 0, 50, and 120 Hz for their effects on cellular ATP levels in 11 different cell lines. We found that the 6-mT static magnetic field (SMF) either does not affect or increase cellular ATP levels, while 6-mT 50-Hz MF either does not affect or decrease cellular ATP levels. In contrast, 6-mT 120-Hz MF has variable effects. We examined the mitochondrial membrane potential (MMP) as well as reactive oxygen species (ROS) in four different cell lines, but did not find their direct correlation with ATP levels. Although none of the ATP level changes induced by these three different frequencies of 6-mT MFs are dramatic, these results may be used to explain some differential cellular responses of various cell lines to different frequency MFs.
Collapse
Affiliation(s)
- Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Guangze Shao
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuo Yang
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shengwei Tao
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kun Fang
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
21
|
Lew WZ, Feng SW, Lin CT, Huang HM. Use of 0.4-Tesla static magnetic field to promote reparative dentine formation of dental pulp stem cells through activation of p38 MAPK signalling pathway. Int Endod J 2018; 52:28-43. [PMID: 29869795 DOI: 10.1111/iej.12962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022]
Abstract
AIM To investigate whether static magnetic fields (SMFs) have a positive effect on the migration and dentinogenesis of dental pulp stem cells (DPSCs) to promote reparative dentine formation. METHODOLOGY In vitro scratch assays and a traumatic pulp exposure model were performed to evaluate the effect of 0.4-Tesla (T) SMF on DPSC migration. The cytoskeletons of the DPSCs were identified by fluorescence immunostaining and compared with those of a sham-exposed group. Dentinogenic evaluation was performed by analysing the expressions of DMP-1 and DSPP marker genes using a quantitative real-time polymerase chain reaction (qRT-PCR) process. Furthermore, the formation of calcified deposits was examined by staining the dentinogenic DPSCs with Alizarin Red S dye. Finally, the role played by the p38 MAPK signalling pathway in the migration and dentinogenesis of DPSCs under 0.4-T SMF was investigated by incorporating p38 inhibitor (SB203580) into the in vitro DPSC experiments. The Student's t-test and the Kruskal-Wallis test followed by Dunn's post hoc test with a significance level of P < 0.05 were used for statistical analysis. RESULTS The scratch assay results revealed that the application of 0.4-T SMF enhanced DPSCs migration towards the scratch wound (P < 0.05). The cytoskeletons of the SMF-treated DPSCs were found to be aligned perpendicular to the scratch wound. After 20 days of culture, the SMF-treated group had a greater number of out-grown cells than the sham-exposed group (nonmagnetized control). For the SMF-treated group, the DMP-1 (P < 0.05) and DSPP genes (P < 0.05), analysed by qRT-PCR, exhibited a higher expression. The distribution of calcified nodules was also found to be denser in the SMF-treated group when stained with Alizarin Red S dye (P < 0.05). Given the incorporation of p38 inhibitor SB203580 into the DPSCs, cell migration and dentinogenesis were suppressed. No difference was found between the SMF-treated and sham-exposed cells (P > 0.05). CONCLUSION 0.4-T SMF enhanced DPSC migration and dentinogenesis through the activation of the p38 MAPK-related pathway.
Collapse
Affiliation(s)
- W-Z Lew
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - S-W Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - C-T Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - H-M Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Baute V, Keskinyan VS, Sweeney ER, Bowden KD, Gordon A, Hutchens J, Cartwright MS. A randomized, controlled trial of magnetic therapy for carpal tunnel syndrome. Muscle Nerve 2018. [PMID: 29513382 DOI: 10.1002/mus.26120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Magnet therapy has been proposed as a treatment for neurologic conditions. In this this trial we assessed the feasibility and efficacy of a magnet inserted into a wristband for carpal tunnel syndrome (CTS). METHODS Twenty-two patients with mild to moderate CTS were randomized to wear a high-dose or low-dose "sham" magnetic wristband for 6 weeks. The primary outcome was the Symptom Severity Scale (SSS) of the Boston Carpal Tunnel Questionnaire. Secondary measures were nerve conduction studies (NCS), median nerve ultrasound, and compliance. RESULTS Compliance for both groups was >90%. Improvements in the mean SSS, NCS, and median nerve ultrasound did not reach statistical significance. DISCUSSION Magnet therapy via wristband is well-tolerated. Further investigations in larger populations are needed to determine efficacy. Muscle Nerve 58: 310-313, 2018.
Collapse
Affiliation(s)
- Vanessa Baute
- Department of Neurology, Wake Forest School of Medicine, 1 Medical Center Boulevard Winston-Salem, North Carolina, 27157, USA
| | - Vahakn S Keskinyan
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Erica R Sweeney
- Department of Neurology, Wake Forest School of Medicine, 1 Medical Center Boulevard Winston-Salem, North Carolina, 27157, USA
| | - Kayla D Bowden
- Department of Neurology, Wake Forest School of Medicine, 1 Medical Center Boulevard Winston-Salem, North Carolina, 27157, USA
| | - Allison Gordon
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Janet Hutchens
- Department of Neurology, Wake Forest School of Medicine, 1 Medical Center Boulevard Winston-Salem, North Carolina, 27157, USA
| | - Michael S Cartwright
- Department of Neurology, Wake Forest School of Medicine, 1 Medical Center Boulevard Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
23
|
Abstract
Although many neurologic conditions are common, cures are rare and conventional treatments are often limited. Many patients, therefore, turn to complementary and alternative medicine (CAM). The use of selected, evidence-based CAM therapies for the prevention and treatment of migraine, carpal tunnel syndrome, and dementia are presented. Evidence is growing many of modalities, including nutrition, exercise, mind-body medicine, supplements, and acupuncture.
Collapse
Affiliation(s)
- Rebecca Erwin Wells
- Department of Neurology, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Vanessa Baute
- Department of Neurology, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Helané Wahbeh
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
24
|
Manzo LP, Ceragioli H, Bonet IJ, Nishijima CM, Vieira WF, Oliveira EC, Destro-Filho JB, Sartori CR, Tambeli CH, Parada CA. Magnetic, but not non-magnetic, reduced graphene oxide in spinal cord increases nociceptive neuronal responsiveness. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1841-1851. [DOI: 10.1016/j.nano.2017.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/31/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
|
25
|
Kim KE, Park SK, Nam SY, Han TJ, Cho IY. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells. Technol Health Care 2017; 24:415-27. [PMID: 26684400 DOI: 10.3233/thc-151119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.
Collapse
|
26
|
Santos L, Silva M, Gonçalves AI, Pesqueira T, Rodrigues MT, Gomes ME. In vitro and in vivo assessment of magnetically actuated biomaterials and prospects in tendon healing. Nanomedicine (Lond) 2016; 11:1107-22. [DOI: 10.2217/nnm-2015-0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: To expand our understanding on the effect of magnetically actuated biomaterials in stem cells, inflammation and fibrous tissue growth. Materials & methods: Magnetic biomaterials were obtained by doping iron oxide particles into starch poly-ϵ-caprolactone (SPCL) to create two formulations, magSPCL-1.8 and 3.6. Stem cell behavior was assessed in vitro and the inflammatory response, subcutaneously in Wistar rats. Results: Metabolic activity and proliferation increased significantly overtime in SPCL and magSPCL-1.8. Electromagnetic fields attenuated the presence of mast cells and macrophages in tissues surrounding SPCL and magSPCL-1.8, between weeks 1 and 9. Macrophage reduction was more pronounced for magSPCL-1.8, which could explain why this material prevented growth of fibrous tissue overtime. Conclusion: Magnetically actuated biomaterials have potential to modulate inflammation and the growth of fibrous tissue.
Collapse
Affiliation(s)
- Lívia Santos
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Marta Silva
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Ana I. Gonçalves
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Tamagno Pesqueira
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| |
Collapse
|
27
|
Analysis of the effect of locally applied inhomogeneous static magnetic field-exposure on mouse ear edema--a double blind study. PLoS One 2015; 10:e0118089. [PMID: 25695832 PMCID: PMC4335006 DOI: 10.1371/journal.pone.0118089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
The effect static magnetic field (SMF)-exposure may exert on edema development has been investigated. A 6 h long whole-body (WBSMF) or local (LSMF), continuous, inhomogeneous SMF-exposure was applied on anesthetized mice in an in vivo model of mustard oil (MO)-induced ear edema. LSMF was applied below the treated ear, below the lumbar spine, or below the mandible. Ear thickness (v) was checked 8 times during the exposure period (at 0, 0.25, 1, 2, 3, 4, 5, and 6 h). The effect size of the applied treatment (η) on ear thickness was calculated by the formula η = 100% × (1–vj/vi), where group i is the control group and j is the treated group. Results showed that MO treatment in itself induced a significant ear edema with an effect of 9% (p<0.001). WBSMF or LSMF on the spine in combination with MO treatment increased ear thickness even further resulting in an effect of η>11% in both cases compared to SMF-exposure alone (p<0.001). In these cases SMF-exposure alone without MO treatment reduced ear thickness significantly (p<0.05), but within estimated experimental error. In cases of LSMF-exposure on the head, a significant SMF-exposure induced ear thickness reduction was found (η = 5%, p<0.05). LSMF-exposure on the spine affected ear thickness with and without MO treatment almost identically, which provides evidence that the place of local SMF action may be in the lower spinal region.
Collapse
|
28
|
Moon CH, Kwon O, Woo CH, Ahn HD, Kwon YS, Park SJ, Song CH, Ku SK. Therapeutic effect of irradiation of magnetic infrared laser on osteoarthritis rat model. Photochem Photobiol 2014; 90:1150-9. [PMID: 24962501 DOI: 10.1111/php.12304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by articular cartilage loss. Many complementary and alternative medicines for OA have been reported so far, but the effectiveness is controversial. Previously, we have shown anti-inflammatory effects of low level laser therapy with static magnetic field, magnetic infrared laser (MIL), in various animal models. Therefore, the beneficial effects were examined in OA rat model. Rats were divided by six groups; no treatment controls of sham and OA model, three MIL treatment groups of OA model at 6.65, 2.66 and 1.33 J cm(-2), and Diclofenac group of OA model with 2 mg kg(-1) diclofenac sodium. The OA control exhibited typical symptoms of OA, but 4-week MIL treatment improved the functional movement of knee joint with reduced edematous changes. In addition, cartilage GAGs were detected more in all MIL treatment groups than OA control. It suggests that 4-week MIL irradiation has dose-dependent anti-inflammatory and chondroprotective effects on OA. Histopathological analyses revealed that MIL treatment inhibits the cartilage degradation and enhances chondrocyte proliferation. The fact that MIL has an additional potential for the cartilage formation and no adverse effects can be regarded as great advantages for OA treatment. These suggest that MIL can be useful for OA treatment.
Collapse
Affiliation(s)
- Chul-Hwan Moon
- Department of Oriental Rehabilitation Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Edner A, Lindberg LG, Broström H, Bergh A. Does a magnetic blanket induce changes in muscular blood flow, skin temperature and muscular tension in horses? Equine Vet J 2014; 47:302-7. [DOI: 10.1111/evj.12291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. Edner
- Department of Clinical Sciences; Faculty of Veterinary Medicine and Animal Science; University of Agricultural Sciences; Uppsala Sweden
| | - L.-G. Lindberg
- Department of Medical Engineering; Linköping University; Sweden
| | - H. Broström
- Department of Clinical Sciences; Faculty of Veterinary Medicine and Animal Science; University of Agricultural Sciences; Uppsala Sweden
| | - A. Bergh
- Department of Anatomy, Physiology and Biochemistry; Faculty of Veterinary Medicine and Animal Science; University of Agricultural Sciences; Uppsala Sweden
| |
Collapse
|
30
|
Csillag A, Kumar BV, Szabó K, Szilasi M, Papp Z, Szilasi ME, Pázmándi K, Boldogh I, Rajnavölgyi É, Bácsi A, László JF. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model. J R Soc Interface 2014; 11:20140097. [PMID: 24647908 DOI: 10.1098/rsif.2014.0097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m(-1) lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m(-1) in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases.
Collapse
Affiliation(s)
- Anikó Csillag
- Department of Immunology, Faculty of Medicine, University of Debrecen, , 98 Nagyerdei Boulevard, Debrecen 4012, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:14-24. [DOI: 10.1016/j.pbiomolbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/11/2023]
|
32
|
Static magnetic field effects on impaired peripheral vasomotion in conscious rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:746968. [PMID: 24454512 PMCID: PMC3877601 DOI: 10.1155/2013/746968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/07/2013] [Indexed: 11/22/2022]
Abstract
We investigated the SMF effects on hemodynamics in the caudal artery-ligated rat as an in vivo ischemia model using noninvasive near-infrared spectroscopy (NIRS) combined with power spectral analysis by fast Fourier transform. Male Wistar rats in the growth stage (10 weeks old) were randomly assigned into four groups: (i) intact and nonoperated cage control (n = 20); (ii) ligated alone (n = 20); (iii) ligated and implanted with a nonmagnetized rod (sham magnet; n = 22); and (vi) ligated and implanted with a magnetized rod (n = 22). After caudal artery ligation, a magnetized or unmagnetized rod (maximum magnetic flux density of 160 mT) was implanted transcortically into the middle diaphysis of the fifth caudal vertebra. During the experimental period of 7 weeks, NIRS measurements were performed in 3- , 5- , and 7-week sessions and the vasomotion amplitude and frequency were analyzed by fast Fourier transform. Exposure for 3–7 weeks to the SMF significantly contracted the increased vasomotion amplitude in the ischemic area. These results suggest that SMF may have a regulatory effect on rhythmic vasomotion in the ischemic area by smoothing the vasomotion amplitude in the early stage of the wound healing process.
Collapse
|
33
|
Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med 2013; 17:958-65. [PMID: 23802593 PMCID: PMC3780531 DOI: 10.1111/jcmm.12088] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022] Open
Abstract
The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca2+/calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca2+-mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca2+/calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects.
Collapse
Affiliation(s)
- Martin L Pall
- Professor Emeritus of Biochemistry and Basic Medical Sciences, Washington State University, Portland, OR, USA.
| |
Collapse
|
34
|
Ekici Y, Aydogan C, Balcik C, Haberal N, Kirnap M, Moray G, Haberal M. Effect of static magnetic field on experimental dermal wound strength. Indian J Plast Surg 2012; 45:215-219. [PMID: 23162219 PMCID: PMC3495370 DOI: 10.4103/0970-0358.101281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
CONTEXT An animal model. AIM We sought to evaluate the effect of static magnetic fields on cutaneous wound healing. MATERIALS AND METHODS Male Wistar rats were used. Wounds were created on the backs of all rats. Forty of these animals (M group) had NeFeB magnets placed in contact with the incisions, either parallel (Pa) and perpendicular (Pr) to the incision. The other 40 animals (sham [S] group) had nonmagnetized NeFeB bars placed in the same directions as the implanted animals. Half of the animals in each group were killed and assessed for healing on postoperative day 7 and the other half on postoperative day 14. The following assessments were done: gross healing, mechanical strength, and histopathology. STATISTICAL ANALYSIS USED Intergroup differences were compared by using the Mann-Whitney U or t test. Values for P less than 0.05 were accepted as significant. RESULTS AND CONCLUSIONS There were no differences between the magnetic and sham animals with respect to gross healing parameters. The mechanical strength was different between groups. On postoperative day 14, the MPr14 had significantly higher scores than the other groups. When static, high-power, magnetic fields are placed perpendicular to the wound, increased wound healing occurs in the skin of the experimental model.
Collapse
Affiliation(s)
- Yahya Ekici
- Department of General Surgery, Baskent University, Ankara, Turkey
| | - Cem Aydogan
- Department of General Surgery, Baskent University, Ankara, Turkey
| | - Cenk Balcik
- Department of Mechanical Engineering, Baskent University, Ankara, Turkey
| | - Nihan Haberal
- Department of Pathology, Baskent University, Ankara, Turkey
| | - Mahir Kirnap
- Department of General Surgery, Baskent University, Ankara, Turkey
| | - Gokhan Moray
- Department of General Surgery, Baskent University, Ankara, Turkey
| | - Mehmet Haberal
- Department of General Surgery, Baskent University, Ankara, Turkey
| |
Collapse
|
35
|
László JF, Farkas P, Reiczigel J, Vágó P. Effect of local exposure to inhomogeneous static magnetic field on stomatological pain sensation – a double-blind, randomized, placebo-controlled study. Int J Radiat Biol 2012; 88:430-8. [DOI: 10.3109/09553002.2012.661916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Jaberi FM, Keshtgar S, Tavakkoli A, Pishva E, Geramizadeh B, Tanideh N, Jaberi MM. A moderate-intensity static magnetic field enhances repair of cartilage damage in rabbits. Arch Med Res 2011; 42:268-73. [PMID: 21820604 DOI: 10.1016/j.arcmed.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Electromagnetic fields have been proposed to enhance healing of cartilage defects by stimulation of chondrocyte proliferation, proteoglycan synthesis as well as decreasing pain and improving motion in osteoarthritic patients. However, the effects of a moderate-intensity static magnetic field on cartilage repair have not been investigated. This study tries to determine the effects of a moderate-intensity permanent magnetic field of 40 mT on cartilage repair. METHODS Defects of 3 mm in diameter and 6 mm in depth were made on the weight bearing surface of the right medial femoral condyle of 30 rabbits. The animals were divided randomly into three equal groups (magnet, sham and control). In the magnet group, cylindrical permanent magnets were implanted subcutaneously medial to the medial femoral condyle, while in the sham group the cylindrical ceramic were not magnetized, and nothing was implanted in controls. After 12 weeks of observation, Mankin's microscopic scoring was done on all specimens, and irregularity of surface characteristics, cell colonization, hypocellularity, cartilage matrix formation, and presence of empty lacunae were investigated. RESULTS Each of these characteristics showed significant differences in magnet group relative to control and sham groups (p <0.05). Mankin's score was 1.6 ± 0.6 in magnet group, 7.2 ± 1.6 in sham group and 7.7 ± 1 in control group (p <0.001). CONCLUSIONS [corrected] In this animal study, microscopic Mankin's scoring depicted histological improvement in cartilage of magnet group.
Collapse
Affiliation(s)
- Fereidoon M Jaberi
- Bone & Joint Diseases Research Center, Shiraz University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
37
|
Wavelet analysis of acute effects of static magnetic field on resting skin blood flow at the nail wall in young men. Microvasc Res 2011; 82:277-83. [DOI: 10.1016/j.mvr.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/14/2011] [Accepted: 03/16/2011] [Indexed: 11/22/2022]
|
38
|
László JF, Pórszász R. Exposure to static magnetic field delays induced preterm birth occurrence in mice. Am J Obstet Gynecol 2011; 205:362.e26-31. [PMID: 21704960 DOI: 10.1016/j.ajog.2011.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/08/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The purpose of this study was to demonstrate that daily 40-minute whole body exposure to an inhomogeneous static magnetic field (SMF) prolongs induced preterm birth (PTB) in mice. STUDY DESIGN The murine model for PTB induction was performed by the administration of 25 μg/animal lipopolysaccharide (LPS) intraperitoneally. The applied SMF was an inhomogeneous gradient field with 2.8-476.7 millitesla peak-to-peak magnetic induction range by 10 mm lateral periodicity. During SMF exposure, mice were free to move in their cage. RESULTS The fetal development and the delivery were normal in animals that were exposed to SMF but not treated with LPS. SMF in these cases did not influence the term of delivery. In LPS-challenged animals, SMF exposure prolonged the time of PTB occurrence from 17.43 h (n = 7) to 21.93 h (n = 15) after the challenge (P < .05). CONCLUSION Exposure to inhomogeneous SMF may have a valuable effect in the prevention of PTB and may have clinical relevance to humans.
Collapse
|
39
|
|
40
|
Kovács-Bálint Z, Csathó Á, László JF, Juhász P, Hernádi I. Exposure to an inhomogeneous static magnetic field increases thermal pain threshold in healthy human volunteers. Bioelectromagnetics 2010; 32:131-9. [DOI: 10.1002/bem.20622] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 09/07/2010] [Indexed: 11/07/2022]
|
41
|
Recovery Effects of a 180 mT Static Magnetic Field on Bone Mineral Density of Osteoporotic Lumbar Vertebrae in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953437 PMCID: PMC2952315 DOI: 10.1155/2011/620984] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/05/2010] [Accepted: 08/21/2010] [Indexed: 11/18/2022]
Abstract
The effects of a moderate-intensity static magnetic field (SMF) on osteoporosis of the lumbar vertebrae were studied in ovariectomized rats. A small disc magnet (maximum magnetic flux density 180 mT) was implanted to the right side of spinous process of the third lumbar vertebra. Female rats in the growth stage (10 weeks old) were randomly divided into 4 groups: (i) ovariectomized and implanted with a disc magnet (SMF); (ii) ovariectomized and implanted with a nonmagnetized disc (sham); (iii) ovariectomized alone (OVX) and (vi) intact, nonoperated cage control (CTL). The blood serum 17-β-estradiol (E2) concentrations were measured by radioimmunoassay, and the bone mineral density (BMD) values of the femurs and the lumbar vertebrae were assessed by dual energy X-ray absorptiometry. The E2 concentrations were statistically significantly lower for all three operated groups than those of the CTL group at the 6th week. Although there was no statistical significant difference in the E2 concentrations between the SMF-exposed and sham-exposed groups, the BMD values of the lumbar vertebrae proximal to the SMF-exposed area statistically significantly increased in the SMF-exposed group than in the sham-exposed group. These results suggest that the SMF increased the BMD values of osteoporotic lumbar vertebrae in the ovariectomized rats.
Collapse
|
42
|
Colbert AP, Markov MS, Carlson N, Gregory WL, Carlson H, Elmer PJ. Static magnetic field therapy for carpal tunnel syndrome: a feasibility study. Arch Phys Med Rehabil 2010; 91:1098-104. [PMID: 20599049 DOI: 10.1016/j.apmr.2010.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/06/2010] [Accepted: 02/09/2010] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To assess the feasibility of conducting trials of static magnetic field (SMF) therapy for carpal tunnel syndrome (CTS), to collect preliminary data on the effectiveness of 2 SMF dosages, and to explore the influence of an SMF on median nerve conduction. DESIGN Randomized, double-blind, sham-controlled trial with a 6-week intervention and a 12-week follow-up. SETTING University hospital outpatient clinics. PARTICIPANTS Women and men (N=60), ages 21 to 65 years, with an electrophysiologically confirmed CTS diagnosis recruited from the general population. INTERVENTIONS Participants wore nightly either neodymium magnets that delivered either 15 or 45 mTesla (mT) to the contents of the carpal canal or a nonmagnetic disk. MAIN OUTCOME MEASURES Symptom Severity Scale (SSS) and Function Severity Scale (FSS) of the Boston Carpal Tunnel Questionnaire (BCTQ) and 4 median nerve parameters: sensory distal latency, sensory nerve action potential amplitude, motor distal latency and compound motor action potential amplitude. RESULTS Fifty-eight of 60 randomized participants completed the study. There were no significant between-group differences for change in the primary endpoint SSS or for FSS or median nerve conduction parameters. For the SSS and the FSS, each group showed a reduction at 6 weeks indicating improvement in symptoms. CONCLUSIONS This study showed the feasibility and safety of testing SMF therapy for CTS. There were no between-group differences observed for the BCTQ or median nerve parameters after 6 weeks of SMF therapy. Significant within-group, symptomatic improvements of the same magnitude were experienced by participants in both active and sham magnet groups. Future studies are needed to optimize SMF dosimetry and resolve issues related to the use of sham controls in SMF trials.
Collapse
Affiliation(s)
- Agatha P Colbert
- Helfgott Research Institute of the National College of Natural Medicine, Portland, OR 97201, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Zioni T, Perkas N, Wolfus Y, Soroka Y, Popov I, Oron M, Perelshtein I, Bruckental Y, Brégégère FM, Ma'or Z, Gedanken A, Yeshurun Y, Neuman R, Milner Y. Strontium hexaferrite nanomagnets suspended in a cosmetic preparation: a convenient tool to evaluate the biological effects of surface magnetism on human skin. Skin Res Technol 2010; 16:316-24. [PMID: 20637001 DOI: 10.1111/j.1600-0846.2010.00435.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND/PURPOSE Magnetic therapy has been popular for ages, but its therapeutic abilities remain to be demonstrated. We aimed to develop a homogeneous, stable dispersion of magnetic nanoparticles in a skin-care preparation, as a tool to analyze the biological and physiological effects of superficial magnetism in skin. METHODS SrFe(12)O(19) nanoparticles were generated by ultrasound, dispersed in glycerol, stabilized in Dermud cream and permanently magnetized. The magnetic cream was applied on the epidermis of human skin organ cultures. The effects on UV-induced cell toxicity, apoptosis and inflammatory cytokine expression were analyzed. A clinical test was performed to check skin moisturization. RESULTS Nanomagnets were found to be homogenously and stably dispersed. After magnetization, the preparation generated a magnetic field of 1-2 G. Upon cream application, no cytotoxicity and no impairment of cellular vitality were found after 24 and 48 h, respectively. The anti-apoptotic and anti-inflammatory properties of Dermud were not modified, but its long-term effect on moisturization in vivo was slightly increased. CONCLUSION Nanomagnetic Dermud cream can be used as a tool to analyze the biological effects of nanomagnets dispersed on the skin surface at the cellular and molecular levels, thus allowing to explore the possible therapeutic uses of superficial magnetism for skin care.
Collapse
Affiliation(s)
- T Zioni
- Dead Sea and Arava Science Center, Dead Sea, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gmitrov J. Static magnetic field blood pressure buffering, baroreflex vs. vascular blood pressure control mechanism. Int J Radiat Biol 2010; 86:89-101. [DOI: 10.3109/09553000903419973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Abstract
OBJECTIVES The aim of this study was to evaluate the pain-inhibitory effect of inhomogeneous static magnetic field (SMF, 0 to 192 mT peak-to-peak magnetic flux density and 19 T/m lateral gradient) exposure on dental pain associated with dentine sensitivity by the quantification of sensory and affective aspects. METHODS (1) 0 to 10 numerical rating visual analogue scale (NRS) in the first minute of dental treatment following 30 minutes SMF exposure (uncontrolled), and (2) tolerance threshold measurement (TTM) with the help of a pulp meter showing values from 0 to 80 in arbitrary units (step width 10 unit) before and after 30 minutes SMF exposure in 2 sessions: SMF and sham exposure (randomized, double-blind, placebo-controlled). Altogether 59 adult patients (26 males+33 females) representing 62 cases with a mean age of 43.6 years (73% between 20 and 50 y) participated. RESULTS SMF failed to significantly reduce pain perception in the NRS group and to enhance tolerance threshold in the TTM group. DISCUSSION Common dental disorders often involve an inflammatory state in the oral environment. Although the relatively low participant number and the uncontrolled manner in case of the NRS examination did not allow drawing unambiguous consequences, it seemed that SMF did not have an effect on healthy patients. The only potential candidate for an effect was, when an inflammatory situation occurred at (or under) the place, where the SMF exposure was targeted. In our case the male participants with caries responded most positively on the SMF treatment.
Collapse
Affiliation(s)
- János László
- Section for Mathematics, Hungarian Academy of Sciences, Budapest, Nádor u. 7, Hungary.
| | | |
Collapse
|
46
|
László J. Physiological effects of static magnetic fields. Orv Hetil 2009; 150:1267-73. [DOI: 10.1556/oh.2009.28654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Az alábbiakban kísérletet teszek arra, hogy röviden számot adjak a sztatikus mágneses terek eddig bizonyított élettani hatásairól, kiemelve a hazai tapasztalatokat. E tudományterület fejlődésének jelentős lökést adott a nukleáris magrezonancia módszer elterjedése az orvosi diagnosztikában. Idehaza eddig elsősorban a kísérleti farmakológia, illetve neurológia eszköztárába tartozó kísérletek közül vezetett több pozitív eredményre. Ezek alapján a következő két megalapozott kijelentést tehetjük: 1. Létrehozható olyan sztatikus mágneses tér, amelynek állatkísérletben bizonyított, statisztikusan szignifikáns fiziológiás hatása van. 2. Ez a hatás biológiai, a mágneses tér a szervezet endogén rendszereit mozgósítja egy-egy patologikus folyamat leküzdésére. Választ elsősorban arra keresünk, hogy vajon fel tudjuk-e ezt a hatást használni terápiás célokra.
Collapse
Affiliation(s)
- János László
- 1 Magyar Tudományos Akadémia Matematikai Tudományok Osztálya Budapest Nádor u. 7. 1051
| |
Collapse
|
47
|
Belton M, Prato FS, Rozanski C, Carson JJL. Effect of 100 mT homogeneous static magnetic field on [Ca2+]c response to ATP in HL-60 cells following GSH depletion. Bioelectromagnetics 2009; 30:322-9. [PMID: 19204977 DOI: 10.1002/bem.20475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcium is an important molecule in a number of biological systems. Often these systems are signal transduction cascades involving molecules such as ATP. ATP activates second messengers which can interact with ion channels on the endoplasmic/sarcoplasmic reticulum resulting in the emptying of the intracellular calcium stores and an increase in cytosolic free calcium concentration ([Ca2+]c). Changes in [Ca2+]c can be influenced by external factors such as a static magnetic field (SMF). One hypothesis suggests that a SMF affects the cells through the radical pair mechanism. By reducing the number of antioxidant molecules like glutathione (GSH), the proportion of free radicals in the cells is increased and may lead to a greater probability of a biological response to a SMF. The purpose of this study was to determine if the [Ca2+]c response to ATP was affected by depletion of GSH by diethylmaleate (DEM) and the absence or presence of a 100 mT homogeneous SMF. Undifferentiated HL-60 cells were loaded with fura-2 AM. [Ca2+]c was measured in real time using a ratiometric fluorescence spectroscopy system. Various (DEM) ranging from 1 to 15 mM were added to deplete GSH. Cells were either exposed to sham or magnetic field (100 mT) for 13 min (780 s) and challenged with 1 microM ATP. The data show that [Ca2+]c was elevated following treatment with DEM with greater [Ca2+]c at higher [DEM]. The [Ca2+]c response to ATP was decreased as the DEM concentration increased. However, there was no effect of a 100 mT SMF on the average [Ca2+]c peak following ATP activation or the full width at half maximum (FWHM) of the [Ca2+]c response and recovery after ATP activation.
Collapse
Affiliation(s)
- Michelle Belton
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
48
|
Traikov L, Georgiev K, Bocheva A, Dzambazova E, Markov M. Static magnetic field action on some markers of inflammation in animal model system—in vivo. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s10669-009-9227-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Colbert AP, Souder J, Markov M. Static magnetic field therapy: methodological challenges to conducting clinical trials. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s10669-008-9203-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Colbert AP, Cleaver J, Brown KA, Harling N, Hwang Y, Schiffke HC, Brons J, Qin Y. Magnets applied to acupuncture points as therapy - a literature review. Acupunct Med 2008; 26:160-70. [PMID: 18818562 DOI: 10.1136/aim.26.3.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To summarise the acu-magnet therapy literature and determine if the evidence justifies further investigation of acu-magnet therapy for specific clinical indications. METHODS Using various search strategies, a professional librarian searched six electronic databases (PubMed, AMED, ScienceDirect College Edition, China Academic Journals, Acubriefs, and the in-house Journal Article Index maintained by the Oregon College of Oriental Medicine Library). English and Chinese language human studies with all study designs and for all clinical indications were included. Excluded were experimental and animal studies, electroacupuncture and transcranial magnetic stimulation. Data were extracted on clinical indication, study design, number, age and gender of subjects, magnetic devices used, acu-magnet dosing regimens (acu-point site of magnet application and frequency and duration of treatment), control devices and control groups, outcomes, and adverse events. RESULTS Three hundred and eight citations were retrieved and 50 studies met our inclusion criteria. We were able to obtain and translate (when necessary) 42 studies. The language of 31 studies was English and 11 studies were in Chinese. The 42 studies reported on 32 different clinical conditions in 6453 patients from 19862007. A variety of magnetic devices, dosing regimens and control devices were used. Thirty seven of 42 studies (88%) reported therapeutic benefit. The only adverse events reported were exacerbation of hot flushes and skin irritation from adhesives. CONCLUSIONS Based on this literature review we believe further investigation of acu-magnet therapy is warranted particularly for the management of diabetes and insomnia. The overall poor quality of the controlled trials precludes any evidence based treatment recommendations at this time.
Collapse
Affiliation(s)
- Agatha P Colbert
- Helfgott Research Institute, National College of Natural Medicine, Portland, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|