1
|
Paudel B, Pan J, Singulane CC, Wang S, Thomas M, Ayers M, Philips S, Patel AR. Cardiac Magnetic Resonance Guidance for the Pathogenetic Definition of Cardiomyopathies. Curr Cardiol Rep 2025; 27:85. [PMID: 40238040 PMCID: PMC12003507 DOI: 10.1007/s11886-025-02233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE OF REVIEW Pathogenetics is the study of genetics in disease pathogenesis. Many abnormal gene alleles have been identified in cardiomyopathies, but their clinical utility remains limited. This review aims to examine the integration of cardiac MRI (CMR) with genetic data to enhance early detection, prognostication, and treatment strategies for cardiomyopathies. RECENT FINDINGS CMR is the gold standard imaging modality for cardiomyopathy evaluation, capable of detecting subtle structural and functional changes throughout the disease course. When applied to patients with genetic mutations, with or without phenotypic expression, CMR aids in early diagnosis and risk stratification. Cardiomyopathies can be categorized into at least seven clinical groups based on morphology, function, and genetic associations: (1) Dilated cardiomyopathy (DCM), (2) Hypertrophic cardiomyopathy (HCM), (3) Restrictive cardiomyopathy, including transthyretin amyloidosis (ATTR-CM), iron overload, and Anderson-Fabry disease, (4) Arrhythmogenic cardiomyopathy (ACM), (5) Non-dilated left ventricular cardiomyopathy (NDLVC), (6) Peripartum cardiomyopathy, and (7) Muscular dystrophy-related cardiomyopathy. We have described left ventricular noncompaction (LVNC) as a morphological trait rather than a distinct cardiomyopathy. Emerging CMR and genetic data suggest an inflammatory component in DCM and ACM, with potential therapeutic implications for immunotherapy. Advanced CMR techniques, such as quantitative perfusion, can distinguish cardiomyopathies from ischemic heart disease and detect early microvascular dysfunction, particularly in ATTR-CM and HCM. Late gadolinium enhancement (LGE) and parametric mapping (T1 and extracellular volume [ECV]) further enhance early diagnosis, prognostication and treatment response by assessing fibrosis and myocardial composition. The integration of CMR and genetic insights improves our understanding of cardiomyopathy pathogenesis, aiding in early diagnosis and prognostic assessment. Future research should leverage artificial intelligence (AI) to analyze genetic and radiomic CMR features, including perfusion data, to establish a comprehensive pathogenetic framework. This approach could refine disease classification, identify novel therapeutic targets, and advance precision medicine in cardiomyopathy management.
Collapse
Affiliation(s)
- Bishow Paudel
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Pan
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Cristiane C Singulane
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Shuo Wang
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Matthew Thomas
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael Ayers
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Steven Philips
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Amit R Patel
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Feng W, Wang L, Bogomolovas J, Zhang Z, Huang T, Chang CW, Shain A, Gu Y, Cho Y, Zhou X, Chen J. α Protein Kinase 3 Is Essential for Neonatal and Adult Cardiac Function. J Am Heart Assoc 2025; 14:e039464. [PMID: 40135575 DOI: 10.1161/jaha.124.039464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND ALPK3 (α protein kinase 3) is an atypical kinase highly expressed in human and murine hearts. Biallelic loss-of-function mutations in ALPK3 lead to pediatric cardiomyopathy. The specific stages at which ALPK3 is essential for cardiac function and the mechanisms by which it regulates cardiac function require further exploration. METHODS AND RESULTS We generated ALPK3 global knockout and inducible cardiac-specific knockout mice. We performed time-course physiological and morphological assessments to determine ALPK3's role in neonatal and adult hearts. We also generated an Alpk3-3xFLAG-HA knock-in mouse model to determine endogenous ALPK3 localization. To investigate mechanisms of ALPK3 regulation, we performed biochemical assays and RNA sequencing experiments in global knockout mice. ALPK3 is critical for both neonatal and adult cardiac function. Loss of ALPK3 at germline and adult stages leads to dilated cardiomyopathy. Approximately 75% of germline ALPK3 mice die within 1 month, while surviving mutant mice develop dilated cardiomyopathy that transitions to left ventricular hypertrophy, mirroring clinical manifestations in human patients with biallelic ALPK3 mutations. We found that ALPK3 localizes to the M-band in both neonatal and adult cardiomyocytes and interacts with muscle RING-finger proteins, which may regulate thick filament protein turnover. CONCLUSIONS Our study highlights the necessity of ALPK3 in neonatal and adult cardiac function. Our data support a model in which ALPK3 serves as a scaffold protein to recruit machineries essential for regulating thick filament protein turnover.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/enzymology
- Animals, Newborn
- Mice
- Disease Models, Animal
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/metabolism
- Phenotype
- Age Factors
- Ventricular Function, Left
- Humans
- Muscle Proteins
- Myosin-Light-Chain Kinase
Collapse
Affiliation(s)
- Wei Feng
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Li Wang
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Zengming Zhang
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Titania Huang
- Division of Biological Sciences University of California San Diego La Jolla CA USA
| | - Chien-Wei Chang
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan
| | - Abraham Shain
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Yusu Gu
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Xiaohai Zhou
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine University of California San Diego La Jolla CA USA
| |
Collapse
|
3
|
Vázquez-Carrada M, Vilchis-Landeros MM, Vázquez-Meza H, Uribe-Ramírez D, Matuz-Mares D. A New Perspective on the Role of Alterations in Mitochondrial Proteins Involved in ATP Synthesis and Mobilization in Cardiomyopathies. Int J Mol Sci 2025; 26:2768. [PMID: 40141413 PMCID: PMC11943459 DOI: 10.3390/ijms26062768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The heart requires a continuous energy supply to sustain its unceasing contraction-relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised by damage to mitochondrial DNA, including point mutations, deletions, duplications, or inversions. Additionally, disruptions to proteins associated with mitochondrial membranes regulating metabolic homeostasis can impair the respiratory chain's efficiency. This results in diminished ATP production and increased generation of reactive oxygen species. This review provides an overview of mutations affecting mitochondrial transporters and proteins involved in mitochondrial energy synthesis, particularly those involved in ATP synthesis and mobilization, and it examines their role in the pathogenesis of specific cardiomyopathies.
Collapse
Affiliation(s)
- Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av, Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
4
|
Gholipour A, Zahedmehr A, Arabian M, Shakerian F, Maleki M, Oveisee M, Malakootian M. MiR-6721-5p as a natural regulator of Meta-VCL is upregulated in the serum of patients with coronary artery disease. Noncoding RNA Res 2025; 10:25-34. [PMID: 39296643 PMCID: PMC11406674 DOI: 10.1016/j.ncrna.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Background Coronary artery disease (CAD), the leading cause of mortality globally, arises from atherosclerotic blockage of the coronary arteries. Meta-vinculin (meta-VCL), a large spliced isoform of VCL, co-localizes in muscular adhesive structures and plays significant roles in cardiac physiology and pathophysiology. This study aimed to identify microRNAs (miRNAs) regulating meta-VCL expression and investigate the expression alterations of the miRNAs of interest and meta-VCL as potential biomarkers in the serum of CAD patients. Methods Bioinformatics tools were employed to select miRNAs targeting meta-VCL. Cell-based ectopic expression analysis and a dual-luciferase assay were used to examine the interactions between miRNAs and meta-VCL. An ELISA assessed the concentrations of interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α). MiRNA and meta-VCL expression patterns and biomarker suitability were evaluated in serum samples from CAD and non-CAD individuals using real-time PCR. A cardiac cell-line data set and CAD blood exosome samples were analyzed using bioinformatics and ROC curve analyses, respectively. Results miR-6721-5p directly interacted with the putative target sites at the 3'-UTR of meta-VCL and regulated its expression. IL-10 and TNF-α concentrations, which may act as anti-inflammatory factors, decreased following miR-6721-5p upregulation and meta-VCL downregulation. Bioinformatics and experimental expression analyses confirmed downregulated meta-VCL expression and upregulated miR-6721-5p expression in CAD samples. ROC curve analysis yielded an AUC score of 0.705 (P = 0.018), indicating the potential suitability of miR-6721-5p as a biomarker for CAD. Conclusions miR-6721-5p plays a regulatory role in meta-VCL expression and may contribute to CAD development by reducing anti-inflammatory factors. These findings suggest that miR-6721-5p could serve as a novel biomarker in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Pang J, Zhu S, Shyy M, Duong J, Tran T, Sanchez-Garcia E, Chen C, Gu Y, Fang X. Loss of GATAD1 in cardiomyocyte does not cause cardiomyopathy in mice. J Mol Histol 2024; 56:33. [PMID: 39641830 DOI: 10.1007/s10735-024-10297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
GATA zinc finger domain containing 1 (GATAD1) is an as-yet uncharacterized zinc finger domain protein, which was initially identified as a histone 3 trimethylated at lysine 4 (H3K4me3) interactor. A recessive mutation in GATAD1 is associated with adult-onset dilated cardiomyopathy and heart failure, suggesting that GATAD1 is critical for maintaining normal cardiac structure and function. However, little is known as to the specific role of GATAD1 in cardiomyocytes. A mammalian Gatad1 knockout model has yet to be generated for investigating its specific role in the heart. To address this, we generated a Gatad1 cardiomyocyte-specific knockout (cKO) mouse model. Gatad1 cKO mutants exhibited normal cardiac function during the aging process up to 18 months of age. Unlike the abnormal nuclei shape observed in patients carrying GATAD1 mutations, the nuclei shape of cardiomyocytes remained unaffected by the loss of Gatad1. Furthermore, Gatad1 cKO mice responded normally to pressure overload induced by transverse aortic constriction (TAC) surgery. Together, these observations suggest that deletion of Gatad1 in cardiomyocytes does not induce cardiomyopathy during aging or affect the response to pressure overload stress in mice.
Collapse
Affiliation(s)
- Jing Pang
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
- Cellular and Molecular Biology Ph.D. program, University of Wisconsin-Madison, Madison, WI, USA
| | - Siting Zhu
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
| | - Melody Shyy
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
- Department of Biological Sciences, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Janelle Duong
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
| | - Tiana Tran
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
| | - Emily Sanchez-Garcia
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
| | - Chao Chen
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yusu Gu
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA
| | - Xi Fang
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, 9500 Gilman Dr., Mail Code 0613-C, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
7
|
Iqbal MK, Ambreen A, Mujahid M, Zarlashat Y, Abid M, Yasin A, Ullah MN, Shahzad R, Harlina PW, Khan SU, Alissa M, Algopishi UB, Almubarak HA. Cardiomegaly: Navigating the uncharted territories of heart failure - A multimodal radiological journey through advanced imaging, pathophysiological landscapes, and innovative therapeutic frontiers. Curr Probl Cardiol 2024; 49:102748. [PMID: 39009253 DOI: 10.1016/j.cpcardiol.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China; Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Alia Ambreen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Mujahid
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Abid
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Ayesha Yasin
- Department of Pathology and Forensic Medicine, Dalian Medical University Liaoning Provence, China
| | | | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Pandi B, Brenman S, Black A, Ng DCM, Lau E, Lam MPY. Tissue Usage Preference and Intrinsically Disordered Region Remodeling of Alternative Splicing Derived Proteoforms in the Heart. J Proteome Res 2024; 23:3161-3173. [PMID: 38456420 PMCID: PMC11296937 DOI: 10.1021/acs.jproteome.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched with intrinsically disordered regions. Moreover, over two-thirds of such regions are predicted to function in protein binding and RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.
Collapse
Affiliation(s)
- Boomathi Pandi
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Stella Brenman
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Alexander Black
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Dominic C. M. Ng
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Edward Lau
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Maggie P. Y. Lam
- Department
of Medicine/Division of Cardiology, Department of Biochemistry &
Molecular Genetics, and Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
9
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Pandi B, Brenman S, Black A, Ng DCM, Lau E, Lam MPY. Tissue Usage Preference and Intrinsically Disordered Region Remodeling of Alternative Splicing Derived Proteoforms in the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561375. [PMID: 37873130 PMCID: PMC10592692 DOI: 10.1101/2023.10.08.561375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched in intrinsically disordered regions, and over two-thirds of such regions are predicted to function in protein binding and/or RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.
Collapse
Affiliation(s)
- Boomathi Pandi
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stella Brenman
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexander Black
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominic C. M. Ng
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie P. Y. Lam
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation (CFReT), University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Zhou X, Fang X, Ithychanda SS, Wu T, Gu Y, Chen C, Wang L, Bogomolovas J, Qin J, Chen J. Interaction of Filamin C With Actin Is Essential for Cardiac Development and Function. Circ Res 2023; 133:400-411. [PMID: 37492967 PMCID: PMC10529502 DOI: 10.1161/circresaha.123.322750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (β1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Xi Fang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Sujay Subbayya Ithychanda
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Tongbin Wu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Yusu Gu
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Chao Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Li Wang
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Julius Bogomolovas
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences (S.S.I., J.Q.), Lerner Research Institute, Cleveland Clinic, OH
| | - Ju Chen
- Department of Medicine (X.Z., X.F., T.W., Y.G., C.C., L.W., J.B., J.C.), University of California San Diego, La Jolla
| |
Collapse
|
12
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Wu T, Xu Y, Zhang L, Liang Z, Zhou X, Evans SM, Chen J. Filamin C is Essential for mammalian myocardial integrity. PLoS Genet 2023; 19:e1010630. [PMID: 36706168 PMCID: PMC9907827 DOI: 10.1371/journal.pgen.1010630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart. Contrary to the common belief that filamin C acts as an integrin inactivator, we observed attenuated activation of β1 integrin specifically in the myocardium of FlncgKO mice. Although deleting β1 integrin from cardiomyocytes did not recapitulate the heart rupture phenotype in Flnc knockout mice, deleting both β1 integrin and filamin C from cardiomyocytes resulted in much more severe heart ruptures than deleting filamin C alone. Our results demonstrated that filamin C works in concert with β1 integrin to maintain the structural integrity of myocardium during mammalian heart development.
Collapse
Affiliation(s)
- Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yujun Xu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lunfeng Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Xiaohai Zhou
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Rinkūnaitė I, Šimoliūnas E, Alksnė M, Bartkutė G, Labeit S, Bukelskienė V, Bogomolovas J. Genetic Ablation of Ankrd1 Mitigates Cardiac Damage during Experimental Autoimmune Myocarditis in Mice. Biomolecules 2022; 12:biom12121898. [PMID: 36551326 PMCID: PMC9775225 DOI: 10.3390/biom12121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Myocarditis (MC) is an inflammatory disease of the myocardium that can cause sudden death in the acute phase, and dilated cardiomyopathy (DCM) with chronic heart failure as its major long-term outcome. However, the molecular mechanisms beyond the acute MC phase remain poorly understood. The ankyrin repeat domain 1 (ANKRD1) is a functionally pleiotropic stress/stretch-inducible protein, which can modulate cardiac stress response during various forms of pathological stimuli; however, its involvement in post-MC cardiac remodeling leading to DCM is not known. To address this, we induced experimental autoimmune myocarditis (EAM) in ANKRD1-deficient mice, and evaluated post-MC consequences at the DCM stage mice hearts. We demonstrated that ANKRD1 does not significantly modulate heart failure; nevertheless, the genetic ablation of Ankrd1 blunted the cardiac damage/remodeling and preserved heart function during post-MC DCM.
Collapse
Affiliation(s)
- Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Gabrielė Bartkutė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Virginija Bukelskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Julius Bogomolovas
- Department of Medicine, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
15
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
16
|
Integrated multi-omics analysis of adverse cardiac remodeling and metabolic inflexibility upon ErbB2 and ERRα deficiency. Commun Biol 2022; 5:955. [PMID: 36097051 PMCID: PMC9467976 DOI: 10.1038/s42003-022-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles in heart physiology, and this approach could pose a potential liability to cardiovascular health. Herein, using integrated phosphoproteomic, transcriptomic and metabolic profiling, we uncovered molecular mechanisms associated with the adverse remodeling of cardiac functions in mice with combined attenuation of ErbB2 and ERRα activity. Genetic disruption of both effectors results in profound effects on cardiomyocyte architecture, inflammatory response and metabolism, the latter leading to a decrease in fatty acyl-carnitine species further increasing the reliance on glucose as a metabolic fuel, a hallmark of failing hearts. Furthermore, integrated omics signatures of ERRα loss-of-function and doxorubicin treatment exhibit common features of chemotherapeutic cardiotoxicity. These findings thus reveal potential cardiovascular risks in discrete combination therapies in the treatment of breast and other cancers. Murine hearts deficient in ErbB2 and/or ERRα are used to profile the adverse cardiac remodeling associated with potential targeted breast cancer treatments by phosphoproteomic, transcriptomic and metabolomic profiling.
Collapse
|
17
|
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the developed world. In recent decades, extraordinary effort has been devoted to defining the molecular and pathophysiological characteristics of the diseased heart and vasculature. Mouse models have been especially powerful in illuminating the complex signaling pathways, genetic and epigenetic regulatory circuits, and multicellular interactions that underlie cardiovascular disease. The advent of CRISPR genome editing has ushered in a new era of cardiovascular research and possibilities for genetic correction of disease. Next-generation sequencing technologies have greatly accelerated the identification of disease-causing mutations, and advances in gene editing have enabled the rapid modeling of these mutations in mice and patient-derived induced pluripotent stem cells. The ability to correct the genetic drivers of cardiovascular disease through delivery of gene editing components in vivo, while still facing challenges, represents an exciting therapeutic frontier. In this review, we provide an overview of cardiovascular disease mechanisms and the potential applications of CRISPR genome editing for disease modeling and correction. We also discuss the extent to which mice can faithfully model cardiovascular disease and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
18
|
Ichise N, Sato T, Fusagawa H, Yamazaki H, Kudo T, Ogon I, Tohse N. Ultrastructural Assessment and Proteomic Analysis in Myofibrillogenesis in the Heart Primordium After Heartbeat Initiation in Rats. Front Physiol 2022; 13:907924. [PMID: 35615667 PMCID: PMC9124805 DOI: 10.3389/fphys.2022.907924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Myofibrillogenesis is an essential process for cardiogenesis and is closely related to excitation-contraction coupling and the maintenance of heartbeat. It remains unclear whether the formation of myofibrils and sarcomeres is associated with heartbeat initiation in the early embryonic heart development. Here, we investigated the association between the ultrastructure of myofibrils assessed by transmission electron microscopy and their proteomic profiling assessed by data-independent acquisition mass spectrometry (DIA-MS) in the rat heart primordia before and after heartbeat initiation at embryonic day 10.0, when heartbeat begins in rats, and in the primitive heart tube at embryonic day 11.0. Bundles of myofilaments were scattered in a few cells of the heart primordium after heartbeat initiation, whereas there were no typical sarcomeres in the heart primordia both before and after heartbeat initiation. Sarcomeres with Z-lines were identified in cells of the primitive heart tube, though myofilaments were not aligned. DIA-MS proteome analysis revealed that only 43 proteins were significantly upregulated by more than 2.0 fold among a total of 7,762 detected proteins in the heart primordium after heartbeat initiation compared with that before heartbeat initiation. Indeed, of those upregulated proteins, 12 (27.9%) were constituent proteins of myofibrils and 10 (23.3%) were proteins that were accessories and regulators for myofibrillogenesis, suggesting that upregulated proteins that are associated with heartbeat initiation were enriched in myofibrillogenesis. Collectively, our results suggest that the establishment of heartbeat is induced by development of bundles of myofilaments with upregulated proteins associated with myofibrillogensis, whereas sarcomeres are not required for the initial heartbeat.
Collapse
Affiliation(s)
- Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Tatsuya Sato,
| | - Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Izaya Ogon
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Powers JD, Kirkland NJ, Liu C, Razu SS, Fang X, Engler AJ, Chen J, McCulloch AD. Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. Int J Mol Sci 2022; 23:871. [PMID: 35055055 PMCID: PMC8779483 DOI: 10.3390/ijms23020871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.
Collapse
Affiliation(s)
- Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Natalie J. Kirkland
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Swithin S. Razu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
| | - Ju Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; (N.J.K.); (S.S.R.); (A.J.E.); (J.C.); (A.D.M.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (C.L.); (X.F.)
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|