1
|
Jaramillo-Torres MJ, Limpert RH, Butak WJ, Cohen KE, Whitaker-Hilbig AA, Durand MJ, Freed JK, SenthilKumar G. Promoting Resiliency to Stress in the Vascular Endothelium. Basic Clin Pharmacol Toxicol 2025; 136:e70001. [PMID: 39936288 DOI: 10.1111/bcpt.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
By 2050, roughly 60% of the population will have cardiovascular disease. While a substantial amount of data has been generated over the last few decades that has aided in our understanding of cardiovascular disease pathology, less is known about how to increase resiliency to cardiovascular risk factors that individuals are exposed to on a daily basis. The vascular endothelium is considered the first line of defence against circulating noxious stimuli and, when dysfunctional, is an early risk factor for the development of cardiovascular disease. A vast amount of data has been generated demonstrating how external stress impairs the vascular endothelium; however, there is a paucity of knowledge regarding how to amplify protective pathways and ward off stress and the development of disease, which is the focus of this review. Targeting known protective endothelial pathways may be feasible to increase resiliency to vascular stress. Leveraging stress to boost defence mechanisms within the vascular endothelium is also proposed and may help identify novel therapeutic targets to protect individuals from the stress of everyday life.
Collapse
Affiliation(s)
- Maria J Jaramillo-Torres
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rachel H Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - William J Butak
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katie E Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alicen A Whitaker-Hilbig
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew J Durand
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Gutierrez-Huerta CA, Quiroz-Delfi G, Faleel FDM, Beyer AM. Impaired endothelial function contributes to cardiac dysfunction: role of mitochondrial dynamics. Am J Physiol Heart Circ Physiol 2025; 328:H29-H36. [PMID: 39560973 DOI: 10.1152/ajpheart.00531.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of nitric oxide (NO)-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H2O2. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in the formation of reactive oxygen species (ROS), including H2O2. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction, and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.
Collapse
Affiliation(s)
- Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Giovanni Quiroz-Delfi
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | | | - Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cancer Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Zinkevich NS, Drachuk K, Zhang DX. Prolonged L-NAME exposure changes the vasodilator factor from NO to H 2O 2 in human arterioles in response to A23187. Vascul Pharmacol 2024; 157:107440. [PMID: 39537001 PMCID: PMC11624973 DOI: 10.1016/j.vph.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The Ca2+ ionophore A23187 induces endothelium-dependent and non-receptor-mediated vasodilation in human adipose arterioles (HAAs). The purpose of this study was to determine the mechanism of A23187-induced dilation in HAAs from patients with and without coronary artery disease (CAD). HAAs were freshly isolated from adipose tissues obtained from non-CAD (n = 25) and CAD (n = 14) patients, and vascular reactivity was studied by videomicroscopy. No difference in baseline dose response to A23187 was observed between non-CAD and CAD subjects. However, acute (30 min) incubation with N(omega)-nitro-l-arginine methyl ester (L-NAME), NO synthase inhibitor strongly reduced A23187-induced dilation in non-CAD arterioles, while catalase, an H2O2 scavenger, largely abolished dilation in CAD. Surprising, prolonged (90 min) incubation with L-NAME restored A23187 response in non-CAD subjects, which was subsequently inhibited by catalase. The action of prolonged L-NAME exposure was not reversible after washing with Krebs while the effect of acute L-NAME exposure was largely reversible. To further determine the role of mitochondria-derived ROS in A23187-induced dilation, arterioles were treated with rotenone, an inhibitor of complex I of the electron transport chain. Rotenone abolished A23187 response in CAD patients and in non-CAD arterioles after prolonged L-NAME, but not in non-CAD controls. These data indicate that NO contributes to A23187-induced dilation in HAAs from non-CAD patients and H2O2 contributes to the dilation in CAD patients. Prolonged L-NAME exposure induces a NO-H2O2 switch in the mechanism of dilation in non-CAD subjects. Moreover, the effect of prolonged L-NAME exposure is not readily reversible, while the action of acute L-NAME exposure is reversible.
Collapse
Affiliation(s)
- Natalya S Zinkevich
- College of Health, Science and Technology, School of Integrated Sciences, Sustainability, and Public Health, Biology, University of Illinois Springfield, Springfield, IL 62703-5407, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Kostiantyn Drachuk
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
SenthilKumar G, Hammond ST, Zirgibel Z, Cohen KE, Beyer AM, Freed JK. Is the peripheral microcirculation a window into the human coronary microvasculature? J Mol Cell Cardiol 2024; 193:67-77. [PMID: 38848808 PMCID: PMC11260236 DOI: 10.1016/j.yjmcc.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
An increasing body of evidence suggests a pivotal role for the microvasculature in the development of cardiovascular disease. A dysfunctional coronary microvascular network, specifically within endothelial cells-the inner most cell layer of vessels-is considered a strong, independent risk factor for future major adverse cardiac events. However, challenges exist with evaluating this critical vascular bed, as many of the currently available techniques are highly invasive and cost prohibitive. The more easily accessible peripheral microcirculation has surfaced as a potential surrogate in which to study mechanisms of coronary microvascular dysfunction and likewise may be used to predict poor cardiovascular outcomes. In this review, we critically evaluate a variety of prognostic, physiological, and mechanistic studies in humans to answer whether the peripheral microcirculation can add insight into coronary microvascular health. A conceptual framework is proposed that the health of the endothelium specifically may link the coronary and peripheral microvascular beds. This is supported by evidence showing a correlation between human coronary and peripheral endothelial function in vivo. Although not a replacement for investigating and understanding coronary microvascular function, the microvascular endothelium from the periphery responds similarly to (patho)physiological stress and may be leveraged to explore potential therapeutic pathways to mitigate stress-induced damage.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stephen T Hammond
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie E Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
5
|
Olic JJ, Baessler A, Fischer M. [Chest pain and cardiovascular diseases in women : Diagnostics and treatment]. Herz 2023; 48:487-498. [PMID: 37930367 DOI: 10.1007/s00059-023-05215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of global mortality not only in men but also in women. The incidence of CVD significantly increases in women, especially after the menopause. Sex and gender differences in the incidence, prevalence and mortality of CVD are due to hormonal, anatomical, and sociocultural differences. As part of the primary and secondary prevention of coronary heart disease (CHD), risk factors specific for women, such as autoimmune diseases and pregnancy-associated diseases (e.g., gestational diabetes and pre-eclampsia) should also be taken into account in addition to the classical cardiovascular risk factors. Furthermore, in women with angina pectoris it should be considered that women in particular frequently suffer from ischemia with nonobstructive coronary arteries (INOCA) that can be caused, for example, by coronary microvascular dysfunction (CMD) or coronary spasms. Based on this, the diagnostics should not be terminated in symptomatic women after coronary angiography with normal epicardial vessels. A targeted diagnostics for CMD and coronary spasms should be carried out at an early stage.
Collapse
Affiliation(s)
- Janet-Jacqueline Olic
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Andrea Baessler
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| | - Marcus Fischer
- Caritas-Krankenhaus St. Lukas, Traubenweg 3, 93309, Kelheim, Deutschland
| |
Collapse
|
6
|
Vascularized Tissue Organoids. Bioengineering (Basel) 2023; 10:bioengineering10020124. [PMID: 36829618 PMCID: PMC9951914 DOI: 10.3390/bioengineering10020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tissue organoids hold enormous potential as tools for a variety of applications, including disease modeling and drug screening. To effectively mimic the native tissue environment, it is critical to integrate a microvasculature with the parenchyma and stroma. In addition to providing a means to physiologically perfuse the organoids, the microvasculature also contributes to the cellular dynamics of the tissue model via the cells of the perivascular niche, thereby further modulating tissue function. In this review, we discuss current and developing strategies for vascularizing organoids, consider tissue-specific vascularization approaches, discuss the importance of perfusion, and provide perspectives on the state of the field.
Collapse
|
7
|
Ait-Aissa K, Norwood-Toro LE, Terwoord J, Young M, Paniagua LA, Hader SN, Hughes WE, Hockenberry JC, Beare JE, Linn J, Kohmoto T, Kim J, Betts DH, LeBlanc AJ, Gutterman DD, Beyer AM. Noncanonical Role of Telomerase in Regulation of Microvascular Redox Environment With Implications for Coronary Artery Disease. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac043. [PMID: 36168588 PMCID: PMC9508843 DOI: 10.1093/function/zqac043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023]
Abstract
Telomerase reverse transcriptase (TERT) (catalytic subunit of telomerase) is linked to the development of coronary artery disease (CAD); however, whether the role of nuclear vs. mitchondrial actions of TERT is involved is not determined. Dominant-negative TERT splice variants contribute to decreased mitochondrial integrity and promote elevated reactive oxygen species production. We hypothesize that a decrease in mitochondrial TERT would increase mtDNA damage, promoting a pro-oxidative redox environment. The goal of this study is to define whether mitochondrial TERT is sufficient to maintain nitric oxide as the underlying mechanism of flow-mediated dilation by preserving mtDNA integrity.Immunoblots and quantitative polymerase chain reaction were used to show elevated levels of splice variants α- and β-deletion TERT tissue from subjects with and without CAD. Genetic, pharmacological, and molecular tools were used to manipulate TERT localization. Isolated vessel preparations and fluorescence-based quantification of mtH2O2 and NO showed that reduction of TERT in the nucleus increased flow induced NO and decreased mtH2O2 levels, while prevention of mitochondrial import of TERT augmented pathological effects. Further elevated mtDNA damage was observed in tissue from subjects with CAD and initiation of mtDNA repair mechanisms was sufficient to restore NO-mediated dilation in vessels from patients with CAD. The work presented is the first evidence that catalytically active mitochondrial TERT, independent of its nuclear functions, plays a critical physiological role in preserving NO-mediated vasodilation and the balance of mitochondrial to nuclear TERT is fundamentally altered in states of human disease that are driven by increased expression of dominant negative splice variants.
Collapse
Affiliation(s)
- K Ait-Aissa
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - L E Norwood-Toro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Young
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - L A Paniagua
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - S N Hader
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - W E Hughes
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J C Hockenberry
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | - J Linn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T Kohmoto
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - J Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - D H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - A J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA,Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - D D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - A M Beyer
- Address correspondence to A.M.B. (e-mail: )
| |
Collapse
|
8
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Panusatid C, Thangsiriskul N, Peerapittayamongkol C. Methods for mitochondrial health assessment by High Content Imaging System. MethodsX 2022; 9:101685. [PMID: 35464807 PMCID: PMC9026914 DOI: 10.1016/j.mex.2022.101685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 10/31/2022] Open
Abstract
Mitochondria are important organelles responsible for energy production. Mitochondrial dysfunction relates to various pathological diseases. The investigation of mitochondrial heath is critical to evaluate the cellular status. Herein, we demonstrated an approach for determining the status of mitochondrial health by observing mitochondrial H2O2 (one type of ROS), membrane potential, and morphology (fragmentation and length) in live primary fibroblast cells. The cells were co-stained with fluorescent dyes (Hoechst 33342 and MITO-ID® Red/MitoPY1/JC-10) and continuously processed by the High Content Imaging System. We employed the Operetta CLSTM to take fluorescent images with its given quickness and high resolution. The CellProfiler image analysis software was further used to identify cell and mitochondrial phenotypes in the thousand fluorescent images.We could quantitatively analyze fluorescent images with high-throughput and high-speed detection to track the alteration of mitochondrial status. The MMP assay is sensitive to FCCP even at the concentration of 0.01 µM. The fibroblast cells treated with stress inducers (H2O2, FCCP, and phenanthroline) revealed a significant change in mitochondrial health parameters, with more ROS accumulation, depolarized MMP, increased fragmentation, and reduced length of mitochondria.
Collapse
|
10
|
Methods for vascularization and perfusion of tissue organoids. Mamm Genome 2022; 33:437-450. [PMID: 35333952 DOI: 10.1007/s00335-022-09951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Tissue organoids or "mini organs" can be invaluable tools for understanding health and disease biology, modeling tissue dynamics, or screening potential drug candidates. Effective vascularization of these models is critical for truly representing the in vivo tissue environment. Not only is the formation of a vascular network, and ultimately a microcirculation, essential for proper distribution and exchange of oxygen and nutrients throughout larger organoids, but vascular cells dynamically communicate with other cells to modulate overall tissue behavior. Additionally, interstitial fluid flow, mediated by a perfused microvasculature, can have profound influences on tissue biology. Thus, a truly functionally and biologically relevant organoid requires a vasculature. Here, we review existing strategies for fabricating and incorporating vascular elements and perfusion within tissue organoids.
Collapse
|
11
|
Ranadive SM, Dillon GA, Mascone SE, Alexander LM. Vascular Health Triad in Humans With Hypertension-Not the Usual Suspects. Front Physiol 2021; 12:746278. [PMID: 34658930 PMCID: PMC8517241 DOI: 10.3389/fphys.2021.746278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertension (HTN) affects more than one-third of the US population and remains the top risk factor for the development of cardiovascular disease (CVD). Identifying the underlying mechanisms for developing HTN are of critical importance because the risk of developing CVD doubles with ∼20 mmHg increase in systolic blood pressure (BP). Endothelial dysfunction, especially in the resistance arteries, is the primary site for initiation of sub-clinical HTN. Furthermore, inflammation and reactive oxygen and nitrogen species (ROS/RNS) not only influence the endothelium independently, but also have a synergistic influence on each other. Together, the interplay between inflammation, ROS and vascular dysfunction is referred to as the vascular health triad, and affects BP regulation in humans. While the interplay of the vascular health triad is well established, new underlying mechanistic targets are under investigation, including: Inducible nitric oxide synthase, hydrogen peroxide, hydrogen sulfide, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor activated T cells. This review outlines the role of these unusual suspects in vascular health and function in humans. This review connects the dots using these unusual suspects underlying inflammation, ROS and vascular dysfunction especially in individuals at risk of or with diagnosed HTN based on novel studies performed in humans.
Collapse
Affiliation(s)
- Sushant M Ranadive
- Department of Kinesiology, University of Maryland, College Park, College Park, MD, United States
| | - Gabrielle A Dillon
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.,Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States
| | - Sara E Mascone
- Department of Kinesiology, University of Maryland, College Park, College Park, MD, United States
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States.,Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
12
|
Hakim MA, Behringer EJ. Development of Alzheimer's Disease Progressively Alters Sex-Dependent KCa and Sex-Independent KIR Channel Function in Cerebrovascular Endothelium. J Alzheimers Dis 2021; 76:1423-1442. [PMID: 32651315 DOI: 10.3233/jad-200085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aβ plaques (Aβ; 6- 8 mo), and Aβ plaques + neurofibrillary tangles (AβT; 12- 15 mo)]. RESULTS The coupling of ΔVm-to-Δ[Ca2+]i during AβT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aβ+ AβT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aβ pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
13
|
Sabbahi A, Ellythy A, Hwang CL, Phillips SA. Differential responses of resistance arterioles to elevated intraluminal pressure in blacks and whites. Am J Physiol Heart Circ Physiol 2021; 321:H29-H37. [PMID: 34018853 DOI: 10.1152/ajpheart.01023.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Black Americans have an earlier onset, higher average blood pressure, and higher rates of hypertension-related mortality and morbidity, compared to whites. The racial difference may be related to microvasculature, the major regulatory site of blood pressure. The goal of this study was to compare the response of resistance vessels to high intraluminal pressure between black and white participants. A total of 38 vessels were obtained from human fat samples [21 black, 17 white; mean age 32 ± 12 yr and body mass index (BMI) 26.9 ± 4.9; between-group P ≥ 0.05] and included in this study. Internal diameter was measured in response to the flow induced by various pressure gradients (Δ10, Δ20, Δ40, Δ60, and Δ100 cmH2O), and flow-induced dilation (FID) was calculated before and after high intraluminal pressure (150 cmH2O). Before high intraluminal pressure, FID was not different between blacks and whites (P = 0.112). After exposure to high intraluminal pressure, FID was reduced at every pressure gradient in vessels from blacks (P < 0.001), whereas FID did not change in white participants except at Δ100 cmH2O. When incubated with the hydrogen peroxide (H2O2) scavenger polyethylene glycol-catalase (PEG-catalase), the FID response in vessels from black, but not white, individuals was significantly reduced and the magnitude was higher at normal pressure relative to high pressure. Our findings suggest that the vessels from self-identified black individuals are more susceptible to microvascular dysfunction following transient periods of high intraluminal pressure compared to whites and show greater dependence on H2O2 as a main contributor to FID at normal pressures.NEW & NOTEWORTHY Microvascular function regulates blood pressure and may contribute to racial differences in the incidence and prevalence of hypertension and other cardiovascular diseases. Here, we show that using an ex vivo model of resistance arterioles isolated from human gluteal fat tissue, flow-induced dilation is not different between black and white participants. However, when exposed to transient increases in intraluminal pressure, the flow-induced dilation in resistance arterioles from black participants demonstrated greater reductions relative to their white counterparts, indicating a higher sensitivity to pressure change in the microvasculature.
Collapse
Affiliation(s)
- Ahmad Sabbahi
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois.,School of Physical Therapy, South College, Knoxville, Tennessee
| | - Assem Ellythy
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Chueh-Lung Hwang
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Katunaric B, Cohen KE, Beyer AM, Gutterman DD, Freed JK. Sweat the small stuff: The human microvasculature and heart disease. Microcirculation 2021; 28:e12658. [PMID: 32939881 PMCID: PMC7960576 DOI: 10.1111/micc.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023]
Abstract
Traditionally thought of primarily as the predominant regulator of myocardial perfusion, it is becoming more accepted that the human coronary microvasculature also exerts a more direct influence on the surrounding myocardium. Coronary microvascular dysfunction (CMD) not only precedes large artery atherosclerosis, but is associated with other cardiovascular diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy. It is also highly predictive of cardiovascular events in patients with or without atherosclerotic cardiovascular disease. This review focuses on this recent paradigm shift and delves into the clinical consequences of CMD. Concepts of how resistance arterioles contribute to disease will be discussed, highlighting how the microvasculature may serve as a potential target for novel therapies and interventions. Finally, both invasive and non-invasive methods with which to assess the coronary microvasculature both for diagnostic and risk stratification purposes will be reviewed.
Collapse
Affiliation(s)
- Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andreas M. Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D. Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
16
|
Hughes WE, Zinkevich N, Gutterman DD, Beyer AM. Hypertension preserves the magnitude of microvascular flow-mediated dilation following transient elevation in intraluminal pressure. Physiol Rep 2021; 9:e14507. [PMID: 33587335 PMCID: PMC7883808 DOI: 10.14814/phy2.14507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The objective of this study was to measure flow-mediated dilation (FMD) prior to and following transient increases in intraluminal pressure (IILP) in resistance arterioles isolated from subjects with and without coronary artery disease (CAD) (CAD and non-CAD) and non-CAD subjects with hypertension. METHODS Arterioles were isolated from discarded surgical tissues (adipose and atrial) from patients without coronary artery disease (non-CAD; ≤1 risk factor, excluding hypertension), with CAD, and non-CAD patients with hypertension (hypertension as the only risk factor). To simulate transient hypertension, increased IILP was generated (150 mmHg, 30 min) by gravity. Arterioles were constricted with endothelin-1, followed by FMD and endothelial-independent dilation prior to and following exposure to IILP. RESULTS IILP reduced FMD in non-CAD and CAD arterioles relative to pre-IILP (p <.05 at 100 cmH2 O). In contrast, arterioles from non-CAD hypertensive subjects exhibited no reduction in maximal FMD following IILP (p = .84 at 100 cmH2 O). FMD was reduced by L-NAME prior to IILP in non-CAD hypertensive patients (p < .05 at 100 cmH2 O); however, following IILP, FMD was inhibited by peg-cat (p < .05 at 100 cmH2 O), indicating a switch from NO to H2 O2 as the mechanism of dilation. CONCLUSIONS Acute exposure (30 min) to IILP (150 mmHg) attenuates the magnitude of FMD in non-CAD and CAD resistance arterioles. The presence of clinically diagnosed hypertension in non-CAD resistance arterioles preserves the magnitude of FMD following IILP as a result of a compensatory switch from NO to H2 O2 as the mechanism of dilation.
Collapse
Affiliation(s)
- William E. Hughes
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
- Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Natalya Zinkevich
- Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
- Department of Health and MedicineCarroll UniversityWaukeshaWIUSA
| | - David D. Gutterman
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
- Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Andreas M. Beyer
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
- Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
17
|
Trinity JD, Kwon OS, Broxterman RM, Gifford JR, Kithas AC, Hydren JR, Jarrett CL, Shields KL, Bisconti AV, Park SH, Craig JC, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Am J Physiol Heart Circ Physiol 2020; 320:H668-H678. [PMID: 33306447 DOI: 10.1152/ajpheart.00784.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh Sung Kwon
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise Science, Brigham Young University, Provo, Utah
| | - Andrew C Kithas
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jay R Hydren
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Angela V Bisconti
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Hughes WE, Chabowski DS, Ait-Aissa K, Fetterman JL, Hockenberry J, Beyer AM, Gutterman DD. Critical Interaction Between Telomerase and Autophagy in Mediating Flow-Induced Human Arteriolar Vasodilation. Arterioscler Thromb Vasc Biol 2020; 41:446-457. [PMID: 33232201 PMCID: PMC7770118 DOI: 10.1161/atvbaha.120.314944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Coronary artery disease (CAD) is associated with a compensatory switch in mechanism of flow-mediated dilation (FMD) from nitric oxide (NO) to H2O2. The underlying mechanism responsible for the pathological shift is not well understood, and recent reports directly implicate telomerase and indirectly support a role for autophagy. We hypothesize that autophagy is critical for shear stress-induced release of NO and is a crucial component of for the pathway by which telomerase regulates FMD. Approach and Results: Human left ventricular, atrial, and adipose resistance arterioles were collected for videomicroscopy and immunoblotting. FMD and autophagic flux were measured in arterioles treated with autophagy modulators alone, and in tandem with telomerase-activity modulators. LC3B II/I was higher in left ventricular tissue from patients with CAD compared with non-CAD (2.8±0.2 versus 1.0±0.2-fold change; P<0.05), although p62 was similar between groups. Shear stress increased Lysotracker fluorescence in non-CAD arterioles, with no effect in CAD arterioles. Inhibition of autophagy in non-CAD arterioles induced a switch from NO to H2O2, while activation of autophagy restored NO-mediated vasodilation in CAD arterioles. In the presence of an autophagy activator, telomerase inhibitor prevented the expected switch (Control: 82±4%; NG-Nitro-l-arginine methyl ester: 36±5%; polyethylene glycol catalase: 80±3). Telomerase activation was unable to restore NO-mediated FMD in the presence of autophagy inhibition in CAD arterioles (control: 72±7%; NG-Nitro-l-arginine methyl ester: 79±7%; polyethylene glycol catalase: 38±9%). CONCLUSIONS We provide novel evidence that autophagy is responsible for the pathological switch in dilator mechanism in CAD arterioles, demonstrating that autophagy acts downstream of telomerase as a common denominator in determining the mechanism of FMD.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI
| | - Dawid S Chabowski
- Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI
| | - Karima Ait-Aissa
- Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.L.F.)
| | - Joseph Hockenberry
- Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI
| | - Andreas M Beyer
- Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Department of Physiology (A.M.B.), MCW, Milwaukee, WI
| | - David D Gutterman
- Department of Medicine (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI.,Cardiovascular Center (W.E.H., D.S.C., K.A.-A., J.H., A.M.B., D.D.G.), MCW, Milwaukee, WI
| |
Collapse
|
19
|
Levy BI, Heusch G, Camici PG. The many faces of myocardial ischaemia and angina. Cardiovasc Res 2020; 115:1460-1470. [PMID: 31228187 DOI: 10.1093/cvr/cvz160] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive disease of the epicardial coronary arteries is the main cause of angina. However, a number of patients with anginal symptoms have normal coronaries or non-obstructive coronary artery disease (CAD) despite electrocardiographic evidence of ischaemia during stress testing. In addition to limited microvascular vasodilator capacity, the coronary microcirculation of these patients is particularly sensitive to vasoconstrictor stimuli, in a condition known as microvascular angina. This review briefly summarizes the determinants and control of coronary blood flow (CBF) and myocardial perfusion. It subsequently analyses the mechanisms responsible for transient myocardial ischaemia: obstructive CAD, coronary spasm and coronary microvascular dysfunction in the absence of epicardial coronary lesions, and variable combinations of structural anomalies, impaired endothelium-dependent and/or -independent vasodilation, and enhanced perception of pain. Lastly, we exemplify mechanism of angina during tachycardia. Distal to a coronary stenosis, coronary dilator reserve is already recruited and can be nearly exhausted at rest distal to a severe stenosis. Increased heart rate reduces the duration of diastole and thus CBF when metabolic vasodilation is no longer able to increase CBF. The increase in myocardial oxygen consumption and resulting metabolic vasodilation in adjacent myocardium without stenotic coronary arteries further acts to divert blood flow away from the post-stenotic coronary vascular bed through collaterals.
Collapse
Affiliation(s)
- Bernard I Levy
- Inserm U970 and Vessels and Blood Institute, 8 Rue Guy Patin, Paris, France
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, Universitätsklinikum Essen, Essen, Germany
| | - Paolo G Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| |
Collapse
|
20
|
Hughes WE, Beyer AM, Gutterman DD. Vascular autophagy in health and disease. Basic Res Cardiol 2020; 115:41. [PMID: 32506214 DOI: 10.1007/s00395-020-0802-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Homeostasis is maintained within organisms through the physiological recycling process of autophagy, a catabolic process that is intricately involved in the mobilization of nutrients during starvation, recycling of cellular cargo, as well as initiation of cellular death pathways. Specific to the cardiovascular system, autophagy responds to both chemical (e.g. free radicals) and mechanical stressors (e.g. shear stress). It is imperative to note that autophagy is not a static process, and measurement of autophagic flux provides a more comprehensive investigation into the role of autophagy. The overarching themes emerging from decades of autophagy research are that basal levels of autophagic flux are critical, physiological stressors may increase or decrease autophagic flux, and more importantly, aberrant deviations from basal autophagy may elicit detrimental effects. Autophagy has predominantly been examined within cardiac or vascular smooth muscle tissue within the context of disease development and progression. Autophagic flux within the endothelium holds an important role in maintaining vascular function, demonstrated by the necessary role for intact autophagic flux for shear-induced release of nitric oxide however the underlying mechanisms have yet to be elucidated. Within this review, we theorize that autophagy itself does not solely control vascular homeostasis, rather, it works in concert with mitochondria, telomerase, and lipids to maintain physiological function. The primary emphasis of this review is on the role of autophagy within the human vasculature, and the integrative effects with physiological processes and diseases as they relate to the vascular structure and function.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA.
| | - Andreas M Beyer
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| | - David D Gutterman
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| |
Collapse
|
21
|
Basic Concepts of the Microcirculation. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
OLHER RAFAELREIS, ROSA THIAGOSANTOS, SOUZA LUIZHUMBERTORODRIGUES, OLIVEIRA JOSÉFERNANDO, SOARES BRANDERANTERALVES, RIBEIRO THIAGOBELARMINOALVES, SOUZA IORANNYRAQUELCASTRO, NEVES RODRIGOVANERSONPASSOS, SOUSA CAIOVICTOR, DEUS LYSLEINEALVES, MARCHETTI PAULOHENRIQUE, SIMOES HERBERTGUSTAVO, MORAES MILTONROCHA. Isometric Exercise with Large Muscle Mass Improves Redox Balance and Blood Pressure in Hypertensive Adults. Med Sci Sports Exerc 2019; 52:1187-1195. [DOI: 10.1249/mss.0000000000002223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Durand MJ, Beckert AK, Peterson CY, Ludwig KA, Ridolfi TJ, Lauer KK, Freed JK. You Are Only as Frail as Your Arteries: Prehabilitation of Elderly Surgical Patients. CURRENT ANESTHESIOLOGY REPORTS 2019. [DOI: 10.1007/s40140-019-00357-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Purpose of Review
To discuss the concept of prehabilitation for the elderly frail surgical patient as well as strategies to improve preoperative functional capacity and vascular function to decrease postoperative complications.
Recent Findings
Frailty is associated with poor surgical outcomes yet there is no consensus on how frailty should be measured or mitigated in the preoperative period. Prehabilitation, or improving functional capacity prior to surgery typically through exercise, has been shown to be an effective strategy to decrease preoperative frailty and improves surgical outcomes. Use of remote ischemic preconditioning (RIPC) may serve as an alternative to exercise in this fragile patient population.
Summary
Prehabilitation programs using strategies targeted at improving vascular function may decrease frailty in the preoperative period and improve surgical outcomes in the elderly population.
Collapse
|
25
|
Mahmoud AM, Szczurek M, Hassan C, Masrur M, Gangemi A, Phillips SA. Vitamin D Improves Nitric Oxide-Dependent Vasodilation in Adipose Tissue Arterioles from Bariatric Surgery Patients. Nutrients 2019; 11:E2521. [PMID: 31635396 PMCID: PMC6835261 DOI: 10.3390/nu11102521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
There is a high prevalence of vitamin-D deficiency in obese individuals that could be attributed to vitamin-D sequestration in the adipose tissue. Associations between vitamin-D deficiency and unfavorable cardiometabolic outcomes were reported. However, the pathophysiological mechanisms behind these associations are yet to be established. In our previous studies, we demonstrated microvascular dysfunction in obese adults that was associated with reduced nitric oxide (NO) production. Herein, we examined the role of vitamin D in mitigating microvascular function in morbidly obese adults before and after weight loss surgery. We obtained subcutaneous (SAT) and visceral adipose tissue (VAT) biopsies from bariatric patients at the time of surgery (n = 15) and gluteal SAT samples three months post-surgery (n = 8). Flow-induced dilation (FID) and acetylcholine-induced dilation (AChID) and NO production were measured in the AT-isolated arterioles ± NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME), hydrogen peroxide (H2O2) inhibitor, polyethylene glycol-modified catalase (PEG-CAT), or 1,25-dihydroxyvitamin D. Vitamin D improved FID, AChID, and NO production in AT-isolated arterioles at time of surgery; these effects were abolished by L-NAME but not by PEG-CAT. Vitamin-D-mediated improvements were of a higher magnitude in VAT compared to SAT arterioles. After surgery, significant improvements in FID, AChID, NO production, and NO sensitivity were observed. Vitamin-D-induced changes were of a lower magnitude compared to those from the time of surgery. In conclusion, vitamin D improved NO-dependent arteriolar vasodilation in obese adults; this effect was more significant before surgery-induced weight loss.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Mary Szczurek
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Chandra Hassan
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Mario Masrur
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Antonio Gangemi
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Shane A Phillips
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Chabowski DS, Kadlec AO, Ait‐Aissa K, Hockenberry JC, Pearson PJ, Beyer AM, Gutterman DD. Lysophosphatidic acid acts on LPA 1 receptor to increase H 2 O 2 during flow-induced dilation in human adipose arterioles. Br J Pharmacol 2018; 175:4266-4280. [PMID: 30153326 PMCID: PMC6193883 DOI: 10.1111/bph.14492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE NO produces arteriolar flow-induced dilation (FID) in healthy subjects but is replaced by mitochondria-derived hydrogen peroxide (mtH2 O2 ) in patients with coronary artery disease (CAD). Lysophosphatidic acid (LPA) is elevated in patients with risk factors for CAD, but its functional effect in arterioles is unknown. We tested whether elevated LPA changes the mediator of FID from NO to mtH2 O2 in human visceral and subcutaneous adipose arterioles. EXPERIMENTAL APPROACH Arterioles were cannulated on glass micropipettes and pressurized to 60 mmHg. We recorded lumen diameter after graded increases in flow in the presence of either NOS inhibition (L-NAME) or H2 O2 scavenging (Peg-Cat) ± LPA (10 μM, 30 min), ±LPA1 /LPA3 receptor antagonist (Ki16425) or LPA2 receptor antagonist (H2L5186303). We analysed LPA receptor RNA and protein levels in human arterioles and human cultured endothelial cells. KEY RESULTS FID was inhibited by L-NAME but not Peg-Cat in untreated vessels. In vessels treated with LPA, FID was of similar magnitude but inhibited by Peg-Cat while L-NAME had no effect. Rotenone attenuated FID in vessels treated with LPA indicating mitochondria as a source of ROS. RNA transcripts from LPA1 and LPA2 but not LPA3 receptors were detected in arterioles. LPA1 but not LPA3 receptor protein was detected by Western blot. Pretreatment of vessels with an LPA1 /LPA3 , but not LPA2 , receptor antagonist prior to LPA preserved NO-mediated dilation. CONCLUSIONS AND IMPLICATIONS These findings suggest an LPA1 receptor-dependent pathway by which LPA increases arteriolar release of mtH2 O2 as a mediator of FMD.
Collapse
Affiliation(s)
- Dawid S Chabowski
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWIUSA
| | - Andrew O Kadlec
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Karima Ait‐Aissa
- Department of Medicine – Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Joseph C Hockenberry
- Department of Medicine – Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Paul J Pearson
- Department of Surgery – Cardiothoracic SurgeryMedical College of WisconsinMilwaukeeWIUSA
| | - Andreas M Beyer
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Department of Medicine – Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
| | - David D Gutterman
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWIUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Department of Medicine – Cardiovascular CenterMedical College of WisconsinMilwaukeeWIUSA
- VA Medical CenterMilwaukeeWIUSA
| |
Collapse
|
27
|
Allaqaband H, Gutterman DD, Kadlec AO. Physiological Consequences of Coronary Arteriolar Dysfunction and Its Influence on Cardiovascular Disease. Physiology (Bethesda) 2018; 33:338-347. [PMID: 30109826 PMCID: PMC6230549 DOI: 10.1152/physiol.00019.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
To date, the major focus of diagnostic modalities and interventions to treat coronary artery disease has been the large epicardial vessels. Despite substantial data showing that microcirculatory dysfunction is a strong predictor of future adverse cardiovascular events, very little research has gone into developing techniques for in vivo diagnosis and therapeutic interventions to improve microcirculatory function. In this review, we will discuss the pathophysiology of coronary arteriolar dysfunction, define its prognostic implications, evaluate the diagnostic modalities available, and provide speculation on current and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Hassan Allaqaband
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - David D Gutterman
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Veterans Administration Medical Center, Milwaukee, Wisconsin
| | - Andrew O Kadlec
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
28
|
Woodman CR, Seawright JW, Luttrell MJ, Shin SY, Trache A. Importance of mechanical signals in promoting exercise-induced improvements in vasomotor function of aged skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 2018; 315:H602-H609. [PMID: 29906226 DOI: 10.1152/ajpheart.00732.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current research indicates that vasomotor responses are altered with aging in skeletal muscle resistance arteries. The changes in vasomotor function are characterized by impaired vasodilator and vasoconstrictor responses. The detrimental effects of aging on vasomotor function are attenuated in some vascular beds after a program of endurance exercise training. The signals associated with exercise responsible for inducing improvements in vasomotor function have been proposed to involve short-duration increases in intraluminal shear stress and/or pressure during individual bouts of exercise. Here, we review evidence that increases in shear stress and pressure, within a range believed to present in these arteries during exercise, promote healthy vasomotor function in aged resistance arteries. We conclude that available research is consistent with the interpretation that short-duration mechanical stimulation, through increases in shear stress and pressure, contributes to the beneficial effects of exercise on vasomotor function in aged skeletal muscle resistance arteries.
Collapse
Affiliation(s)
- Christopher R Woodman
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas.,Department of Veterinary Physiology and Pharmacology, Texas A&M University , College Station, Texas
| | - John W Seawright
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | | | - Song Yi Shin
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University , College Station, Texas.,Department of Biomedical Engineering, Texas A&M University , College Station, Texas
| |
Collapse
|
29
|
Aboo Bakkar Z, Fulford J, Gates PE, Jackman SR, Jones AM, Bond B, Bowtell JL. Prolonged forearm ischemia attenuates endothelium-dependent vasodilatation and plasma nitric oxide metabolites in overweight middle-aged men. Eur J Appl Physiol 2018; 118:1565-1572. [PMID: 29785503 PMCID: PMC6060779 DOI: 10.1007/s00421-018-3886-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/06/2018] [Indexed: 12/01/2022]
Abstract
Purpose Repeated cycles of endothelial ischemia–reperfusion injury and the resulting respiratory burst contribute to the irreversible pathophysiology of vascular diseases, and yet, the effects of ischemia reperfusion on vascular function, oxidative stress, and nitric oxide (NO) bioavailability have not been assessed simultaneously. Therefore, this study sought to examine the effects of prolonged forearm occlusion and subsequent reperfusion on NO-dependent brachial artery endothelial function. Methods Flow-mediated dilatation was measured at baseline and 15, 30, and 45 min after 20-min forearm occlusion in 14 healthy, but physically inactive middle-aged men (53.7 ± 1.2 years, BMI: 28.1 ± 0.1 kg m−2). Venous blood samples collected from the occluded arm were analyzed for NO metabolites and markers of oxidative stress. Results FMD was significantly depressed after the prolonged occlusion compared to baseline, with a significant reduction 15-min post-occlusion (6.6 ± 0.7 to 2.9 ± 0.4%, p < 0.001); FMD remained depressed after 30 min (4.1 ± 0.6%, p = 0.001), but was not significantly different to baseline after 45-min recovery (5.4 ± 0.7%, p = 0.079). Plasma nitrate (main time effect: p = 0.015) and nitrite (main time effect: p = 0.034) concentrations were significantly reduced after prolonged occlusion. Plasma catalase activity was significantly elevated at 4- (p = 0.016) and 45-min (p = 0.001) post-occlusion, but plasma peroxiredoxin 2 and protein carbonyl content did not change. Conclusions Prolonged forearm occlusion resulted in acute impairment of endothelium-dependent vasodilatation of the brachial artery for at least 30 min after reperfusion. We demonstrate that this vascular dysfunction is associated with oxidative stress and reduced NO bioavailability following reperfusion.
Collapse
Affiliation(s)
- Zainie Aboo Bakkar
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | | | | | - Sarah R Jackman
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Bert Bond
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Joanna L Bowtell
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
30
|
Zinkevich NS, Fancher IS, Gutterman DD, Phillips SA. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS-induced ROS release in coronary artery disease. Microcirculation 2018; 24. [PMID: 28480622 DOI: 10.1111/micc.12380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/30/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES H2 O2 contributes to FID of human arterioles. This study is designed to examine the roles of mitochondria and NADPH oxidase in modulating the release of ROS and in mediating FID. We tested whether NADPH oxidase contributes to mitochondrial ROS generation in arterioles during CAD. METHODS Visceral adipose arterioles obtained from patients with or without CAD were cannulated and pressurized for videomicroscopic measurement of arteriolar diameters. Dilator responses and ROS production during flow were determined in the presence and absence of the NADPH oxidase inhibitor gp91ds-tat and the mitochondrial electron transport inhibitor rotenone. RESULTS Both dilation and H2 O2 generation during flow were reduced in the presence of rotenone (13.5±8% vs 97±% without rotenone) or gp91ds-tat in patients with CAD, while patients without CAD exhibited H2 O2 -independent dilations. Mitochondrial superoxide production during flow was attenuated by gp91ds-tat in arterioles from CAD patients. CONCLUSIONS These findings indicate that ROS produced by NADPH oxidase are an upstream component of the mitochondria-dependent pathway contributing to flow-dependent H2 O2 generation and dilation in peripheral microvessels from patients with CAD. We conclude that in CAD, both mitochondria and NADPH oxidase contribute to FID through a redox mechanism in visceral arterioles.
Collapse
Affiliation(s)
- Natalya S Zinkevich
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Health and Medicine, Carroll University, Waukesha, WI, USA
| | - Ibra S Fancher
- Department of Physical Therapy, Department of Medicine (Division of Pulmonary, Critical Care, Sleep and Allergy), University of Illinois at Chicago, Chicago, IL, USA
| | - David D Gutterman
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, Department of Medicine (Division of Endocrinology, Diabetes and Metabolism), Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Kadlec AO, Gutterman DD. The Yin and Yang of endothelium-derived vasodilator factors. Am J Physiol Heart Circ Physiol 2018; 314:H892-H894. [PMID: 29351003 PMCID: PMC6008146 DOI: 10.1152/ajpheart.00019.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
32
|
Behringer EJ. Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation 2018; 24. [PMID: 27801542 DOI: 10.1111/micc.12328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
Abstract
The integral role of the endothelium during the coordination of blood flow throughout vascular resistance networks has been recognized for several decades now. Early examination of the distinct anatomy and physiology of the endothelium as a signaling conduit along the vascular wall has prompted development and application of an intact endothelial "tube" study model isolated from rodent skeletal muscle resistance arteries. Vasodilatory signals such as increased endothelial cell (EC) Ca2+ ([Ca2+ ]i ) and hyperpolarization take place in single ECs while shared between electrically coupled ECs through gap junctions up to distances of millimeters (≥2 mm). The small- and intermediate-conductance Ca2+ activated K+ (SKCa /IKCa or KCa 2.3/KCa 3.1) channels function at the interface of Ca2+ signaling and hyperpolarization; a bidirectional relationship whereby increases in [Ca2+ ]i activate SKCa /IKCa channels to produce hyperpolarization and vice versa. Further, the spatial domain of hyperpolarization among electrically coupled ECs can be finely tuned via incremental modulation of SKCa /IKCa channels to balance the strength of local and conducted electrical signals underlying vasomotor activity. Multifunctional properties of the voltage-insensitive SKCa /IKCa channels of resistance artery endothelium may be employed for therapy during the aging process and development of vascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
33
|
Fancher IS, Ahn SJ, Adamos C, Osborn C, Oh MJ, Fang Y, Reardon CA, Getz GS, Phillips SA, Levitan I. Hypercholesterolemia-Induced Loss of Flow-Induced Vasodilation and Lesion Formation in Apolipoprotein E-Deficient Mice Critically Depend on Inwardly Rectifying K + Channels. J Am Heart Assoc 2018; 7:e007430. [PMID: 29502106 PMCID: PMC5866319 DOI: 10.1161/jaha.117.007430] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hypercholesterolemia-induced decreased availability of nitric oxide (NO) is a major factor in cardiovascular disease. We previously established that cholesterol suppresses endothelial inwardly rectifying K+ (Kir) channels and that Kir2.1 is an upstream mediator of flow-induced NO production. Therefore, we tested the hypothesis that suppression of Kir2.1 is responsible for hypercholesterolemia-induced inhibition of flow-induced NO production and flow-induced vasodilation (FIV). We also tested the role of Kir2.1 in the development of atherosclerotic lesions. METHODS AND RESULTS Kir2.1 currents are significantly suppressed in microvascular endothelial cells exposed to acetylated-low-density lipoprotein or isolated from apolipoprotein E-deficient (Apoe-/- ) mice and rescued by cholesterol depletion. Genetic deficiency of Kir2.1 on the background of hypercholesterolemic Apoe-/- mice, Kir2.1+/-/Apoe-/- exhibit the same blunted FIV and flow-induced NO response as Apoe-/- or Kir2.1+/- alone, but while FIV in Apoe-/- mice can be rescued by cholesterol depletion, in Kir2.1+/-/Apoe-/- mice cholesterol depletion has no effect on FIV. Endothelial-specific overexpression of Kir2.1 in arteries from Apoe-/- and Kir2.1+/-/Apoe-/- mice results in full rescue of FIV and NO production in Apoe-/- mice with and without the addition of a high-fat diet. Conversely, endothelial-specific expression of dominant-negative Kir2.1 results in the opposite effect. Kir2.1+/-/Apoe-/- mice also show increased lesion formation, particularly in the atheroresistant area of descending aorta. CONCLUSIONS We conclude that hypercholesterolemia-induced reduction in FIV is largely attributable to cholesterol suppression of Kir2.1 function via the loss of flow-induced NO production, whereas the stages downstream of flow-induced Kir2.1 activation appear to be mostly intact. Kir2.1 channels also have an atheroprotective role.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/physiopathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Hypercholesterolemia/physiopathology
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Nitric Oxide/metabolism
- Plaque, Atherosclerotic
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Signal Transduction
- Vasodilation
Collapse
Affiliation(s)
- Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| | - Crystal Adamos
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Catherine Osborn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| | - Myung-Jin Oh
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, IL
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, IL
| | | | | | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, IL
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, IL
| |
Collapse
|
34
|
Brooks SD, Hileman SM, Chantler PD, Milde SA, Lemaster KA, Frisbee SJ, Shoemaker JK, Jackson DN, Frisbee JC. Protection from chronic stress- and depressive symptom-induced vascular endothelial dysfunction in female rats is abolished by preexisting metabolic disease. Am J Physiol Heart Circ Physiol 2018; 314:H1085-H1097. [PMID: 29451819 DOI: 10.1152/ajpheart.00648.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While it is known that chronic stress and clinical depression are powerful predictors of poor cardiovascular outcomes, recent clinical evidence has identified correlations between the development of metabolic disease and depressive symptoms, creating a combined condition of severely elevated cardiovascular disease risk. In this study, we used the obese Zucker rat (OZRs) and the unpredictable chronic mild stress (UCMS) model to determine the impact of preexisting metabolic disease on the relationship between chronic stress/depressive symptoms and vascular function. Additionally, we determined the impact of metabolic syndrome on sex-based protection from chronic stress/depressive effects on vascular function in female lean Zucker rats (LZRs). In general, vasodilator reactivity was attenuated under control conditions in OZRs compared with LZRs. Although still impaired, conduit arterial and resistance arteriolar dilator reactivity under control conditions in female OZRs was superior to that in male or ovariectomized (OVX) female OZRs, largely because of better maintenance of vascular nitric oxide and prostacyclin levels. However, imposition of metabolic syndrome in combination with UCMS in OZRs further impaired dilator reactivity in both vessel subtypes to a similarly severe extent and abolished any protective effect in female rats compared with male or OVX female rats. The loss of vascular protection in female OZRs with UCMS was reflected in vasodilator metabolite levels, which closely matched those in male and OVX female OZRs subjected to UCMS. These results suggest that presentation of metabolic disease in combination with depressive symptoms can overwhelm the vasoprotection identified in female rats and, thereby, may reflect a severe impairment to normal endothelial function. NEW & NOTEWORTHY This study addresses the protection from chronic stress- and depression-induced vascular dysfunction identified in female compared with male or ovariectomized female rats. We determined the impact of preexisting metabolic disease, a frequent comorbidity of clinical depression in humans, on that vascular protection. With preexisting metabolic syndrome, female rats lost all protection from chronic stress/depressive symptoms and became phenotypically similar to male and ovariectomized female rats, with comparably poor vasoactive dilator metabolite profiles.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
35
|
Jansen JM. David Gutterman: Focusing on the Little Things Leads to Big Discoveries. Circ Res 2018; 122:548-550. [PMID: 29449361 DOI: 10.1161/circresaha.118.312741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Kadlec AO, Barnes C, Durand MJ, Gutterman DD. Microvascular Adaptations to Exercise: Protective Effect of PGC-1 Alpha. Am J Hypertens 2018; 31:240-246. [PMID: 29140431 DOI: 10.1093/ajh/hpx162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sedentary behavior and obesity are major risk factors for cardiovascular disease. Regular physical activity has independent protective effects on the cardiovascular system, but the mechanisms responsible remain elusive. Recent studies suggest that the protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) participates in the response to exercise training. We hypothesized that the arterioles of athletes maintain dilation to flow despite combined inhibition of multiple vasodilators, but loss of PGC-1α renders these vessels susceptible to inhibition of a single vasodilator pathway. In addition, arterioles from overweight and obese individuals will display an an exercise-like phenotype when PGC-1α is activated. METHODS Isolated arterioles from exercise-trained (ET) and from mildly overweight or obese subjects (body mass index >25) were cannulated, and changes in lumen diameter in response to graded increases in flow were recorded in the absence and presence of compounds that inhibit various endothelium-dependent vasodilators. RESULTS Microvessels of ET subjects displayed robust dilation that could not be inhibited through targeting the combination of nitric oxide, prostaglandins, and hydrogen peroxide, but were inhibited via interference with membrane hyperpolarization. Loss of PGC-1α (siRNA) in the microcirculation of ET subjects eliminates this vasodilatory robustness rendering vessels susceptible to blockade of H2O2 alone. Pharmacological activation of PGC-1α with alpha-lipoic acid in isolated microvessels from sedentary, overweight, and obese subjects increases arteriolar resistance to vasodilator blockade and protects against acute increases in intraluminal pressure. CONCLUSIONS These findings suggest that the microvascular adaptations to exercise training, and the exercise-induced protection against acute vascular stress in overweight/obese subjects, are mediated by PGC-1α.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Chad Barnes
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew J Durand
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
37
|
Lukaszewicz KM, Durand MJ, Priestley JRC, Schmidt JR, Allen LA, Geurts AM, Lombard JH. Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats. J Vis Exp 2017. [PMID: 29286398 DOI: 10.3791/56133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered "designer" rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size.
Collapse
Affiliation(s)
| | | | | | - James R Schmidt
- Graduate Programs of Nurse Anesthesia, Texas Wesleyan University
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin
| | | |
Collapse
|
38
|
Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY) 2017; 8:2897-2914. [PMID: 27875805 PMCID: PMC5191877 DOI: 10.18632/aging.101099] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.
Collapse
|
39
|
Heffernan KS, Lefferts WK, Yoon ES, Park SH, Lee YH, Jae SY. Carotid artery reactivity during sympathetic activation following acute resistance exercise. Clin Auton Res 2017; 27:417-421. [DOI: 10.1007/s10286-017-0469-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
40
|
Improved arterial flow-mediated dilation after exertion involves hydrogen peroxide in overweight and obese adults following aerobic exercise training. J Hypertens 2017; 34:1309-16. [PMID: 27137176 DOI: 10.1097/hjh.0000000000000946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Acute strenuous physical exertion impairs arterial function in sedentary adults. We investigated the effects of 8 weeks of regular aerobic exercise training on acute physical exertion-induced arterial dysfunction in sedentary, overweight, and obese adults. METHODS Twenty-five overweight and obese adults (BMI 30.5 ± 7.2 years) were assigned to 8 weeks of aerobic training or to a control group. Brachial artery flow-mediated dilation (FMD) was assessed before and after acute leg press exercise at weeks 0 and 8. Gluteal adipose biopsies were performed at rest and post acute leg press to measure microvessel FMD with and without nitric oxide synthase inhibition via L-nitroarginine methyl ester or hydrogen peroxide (H2O2) scavenging with Catalase. Microvessel nitric oxide and H2O2 production were assessed via fluorescence microscopy. RESULTS Brachial artery dilation was reduced post acute leg press at week 0 in the aerobic exercise and control groups, but was preserved in the aerobic-exercise group post acute leg press at week 8 (P < 0.05). Post acute leg press microvessel FMD was preserved in the aerobic exercise group but impaired in the control group at week 8 (P < 0.05). Preserved dilation in the aerobic exercise group was more sensitive to H2O2 scavenging than inhibition of nitric oxide, and post acute leg press microvessel H2O2 production was increased compared with at rest (P < 0.05). CONCLUSION Aerobic exercise prevents acute exertion-induced arterial dysfunction in overweight and obese adults via a phenotypic switch from nitric oxide-mediated dilation at rest to a predominately H2O2-mediated dilation after acute physical exertion.
Collapse
|
41
|
Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol 2017; 13:288-300. [PMID: 28600985 PMCID: PMC5466665 DOI: 10.1016/j.redox.2017.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance promotes vascular endothelial dysfunction and subsequent development of cardiovascular disease. Previously we found that skeletal muscle arteriolar flow-induced dilation (FID) was reduced following a hyperinsulinemic clamp in healthy adults. Therefore, we hypothesized that hyperinsulinemia, a hallmark of insulin resistance, contributes to microvascular endothelial cell dysfunction via inducing oxidative stress that is mediated by NADPH oxidase (Nox) system. We examined the effect of insulin, at levels that are comparable with human hyperinsulinemia on 1) FID of isolated arterioles from human skeletal muscle tissue in the presence and absence of Nox inhibitors and 2) human adipose microvascular endothelial cell (HAMECs) expression of nitric oxide (NO), endothelial NO synthase (eNOS), and Nox-mediated oxidative stress. In six lean healthy participants (mean age 25.5±1.6 y, BMI 21.8±0.9), reactive oxygen species (ROS) were increased while NO and arteriolar FID were reduced following 60 min of ex vivo insulin incubation. These changes were reversed after co-incubation with the Nox isoform 2 (Nox2) inhibitor, VAS2870. In HAMECs, insulin-induced time-dependent increases in Nox2 expression and P47phox phosphorylation were echoed by elevations of superoxide production. In contrast, phosphorylation of eNOS and expression of superoxide dismutase (SOD2 and SOD3) isoforms showed a biphasic response with an increased expression at earlier time points followed by a steep reduction phase. Insulin induced eNOS uncoupling that was synchronized with a drop of NO and a surge of ROS production. These effects were reversed by Tempol (SOD mimetic), Tetrahydrobiopterin (BH4; eNOS cofactor), and VAS2870. Finally, insulin induced nitrotyrosine formation which was reversed by inhibiting NO or superoxide generation. In conclusions, hyperinsulinemia may reduce FID via inducing Nox2-mediated superoxide production in microvascular endothelial cells which reduce the availability of NO and enhances peroxynitrite formation. Therefore, the Nox2 pathway should be considered as a target for the prevention of oxidative stress-associated endothelial dysfunction during hyperinsulinemia. Hyperinsulinemia impairs FID and induces ROS production in human muscle arterioles. Insulin-induced ROS production in endotelial cells is mediated by NADPH oxidase. Long exposure to high insulin levels reduces eNOS phosphorylation and NO production.
Collapse
|
42
|
Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM, Gutterman DD. PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α) Overexpression in Coronary Artery Disease Recruits NO and Hydrogen Peroxide During Flow-Mediated Dilation and Protects Against Increased Intraluminal Pressure. Hypertension 2017; 70:166-173. [PMID: 28533333 DOI: 10.1161/hypertensionaha.117.09289] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/12/2017] [Accepted: 04/20/2017] [Indexed: 12/27/2022]
Abstract
Blood flow through healthy human vessels releases NO to produce vasodilation, whereas in patients with coronary artery disease (CAD), the mediator of dilation transitions to mitochondria-derived hydrogen peroxide (mtH2O2). Excessive mtH2O2 production contributes to a proatherosclerotic vascular milieu. Loss of PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α) is implicated in the pathogenesis of CAD. We hypothesized that PGC-1α suppresses mtH2O2 production to reestablish NO-mediated dilation in isolated vessels from patients with CAD. Isolated human adipose arterioles were cannulated, and changes in lumen diameter in response to graded increases in flow were recorded in the presence of PEG (polyethylene glycol)-catalase (H2O2 scavenger) or L-NAME (NG-nitro-l-arginine methyl ester; NOS inhibitor). In contrast to the exclusively NO- or H2O2-mediated dilation seen in either non-CAD or CAD conditions, respectively, flow-mediated dilation in CAD vessels was sensitive to both L-NAME and PEG-catalase after PGC-1α upregulation using ZLN005 and α-lipoic acid. PGC-1α overexpression in CAD vessels protected against the vascular dysfunction induced by an acute increase in intraluminal pressure. In contrast, downregulation of PGC-1α in non-CAD vessels produces a CAD-like phenotype characterized by mtH2O2-mediated dilation (no contribution of NO). Loss of PGC-1α may contribute to the shift toward the mtH2O2-mediated dilation observed in vessels from subjects with CAD. Strategies to boost PGC-1α levels may provide a therapeutic option in patients with CAD by shifting away from mtH2O2-mediated dilation, increasing NO bioavailability, and reducing levels of mtH2O2 Furthermore, increased expression of PGC-1α allows for simultaneous contributions of both NO and H2O2 to flow-mediated dilation.
Collapse
Affiliation(s)
- Andrew O Kadlec
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Dawid S Chabowski
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Joseph C Hockenberry
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Mary F Otterson
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - David D Gutterman
- From the Department of Physiology (A.O.K., A.M.B., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., J.C.H., A.M.B., D.D.G.), Cardiovascular Center (A.O.K., D.S.C., K.A.-A., J.C.H., M.J.D., J.K.F., A.M.B., D.D.G.), Department of Physical Medicine and Rehabilitation (M.J.D.), Division of Colorectal Surgery, Department of Surgery (M.F.O.), and Department of Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
43
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
44
|
Robinson AT, Fancher IS, Sudhahar V, Bian JT, Cook MD, Mahmoud AM, Ali MM, Ushio-Fukai M, Brown MD, Fukai T, Phillips SA. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature. Am J Physiol Heart Circ Physiol 2017; 312:H896-H906. [PMID: 28235790 DOI: 10.1152/ajpheart.00684.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/01/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023]
Abstract
High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm2) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H2O2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature.NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.
Collapse
Affiliation(s)
- Austin T Robinson
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois; .,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Ibra S Fancher
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois.,Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Varadarajan Sudhahar
- Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Jing Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Marc D Cook
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Abeer M Mahmoud
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Mohamed M Ali
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Masuko Ushio-Fukai
- Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Michael D Brown
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Tohru Fukai
- Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois; .,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
45
|
Raignault A, Bolduc V, Lesage F, Thorin E. Pulse pressure-dependent cerebrovascular eNOS regulation in mice. J Cereb Blood Flow Metab 2017; 37:413-424. [PMID: 26823473 PMCID: PMC5381440 DOI: 10.1177/0271678x16629155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arterial blood pressure is oscillatory; whether pulse pressure (PP) regulates cerebral artery myogenic tone (MT) and endothelial function is currently unknown. To test the impact of PP on MT and dilation to flow (FMD) or to acetylcholine (Ach), isolated pressurized mouse posterior cerebral arteries were subjected to either static pressure (SP) or a physiological PP (amplitude: 30 mm Hg; frequency: 550 bpm). Under PP, MT was significantly higher than in SP conditions ( p < 0.05) and was not affected by eNOS inhibition. In contrast, under SP, eNOS inhibition increased ( p < 0.05) MT to levels observed under PP, suggesting that PP may inhibit eNOS. At a shear stress of 20 dyn/cm2, FMD was lower ( p < 0.05) under SP than PP. Under SP, eNOS-dependent [Formula: see text] production contributed to FMD, while under PP, eNOS-dependent NO was responsible for FMD, indicating that PP favours eNOS coupling. Differences in FMD between pressure conditions were abolished after NOX2 inhibition. In contrast to FMD, Ach-induced dilations were higher ( p < 0.05) under SP than PP. Reactive oxygen species scavenging reduced ( p < 0.05) Ach-dependent dilations under SP, but increased ( p < 0.05) them under PP; hence, under PP, Ach promotes ROS production and limits eNOS-derived NO activity. In conclusion, PP finely regulates eNOS, controlling cerebral artery reactivity.
Collapse
Affiliation(s)
- Adeline Raignault
- 1 Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Virginie Bolduc
- 1 Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Frédéric Lesage
- 2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada.,3 Ecole Polytechnique de Montréal, Montreal, Quebec, Canada
| | - Eric Thorin
- 1 Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada.,4 Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol 2016; 112:5. [PMID: 27995364 DOI: 10.1007/s00395-016-0594-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
Abstract
In microvessels of patients with coronary artery disease (CAD), flow-mediated dilation (FMD) is largely dependent upon the endothelium-derived hyperpolarizing factor H2O2. The goal of this study is to examine the influence of age and presence or absence of disease on the mechanism of FMD. Human coronary or adipose arterioles (~150 µm diameter) were prepared for videomicroscopy. The effect of inhibiting COX [indomethacin (Indo) or NOS (L-NAME), eliminating H2O2 (polyethylene glycol-catalase (PEG-CAT)] or targeting a reduction in mitochondrial ROS with scavengers/inhibitors [Vitamin E (mtVitamin E); phenylboronic acid (mtPBA)] was determined in children aged 0-18 years; young adults 19-55 years; older adults >55 years without CAD, and similarly aged adults with CAD. Indo eliminated FMD in children and reduced FMD in younger adults. This response was mediated mainly by PGI2, as the prostacyclin-synthase-inhibitor trans-2-phenyl cyclopropylamine reduced FMD in children and young adults. L-NAME attenuated dilation in children and younger adults and eliminated FMD in older adults without CAD, but had no effect on vessels from those with CAD, where mitochondria-derived H2O2 was the primary mediator. The magnitude of dilation was reduced in older compared to younger adults independent of CAD. Exogenous treatment with a sub-dilator dose of NO blocked FMD in vessels from subjects with CAD, while prolonged inhibition of NOS in young adults resulted in a phenotype similar to that observed in disease. The mediator of coronary arteriolar FMD evolves throughout life from prostacyclin in youth, to NO in adulthood. With the onset of CAD, NO-inhibitable release of H2O2 emerges as the exclusive mediator of FMD. These findings have implications for use of pharmacological agents, such as nonsteroidal anti-inflammatory agents in children and the role of microvascular endothelium in cardiovascular health.
Collapse
|
47
|
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The Human Microcirculation: Regulation of Flow and Beyond. Circ Res 2016; 118:157-72. [PMID: 26837746 DOI: 10.1161/circresaha.115.305364] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microcirculation is responsible for orchestrating adjustments in vascular tone to match local tissue perfusion with oxygen demand. Beyond this metabolic dilation, the microvasculature plays a critical role in modulating vascular tone by endothelial release of an unusually diverse family of compounds including nitric oxide, other reactive oxygen species, and arachidonic acid metabolites. Animal models have provided excellent insight into mechanisms of vasoregulation in health and disease. However, there are unique aspects of the human microcirculation that serve as the focus of this review. The concept is put forth that vasculoparenchymal communication is multimodal, with vascular release of nitric oxide eliciting dilation and preserving normal parenchymal function by inhibiting inflammation and proliferation. Likewise, in disease or stress, endothelial release of reactive oxygen species mediates both dilation and parenchymal inflammation leading to cellular dysfunction, thrombosis, and fibrosis. Some pathways responsible for this stress-induced shift in mediator of vasodilation are proposed. This paradigm may help explain why microvascular dysfunction is such a powerful predictor of cardiovascular events and help identify new approaches to treatment and prevention.
Collapse
Affiliation(s)
- David D Gutterman
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| | - Dawid S Chabowski
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andrew O Kadlec
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
48
|
Wages PA, Cheng WY, Gibbs-Flournoy E, Samet JM. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress. Biochim Biophys Acta Gen Subj 2016; 1860:2802-15. [PMID: 27208426 DOI: 10.1016/j.bbagen.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. SCOPE OF REVIEW The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. MAJOR CONCLUSIONS Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. GENERAL SIGNIFICANCE Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, NC, USA
| | - Wan-Yun Cheng
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - Eugene Gibbs-Flournoy
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
49
|
LeBlanc AJ, Hoying JB. Adaptation of the Coronary Microcirculation in Aging. Microcirculation 2016; 23:157-67. [DOI: 10.1111/micc.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Amanda J. LeBlanc
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| | - James B. Hoying
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| |
Collapse
|
50
|
Moss NG, Gentle TK, Arendshorst WJ. Modulation of the myogenic mechanism: concordant effects of NO synthesis inhibition and O2- dismutation on renal autoregulation in the time and frequency domains. Am J Physiol Renal Physiol 2016; 310:F832-45. [PMID: 26823282 DOI: 10.1152/ajprenal.00461.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Renal blood flow autoregulation was investigated in anesthetized C57Bl6 mice using time- and frequency-domain analyses. Autoregulation was reestablished by 15 s in two stages after a 25-mmHg step increase in renal perfusion pressure (RPP). The renal vascular resistance (RVR) response did not include a contribution from the macula densa tubuloglomerular feedback mechanism. Inhibition of nitric oxide (NO) synthase [N(G)-nitro-l-arginine methyl ester (l-NAME)] reduced the time for complete autoregulation to 2 s and induced 0.25-Hz oscillations in RVR. Quenching of superoxide (SOD mimetic tempol) during l-NAME normalized the speed and strength of stage 1 of the RVR increase and abolished oscillations. The slope of stage 2 was unaffected by l-NAME or tempol. These effects of l-NAME and tempol were evaluated in the frequency domain during random fluctuations in RPP. NO synthase inhibition amplified the resonance peak in admittance gain at 0.25 Hz and markedly increased the gain slope at the upper myogenic frequency range (0.06-0.25 Hz, identified as stage 1), with reversal by tempol. The slope of admittance gain in the lower half of the myogenic frequency range (equated with stage 2) was not affected by l-NAME or tempol. Our data show that the myogenic mechanism alone can achieve complete renal blood flow autoregulation in the mouse kidney following a step increase in RPP. They suggest also that the principal inhibitory action of NO is quenching of superoxide, which otherwise potentiates dynamic components of the myogenic constriction in vivo. This primarily involves the first stage of a two-stage myogenic response.
Collapse
Affiliation(s)
- Nicholas G Moss
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tayler K Gentle
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|