1
|
Nemeth Z, Granger JP, Ryan MJ, Drummond HA. Is there a role of proinflammatory cytokines on degenerin-mediated cerebrovascular function in preeclampsia? Physiol Rep 2022; 10:e15376. [PMID: 35831968 PMCID: PMC9279847 DOI: 10.14814/phy2.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023] Open
Abstract
Preeclampsia (PE) is associated with adverse cerebrovascular effects during and following parturition including stroke, small vessel disease, and vascular dementia. A potential contributing factor to the cerebrovascular dysfunction is the loss of cerebral blood flow (CBF) autoregulation. Autoregulation is the maintenance of CBF to meet local demands with changes in perfusion pressure. When perfusion pressure rises, vasoconstriction of cerebral arteries and arterioles maintains flow and prevents the transfer of higher systemic pressure to downstream microvasculature. In the face of concurrent hypertension, loss of autoregulatory control exposes small delicate microvessels to injury from elevated systemic blood pressure. While placental ischemia is considered the initiating event in the preeclamptic cascade, the factor(s) mediating cerebrovascular dysfunction are poorly understood. Elevated plasma proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-17 (IL-17), are potential mediators of autoregulatory loss. Impaired CBF responses to increases in systemic pressure are attributed to the impaired pressure-induced (myogenic) constriction of small cerebral arteries and arterioles in PE. Myogenic vasoconstriction is initiated by pressure-induced vascular smooth muscle cell (VSMC) stretch. Recent studies from our laboratory group indicate that proinflammatory cytokines impair the myogenic mechanism of CBF autoregulation via inhibition of vascular degenerin proteins, putative mediators of myogenic constriction in VSMCs. This brief review links studies showing the effect of proinflammatory cytokines on degenerin expression and CBF autoregulation to the pathological cerebral consequences of preeclampsia.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Institute of Translational MedicineFaculty of Medicine, Semmelweis UniversityBudapestHungary
- Department of Morphology and PhysiologyFaculty of Health Sciences, Semmelweis UniversityBudapestHungary
| | - Joey P. Granger
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Michael J. Ryan
- Department of Pharmacology, Physiology and NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Heather A. Drummond
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
2
|
Lu Y, Stec DE, Liu R, Ryan M, Drummond HA. βENaC and ASIC2 associate in VSMCs to mediate pressure-induced constriction in the renal afferent arteriole. Am J Physiol Renal Physiol 2022; 322:F498-F511. [PMID: 35285274 PMCID: PMC8977180 DOI: 10.1152/ajprenal.00003.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
In independent studies, our laboratory has shown the importance of the degenerin proteins β-epithelial Na+ channel (βENaC) and acid-sensing ion channel 2 (ASIC2) in pressure-induced constriction (PIC) in renal interlobar arteries. Most, but not all, of the PIC response is abolished in mice lacking normal levels of βENaC or in ASIC2-null mice, indicating that the functions of βENaC and ASIC2 cannot fully compensate for the loss of the other. Degenerin proteins are known to associate and form heteromeric channels in expression systems, but whether they interact biochemically and functionally in vascular smooth muscle cells is unknown. We hypothesized that βENaC and ASIC2 interact to mediate PIC responses in renal vessels. To address this possibility, we 1) used biochemical approaches to show that βENaC associates into high-molecular-weight complexes and immunoprecipitants with ASIC2 in vascular smooth muscle cells and then 2) examined PIC in renal afferent arterioles in mice lacking normal levels of βENaC (βENaCm/m) or/and ASIC2 (ASIC2-/-) using the isolated afferent arteriole-attached glomerulus preparation. We found that the sensitivity of the PIC response (slope of the relationship between intraluminal pressure and percent myogenic tone) decreased to 26%, 27%, and -8% of wild-type controls in ASIC2-/-, βENaCm/m, and ASIC2-/-/βENaCm/m groups, respectively, suggesting that the PIC response was totally abolished in mice deficient in both ASIC2 and βENaC. Surprisingly, we found that resting internal diameters were 20-30% lower (60 mmHg, Ca2+ free) in ASIC2-/-/βENaCm/m (11.3 ± 0.5 µm) mice compared with control (14.4 ± 0.6 µm, P = 0.0007, independent two-tailed t test) or singly modified (15.7 ± 1.0 to 16.3 ± 1.1 µm) mice, suggesting compensatory vasoconstriction or remodeling. We then examined mean arterial blood pressure (MAP) using radiotelemetry and glomerular injury using histological examination of renal sections. We found that 24-h MAP was mildly elevated (+8 mmHg) in ASIC2-/-/βENaCm/m mice versus wild-type controls and the glomerular injury score was modestly increased by 38%. These findings demonstrate that myogenic constriction in afferent arterioles is dependent on normal expression of βENaC and ASIC2 and that mice lacking normal levels of ASIC2 and βENaC have mild renal injury and increased MAP.NEW & NOTEWORTHY Transmission of systemic blood pressure to delicate renal microvessels is a primary determinant of vascular injury in chronic kidney disease progression to end-stage renal disease. Here, we identified two degenerin family members, with an evolutionary link to mechanosensing, that interact biochemically and functionally to regulate systemic blood pressure and renal injury. Thus, degenerin proteins may serve as a target for the development of therapies to prevent or delay renal disease progression.
Collapse
Affiliation(s)
- Yan Lu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David E Stec
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular Renal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida
| | - Michael Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Heather A Drummond
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular Renal Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
3
|
Nemeth Z, Ryan MJ, Granger JP, Drummond HA. Expression of Exogenous Epithelial Sodium Channel Beta Subunit in the Mouse Middle Cerebral Artery Increases Pressure-Induced Constriction. Am J Hypertens 2021; 34:1227-1235. [PMID: 34161569 PMCID: PMC9526803 DOI: 10.1093/ajh/hpab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pressure-induced constriction (PIC) is inherent to small arteries and arterioles, in which intraluminal pressure-induced vascular smooth muscle cell stretch elicits vasoconstriction. Degenerin (Deg) proteins, such as beta-epithelial Na+ channel (βENaC), have been studied in the PIC response because they are evolutionarily linked to known mechanosensors. While loss of Deg function phenotypes are plentiful, a gain-of-function phenotype has not been studied. The aim of this study was to determine if expression of exogenous βENaC in the isolated middle cerebral artery (MCA) enhances the PIC response. METHODS Isolated MCA segments from female mice (24 weeks, n = 5) were transfected with enhanced green fluorescent protein-βENaC (EGFP-βENaC) or with EGFP alone, incubated overnight at 37 °C, then studied in a pressure myograph. RESULTS Mechanical/morphological properties and vasoconstrictor responses to KCl and phenylephrine were identical in EGFP-βENaC and EGFP MCAs. In contrast, PIC responses were greater in EGFP-βENaC segments with ~2-fold greater peak myogenic tone. CONCLUSIONS These data confirm previous findings that βENaC is critical in the PIC response. These data provide proof-of-concept that upregulating βENaC can enhance PIC responses and lay the foundation to test the hypothesis that inflammation-mediated downregulation of βENaC contributes to cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
4
|
Drummond HA. What Evolutionary Evidence Implies About the Identity of the Mechanoelectrical Couplers in Vascular Smooth Muscle Cells. Physiology (Bethesda) 2021; 36:292-306. [PMID: 34431420 DOI: 10.1152/physiol.00008.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
5
|
High Na + Salt Diet and Remodeling of Vascular Smooth Muscle and Endothelial Cells. Biomedicines 2021; 9:biomedicines9080883. [PMID: 34440087 PMCID: PMC8389691 DOI: 10.3390/biomedicines9080883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Our knowledge on essential hypertension is vast, and its treatment is well known. Not all hypertensives are salt-sensitive. The available evidence suggests that even normotensive individuals are at high cardiovascular risk and lower survival rate, as blood pressure eventually rises later in life with a high salt diet. In addition, little is known about high sodium (Na+) salt diet-sensitive hypertension. There is no doubt that direct and indirect Na+ transporters, such as the Na/Ca exchanger and the Na/H exchanger, and the Na/K pump could be implicated in the development of high salt-induced hypertension in humans. These mechanisms could be involved following the destruction of the cell membrane glycocalyx and changes in vascular endothelial and smooth muscle cells membranes’ permeability and osmolarity. Thus, it is vital to determine the membrane and intracellular mechanisms implicated in this type of hypertension and its treatment.
Collapse
|
6
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
7
|
Duncan JW, Nemeth Z, Hildebrandt E, Granger JP, Ryan MJ, Drummond HA. Interleukin-17 induces hypertension but does not impair cerebrovascular function in pregnant rats. Pregnancy Hypertens 2021; 24:50-57. [PMID: 33677419 PMCID: PMC8159853 DOI: 10.1016/j.preghy.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Preeclampsia affects 5-8% of pregnancies and is characterized by hypertension, placental ischemia, neurological impairment, and an increase in circulating inflammatory cytokines, including Interleukin-17 (IL17). While placental ischemia has also been shown to impair cerebrovascular function, it is not known which placental-associated factor(s) drive this effect. The purpose of this study was to examine the effects of IL17 on cerebrovascular function during pregnancy. To achieve this goal, pregnant rats were infused with either IL17 (150 pg/day, 5 days, osmotic minipump), or vehicle (saline/0.7% BSA osmotic minipump) starting at gestational day (GD) 14. On GD 19, the cerebral blood flow (CBF) response to increases in mean arterial pressure (MAP) was measured in vivo, and myogenic constrictor responses of the middle cerebral artery (MCA) were assessed ex vivo. IL17 increased MAP but impaired CBF responses only at the highest arterial pressure measured (190 mmHg). Myogenic constrictor responses overall were mostly unaffected by IL17 infusion; however, the intraluminal pressure at which peak myogenic tone was generated was lower in the IL17 infused group (120 vs 165 mm Hg), suggesting maximal tone is exerted at lower intraluminal pressures in IL17-treated pregnant rats. Consistent with the lack of substantial change in overall myogenic responsiveness, there was no difference in cerebral vessel expression of putative mechanosensitive protein βENaC, but a tendency towards a decrease in ASIC2 (p = 0.067) in IL17 rats. This study suggests that infusion of IL17 independent of other placental ischemia-associated factors is insufficient to recapitulate the features of impaired cerebrovascular function during placental ischemia. Further studies to examine of the role of other pro-inflammatory cytokines, individually or a combination, are necessary to determine mechanisms of cerebral vascular dysfunction during preeclampsia.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA.
| |
Collapse
|
8
|
Abstract
The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, and Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, TN (A.K.)
| | - Thomas R Kleyman
- From the Department of Medicine (S.M.M., T.R.K.), University of Pittsburgh, PA.,Department of Cell Biology (T.R.K.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (T.R.K.), University of Pittsburgh, PA
| |
Collapse
|
9
|
Nemeth Z, Hildebrandt E, Ryan MJ, Granger JP, Drummond HA. Pressure-induced constriction of the middle cerebral artery is abolished in TrpC6 knockout mice. Am J Physiol Heart Circ Physiol 2020; 319:H42-H50. [PMID: 32412783 DOI: 10.1152/ajpheart.00126.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pressure-induced constriction (PIC) is an inherent response of small arteries and arterioles in which increases in intraluminal pressure evoke vasoconstriction. It is a critical mechanism of blood flow autoregulation in the kidney and brain. Degenerin (Deg) and transient receptor potential (Trp) protein families have been implicated in transduction of PIC because of evolutionary links to mechanosensing in the nematode and fly. While TrpC6 has been suggested to contribute to PIC signaling, direct supporting evidence is contradictory. Therefore, the aim of this study was to determine the importance of TrpC6 in PIC signaling using a mouse model lacking TrpC6. To address this aim, we evaluated graded pressure (20-90 mmHg), depolarization (4-80 mM KCl)-, and adrenergic receptor (phenylephrine; PE 10-7-10-4 M)-mediated constriction of isolated middle cerebral artery (MCA) segments from 9-wk-old male wild-type (TrpC6+/+, n = 7) and homozygous null (TrpC6-/-, n = 9) TrpC6 mice (Jackson Laboratories). Isolated MCA segments were cannulated and pressurized with physiological salt solution using pressure myography (Living Systems). Vasoconstrictor responses to KCl and PE were identical in TrpC6-/- and TrpC6+/+ mice. In contrast, PIC responses were totally abolished in TrpC6-/- mice. At 90 mmHg, the calculated myogenic tone was -0.8 ± 0.5 vs. 10.7 ± 1.7%, P = 0.0002 in TrpC6-/- and TrpC6+/+ mice, respectively. Additionally, there were no changes in mechanical properties of circumferential wall strain and stress or morphological properties of wall thickness and wall-to-lumen ratio at 50 mmHg between TrpPC6-/- and TrpC6+/+ mice. Although these results demonstrate that TrpC6 is critical for the integrated PIC response, they do not identify whether TrpC6 acts as a mechanosensor or a downstream signaling component.NEW & NOTEWORTHY Pressure-induced, but not agonist-induced, vasoconstriction is abolished in the middle cerebral artery (MCA) of TrpC6 null mice. TrpC6 localization in dissociated cerebral vascular smooth muscle cells is primarily cytoplasmic and not associated with the surface membrane where a mechanoelectrical coupler might be expected. These findings suggest that TrpC6 is required for transduction of pressure-induced constriction in the MCA; however, its role as a mechanoelectrical coupler or downstream signal amplifier remains unresolved.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Duncan JW, Younes ST, Hildebrandt E, Ryan MJ, Granger JP, Drummond HA. Tumor necrosis factor-α impairs cerebral blood flow in pregnant rats: role of vascular β-epithelial Na + channel. Am J Physiol Heart Circ Physiol 2020; 318:H1018-H1027. [PMID: 32167780 DOI: 10.1152/ajpheart.00744.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension, vascular dysfunction and an increase in circulating inflammatory factors including the cytokine, tumor necrosis factor-α (TNF-α). Studies have shown that placental ischemia is associated with 1) increased circulating TNF-α, 2) attenuated pressure-induced cerebral vascular tone, and 3) suppression of β-epithelial Na+ channel (βENaC) protein in cerebral vessels. In addition to its role in epithelial Na+ and water transport, βENaC is an essential signaling element in transduction of pressure-induced (aka "myogenic") constriction, a critical mechanism of blood flow autoregulation. While cytokines inhibit expression of certain ENaC proteins in epithelial tissue, it is unknown if the increased circulating TNF-α associated with placental ischemia mediates the loss of cerebrovascular βENaC and cerebral blood flow regulation. Therefore, the purpose of this study was to test the hypothesis that increasing plasma TNF-α in normal pregnant rats reduces cerebrovascular βENaC expression and impairs cerebral blood flow (CBF) regulation. In vivo TNF-α infusion (200 ng/day, 5 days) inhibited cerebrovascular expression of βENaC and impaired CBF regulation in pregnant rats. To determine the direct effects of TNF-α and underlying pathways mediating vascular smooth muscle cell βENaC reduction, we exposed cultured VSMCs (A10 cell line) to TNF-α (1-100 ng/mL) for 16-24 h. TNF-α reduced βENaC protein expression in a concentration-dependent fashion from 0.1 to 100 ng/mL, without affecting cell death. To assess the role of canonical MAPK signaling in this response, VSMCs were treated with p38MAPK or c-Jun kinase (JNK) inhibitors in the presence of TNF-α. We found that both p38MAPK and JNK blockade prevented TNF-α-mediated βENaC protein suppression. These data provide evidence that disorders associated with increased circulating TNF-α could lead to impaired cerebrovascular regulation, possibly due to reduced βENaC-mediated vascular function.NEW & NOTEWORTHY This manuscript identifies TNF-α as a possible placental-derived cytokine that could be involved in declining cerebrovascular health observed in preeclampsia. We found that infusion of TNF-α during pregnancy impaired cerebral blood flow control in rats at high arterial pressures. We further discovered that cerebrovascular β-epithelial sodium channel (βENaC) protein, a degenerin protein involved in mechanotransduction, was reduced by TNF-α in pregnant rats, indicating a potential link between impaired blood flow and this myogenic player. We next examined this effect in vitro using a rat vascular smooth muscle cell line. TNF-α reduced βENaC through canonical MAPK-signaling pathways and was not dependent on cell death. This study demonstrates the pejorative effects of TNF-α on cerebrovascular function during pregnancy and warrants future investigations to study the role of cytokines on vascular function during pregnancy.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Subhi Talal Younes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Ashley Z, Mugloo S, McDonald FJ, Fronius M. Epithelial Na + channel differentially contributes to shear stress-mediated vascular responsiveness in carotid and mesenteric arteries from mice. Am J Physiol Heart Circ Physiol 2018; 314:H1022-H1032. [PMID: 29373035 DOI: 10.1152/ajpheart.00506.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A potential "new player" in arteries for mediating shear stress responses is the epithelial Na+ channel (ENaC). The contribution of ENaC as shear sensor in intact arteries, and particularly different types of arteries (conduit and resistance), is unknown. We investigated the role of ENaC in both conduit (carotid) and resistance (third-order mesenteric) arteries isolated from C57Bl/6J mice. Vessel characteristics were determined at baseline (60 mmHg, no flow) and in response to increased intraluminal pressure and shear stress using a pressure myograph. These protocols were performed in the absence and presence of the ENaC inhibitor amiloride (10 µM) and after inhibition of endothelial nitric oxide synthase (eNOS) by Nω-nitro-l-arginine methyl ester (l-NAME; 100 µM). Under no-flow conditions, amiloride increased internal and external diameters of carotid (13 ± 2%, P < 0.05) but not mesenteric (0.5 ± 0.9%, P > 0.05) arteries. In response to increased intraluminal pressure, amiloride had no effect on the internal diameter of either type of artery. However, amiloride affected the stress-strain curves of mesenteric arteries. With increased shear stress, ENaC-dependent effects were observed in both arteries. In carotid arteries, amiloride augmented flow-mediated dilation (9.2 ± 5.3%) compared with control (no amiloride, 6.2 ± 3.3%, P < 0.05). In mesenteric arteries, amiloride induced a flow-mediated constriction (-11.5 ± 6.6%) compared with control (-2.2 ± 4.5%, P < 0.05). l-NAME mimicked the effect of ENaC inhibition and prevented further amiloride effects in both types of arteries. These observations indicate that ENaC contributes to shear sensing in conduit and resistance arteries. ENaC-mediated effects were associated with NO production but may involve different (artery-dependent) downstream signaling pathways. NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) contributes to shear sensing in conduit and resistance arteries. In conduit arteries ENaC has a role as a vasoconstrictor, whereas in resistance arteries ENaC contributes to vasodilation. Interaction of ENaC with endothelial nitric oxide synthase/nitric oxide signaling to mediate the effects is supported; however, cross talk with other shear stress-dependent signaling pathways cannot be excluded.
Collapse
Affiliation(s)
- Zoe Ashley
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| | - Sama Mugloo
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago , Dunedin , New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| |
Collapse
|
12
|
Kang LS, Masilamani S, Boegehold MA. Juvenile growth reduces the influence of epithelial sodium channels on myogenic tone in skeletal muscle arterioles. Clin Exp Pharmacol Physiol 2017; 43:1199-1207. [PMID: 27560463 DOI: 10.1111/1440-1681.12664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023]
Abstract
Previous studies have documented that rapid juvenile growth is accompanied by functional changes in the arteriolar endothelium, but much less is known about functional changes in arteriolar smooth muscle over this period. In this study, we investigate the possible contribution of epithelial sodium channels (ENaC) to the myogenic behaviour of arterioles at two stages of juvenile growth. The effects of the ENaC inhibitor benzamil on different levels of myogenic tone were studied in isolated gracilis muscle arterioles from rats aged 21-28 days ("weanlings") and 42-49 days ("juveniles"). ENaC subunit expression in the arteriolar wall was also determined, and the interaction between ENaC and nitric oxide (NO) in regulating vascular tone was explored by combined use of benzamil and NG -monomethyl-l-arginine (l-NMMA). At physiological pressures, both steady-state myogenic tone and the dynamic adjustments in this tone triggered by acute pressure changes were less in juvenile arterioles than in weanling arterioles. α, β and γ ENaC protein was present in arterioles at both ages, but benzamil only had an effect on myogenic tone in weanling arterioles. In these vessels, benzamil increased, rather than decreased, myogenic tone, and this effect was prevented by l-NMMA or endothelial removal. These findings suggest that although ENaC is present in gracilis muscle arterioles of both weanling and juvenile rats, it is not obligatory for the genesis of myogenic activity in these vessels at either age. However, ENaC activity can significantly modulate the level of myogenic tone through stimulation of endothelial NO release at an early stage of growth.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Shyama Masilamani
- Department of Internal Medicine/Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Matthew A Boegehold
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
13
|
Liang C, Wang QS, Yang X, Niu N, Hu QQ, Zhang BL, Wu MM, Yu CJ, Chen X, Song BL, Zhang ZR, Ma HP. Oxidized low-density lipoprotein stimulates epithelial sodium channels in endothelial cells of mouse thoracic aorta. Br J Pharmacol 2017; 175:1318-1328. [PMID: 28480509 DOI: 10.1111/bph.13853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The epithelial sodium channel (ENaC) is expressed in endothelial cells and acts as a negative modulator of vasodilatation. Oxidized LDL (ox-LDL) is a key pathological factor in endothelial dysfunction. In the present study we examined the role of ENaC in ox-LDL-induced endothelial dysfunction and its associated signal transduction pathway. EXPERIMENTAL APPROACH Patch clamp techniques combined with pharmacological approaches were used to examine ENaC activity in the endothelial cells of a split-open mouse thoracic aorta. Western blot analysis was used to determine ENaC expression in the aorta. The aorta relaxation was measured using a wire myograph assay. KEY RESULTS Ox-LDL, but not LDL, significantly increased ENaC activity in the endothelial cells attached to split-open thoracic aortas, and the increase was inhibited by a lectin-like ox-LDL receptor-1 (LOX-1) antagonist (κ-carrageenan), an NADPH oxidase inhibitor (apocynin), and a scavenger of ROS (TEMPOL). Sodium nitroprusside, an NO donor, diminished the ox-LDL-mediated activation of ENaC, and this effect was abolished by inhibiting soluble guanylate cyclase (sGC) and PKG. Ox-LDL reduced the endothelium-dependent vasodilatation of the aorta pectoralis induced by ACh, and this reduction was partially restored by blocking ENaC. CONCLUSION AND IMPLICATIONS Ox-LDL stimulates ENaC in endothelial cells through LOX-1 receptor-mediated activation of NADPH oxidase and accumulation of intracellular ROS. Since the stimulation of ENaC can be reversed by elevating NO, we suggest that both inhibition of ENaC and an elevation of NO may protect the endothelium from ox-LDL-induced dysfunction. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Chen Liang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Qiu-Shi Wang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Xu Yang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Na Niu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Qing-Qing Hu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Bao-Long Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Chang-Jiang Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Xiao Chen
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Bin-Lin Song
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Wang ZR, Liu HB, Sun YY, Hu QQ, Li YX, Zheng WW, Yu CJ, Li XY, Wu MM, Song BL, Mu JJ, Yuan ZY, Zhang ZR, Ma HP. Dietary salt blunts vasodilation by stimulating epithelial sodium channels in endothelial cells from salt-sensitive Dahl rats. Br J Pharmacol 2017; 175:1305-1317. [PMID: 28409833 DOI: 10.1111/bph.13817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/26/2017] [Accepted: 04/04/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies show that the reduced activity of epithelial sodium channels (ENaC) in endothelial cells accounts for the adaptation of vasculature to salt in Sprague-Dawley rats. The present study examines a hypothesis that enhanced ENaC activity mediates the loss of vasorelaxation in Dahl salt-sensitive (SS) rats. EXPERIMENTAL APPROACH We used the cell-attached patch-clamp technique to record ENaC activity in split-open mesenteric arteries. Western blot and immunofluorescence staining were used to evaluate the levels of aldosterone, ENaC, eNOS and NO. Blood pressure was measured with the tail-cuff method and the artery relaxation was measured with the wire myograph assay. KEY RESULTS High-salt (HS) diet significantly increased plasma aldosterone and ENaC activity in the endothelial cells of Dahl SS rats. The endothelium-dependent artery relaxation was blunted by HS challenge in these rats. Amiloride, a potent blocker of ENaC, increased both phosphorylated eNOS and NO and therefore prevented the HS-induced loss of vasorelaxation. As, in SS rats, endogenous aldosterone was already elevated by HS challenge, exogenous aldosterone did not further elevate ENaC activity in the rats fed with HS. Eplerenone, a mineralocorticoid receptor antagonist, attenuated the effects of HS on both ENaC activity and artery relaxation. CONCLUSIONS AND IMPLICATIONS These data suggest that HS diet blunts artery relaxation and causes hypertension via a pathway associated with aldosterone-dependent activation of ENaC in endothelial cells. This pathway provides one of the mechanisms by which HS causes hypertension in Dahl SS rats. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Zi-Rui Wang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Hui-Bin Liu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying-Ying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-Qing Hu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yu-Xia Li
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Wei-Wan Zheng
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xin-Yuan Li
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, Xi'an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Key Laboratory of Molecular Cardiology, Xi'an, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.,Department of Clinical Pharmacy, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Boegehold MA, Drenjancevic I, Lombard JH. Salt, Angiotensin II, Superoxide, and Endothelial Function. Compr Physiol 2015; 6:215-54. [PMID: 26756632 DOI: 10.1002/cphy.c150008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.
Collapse
Affiliation(s)
| | - Ines Drenjancevic
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Drummond HA, Stec DE. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension. ACTA ACUST UNITED AC 2015; 1:1-9. [PMID: 27928552 DOI: 10.17554/j.issn.2410-0579.2015.01.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| | - David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| |
Collapse
|
17
|
Liu HB, Zhang J, Sun YY, Li XY, Jiang S, Liu MY, Shi J, Song BL, Zhao D, Ma HP, Zhang ZR. Dietary salt regulates epithelial sodium channels in rat endothelial cells: adaptation of vasculature to salt. Br J Pharmacol 2015; 172:5634-46. [PMID: 25953733 DOI: 10.1111/bph.13185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/03/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The epithelial sodium channel (ENaC) is expressed in vascular endothelial cells and is a negative modulator of vasodilation. However, the role of endothelial ENaCs in salt-sensitive hypertension remains unclear. Here, we have investigated how endothelial ENaCs in Sprague-Dawley (SD) rats respond to high-salt (HS) challenge. EXPERIMENTAL APPROACH BP and plasma aldosterone levels were measured. We used patch-clamp technique to record ENaC activity in split-open mesenteric arteries (MAs). Western blot and Griess assay were used to detect expression of α-ENaCs, eNOS and NO. Vasorelaxation in second-order MAs was measured with wire myograph assays. KEY RESULTS Functional ENaCs were observed in endothelial cells and their activity was significantly decreased after 1 week of HS diet. After 3 weeks of HS diet, ENaC expression was also reduced. When either ENaC activity or expression was reduced, endothelium-dependent relaxation (EDR) of MAs, in response to ACh, was enhanced. This enhancement of EDR was mimicked by amiloride, a blocker of ENaCs. By contrast, HS diet significantly increased contractility of MAs, accompanied by decreased eNOS activity and NO levels. However, ACh-induced release of NO was much higher in MAs isolated from HS rats than those from NS rats. CONCLUSIONS AND IMPLICATIONS HS intake increased the BP of SD rats, but simultaneously enhanced EDR by reducing ENaC activity and expression due to feedback inhibition. Therefore, ENaCs may play an important role in endothelial cells allowing the vasculature to adapt to HS conditions.
Collapse
Affiliation(s)
- Hui-Bin Liu
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jun Zhang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ying-Ying Sun
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xin-Yuan Li
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Shuai Jiang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Yu Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Jing Shi
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
18
|
Leenen FHH, Hou X, Wang HW, Ahmad M. Enhanced expression of epithelial sodium channels causes salt-induced hypertension in mice through inhibition of the α2-isoform of Na+, K+-ATPase. Physiol Rep 2015; 3:3/5/e12383. [PMID: 25991719 PMCID: PMC4463818 DOI: 10.14814/phy2.12383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Knockout of the Nedd4-2 gene in mice results in overexpression of epithelial sodium channels (ENaC) on the plasma membrane in the kidney, choroid plexus and brain nuclei. These mice exhibit enhanced pressor responses to CSF [Na(+)] as well as dietary salt-induced hypertension which both can be blocked by central infusion of the ENaC blocker benzamil. Functional studies suggest that ENaC activation in the CNS results in release of endogenous ouabain (EO) and inhibition of the α2-isoform of Na(+), K(+)-ATPase. To test this concept more specifically, we studied Nedd4-2(-/-) mice expressing the ouabain-resistant α2R/R-isoform of Na(+), K(+)-ATPase. Intracerebroventricular (icv) infusion of Na(+)-rich aCSF (225 mmol/L Na(+) at 0.4 μL/min) increased MAP by 10-15 mmHg in wild-type mice and by 25-30 mmHg in Nedd4-2(-/-) mice, but by only ~5 mmHg in α2R/R and in α2R/R/Nedd4-2(-/-) mice. Icv infusion of EO-binding Fab fragments also blocked the BP response in Nedd4-2(-/-) mice. In Nedd4-2(-/-) mice, 8% high-salt diet increased MAP by 25-30 mmHg, but in α2R/R/Nedd4-2(-/-) mice, it increased by only 5-10 mmHg. In contrast, Nedd4-2(-/-) or α2R/R did not affect the hypertension caused by sc infusion of Ang II. These findings substantiate the concept that enhanced ENaC activity causes salt-induced pressor responses mainly through EO inhibiting the α2-isoform of Na(+), K(+)-ATPase in the brain.
Collapse
Affiliation(s)
| | - Xiaohong Hou
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hong-Wei Wang
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
|
21
|
Nagasawa T, Imig JD. Afferent Arteriolar Responses to β,γ-methylene ATP and 20-HETE are not Blocked by ENaC Inhibition. Physiol Rep 2013; 1:e00082. [PMID: 24159379 PMCID: PMC3804346 DOI: 10.1002/phy2.82] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent arteriolar myogenic and tubuloglomerular feedback responses are critical for the proper maintenance of renal hemodynamics and water and electrolyte homeostasis. Adenosine triphosphate (ATP) P2X receptor activation and 20-hydroxyeicosatetraenoic acids (20-HETE) have been implicated in afferent arteriolar autoregulatory responses. Besides these two participants, members of the degenerin/epithelial Na+ channel (DEG/ENaC) family have been demonstrated to play a pivotal role in the afferent arteriolar myogenic response. The aim of this study was to determine if ENaC contributes to P2X receptor- or 20-HETE-mediated afferent arteriolar vasoconstriction. As previously demonstrated, afferent arteriolar diameter responses to increasing perfusion pressure from 100 to 160 mmHg were abolished by ENaC inhibitors amiloride or benzamil. Afferent arteriolar diameter decreased by 29% under control conditions and by 1% and 5% in the presence of amiloride or benzamil, respectively. The P2X receptor agonist β,γ-methylene ATP decreased afferent arteriolar diameter by 3 ± 1%, 7 ± 1%, 12 ± 2%, and 17 ± 3% in response to 0.1, 1, 10, and 100 μmol/L, respectively. ENaC inhibition did not alter the afferent arteriolar vasoconstrictor response to the P2X receptor agonist β,γ-methylene ATP. Like P2X receptor activation, 20-HETE dose-dependently decreased afferent arteriolar diameter and this vasoconstrictor response was not altered by the presence of ENaC inhibitors amiloride or benzamil. These results suggest that DEG/ENaC channels are required for afferent arteriolar autoregulatory responses; however, DEG/ENaC channels do not contribute to P2X receptor- or 20-HETE-mediated afferent arteriolar vasoconstriction.
Collapse
Affiliation(s)
- Tasuku Nagasawa
- Department of Pharmacology & Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
22
|
Ayari H, Legedz L, Lantelme P, Feugier P, Randon J, Cerutti C, Lohez O, Scoazec JY, Li JY, Gharbi-Chihi J, Bricca G. Auto-amplification of cortisol actions in human carotid atheroma is linked to arterial remodeling and stroke. Fundam Clin Pharmacol 2012; 28:53-64. [PMID: 23025717 DOI: 10.1111/j.1472-8206.2012.01064.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/14/2012] [Accepted: 06/11/2012] [Indexed: 11/28/2022]
Abstract
High cortisol and aldosterone levels increase cardiovascular risk, but the respective roles of each hormone within the arterial wall remain controversial. We tested the hypothesis that cortisol production within the arterial wall may contribute to atherosclerotic remodeling and act through illicit activation of the mineralocorticoid receptor (MR). Gene expression studies of the corticoid system components and marker genes of the atherosclerotic process in human carotid atheroma plaque and nearby macroscopically intact tissue (MIT) were considered together with clinical data and compared with pharmacological stimulations of human vascular smooth muscle cells (VSMCs) in contractile or lipid-storing phenotypes. The components of corticoid production and action were present and active within the human carotid wall and VSMCs. Atheroma plaque and lipid-storing VSMCs expressed 11β-hydroxysteroid deshydrogenase-1 (11β-HSD1) at two- to tenfold higher levels than MIT or contractile VSMCs. The 11β-HSD1 expression was stimulated by cortisol and cortisone, especially in lipid-storing VSMCs. MR mRNA level was lower in atheroma and lipid-storing VSMCs and downregulated via MR by fludrocortisone and cortisol. Cortisol upregulated collagen1 and MCP-1 mRNAs via the glucocorticoid receptor (GRα), in both VSMC phenotypes, whereas fludrocortisone stimulated the collagen1 expression only in lipid-storing VSMCs. The GRα mRNA level in MIT was higher in patients with previous stroke and correlated positively with the collagen1 mRNA but negatively with diastolic blood pressure. Local cortisol production by 11β-HSD1, and its action via high parietal GRα could be relevant from the first step of atherosclerotic remodeling and auto-amplify with transdifferentiation of VSMCs during atheroma progression.
Collapse
Affiliation(s)
- Hanène Ayari
- Université Claude Bernard Lyon1, Laboratoire de Pharmacologie EA 4173, INSERM ERI22, Lyon, France; Université de Tunis, Faculté de Médecine, Laboratoire de Biochimie, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Drummond HA. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension. Front Physiol 2012; 3:341. [PMID: 22973231 PMCID: PMC3428779 DOI: 10.3389/fphys.2012.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
Pressure-induced constriction (also known as the “myogenic response”) is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
24
|
Butcher JT, Goodwill AG, Frisbee JC. The ex vivo isolated skeletal microvessel preparation for investigation of vascular reactivity. J Vis Exp 2012:3674. [PMID: 22565845 DOI: 10.3791/3674] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The isolated microvessel preparation is an ex vivo preparation that allows for examination of the different contributions of factors that control vessel diameter, and thus, perfusion resistance(1-5). This is a classic experimental preparation that was, in large measure, initially described by Uchida et al.(15) several decades ago. This initial description provided the basis for the techniques that was extensively modified and enhanced, primarily in the laboratory of Dr. Brian Duling at the University of Virginia(6-8), and we present a current approach in the following pages. This preparation will specifically refer to the gracilis arteriole in a rat as the microvessel of choice, but the basic preparation can readily be applied to vessels isolated from nearly any other tissue or organ across species(9-13). Mechanical (i.e., dimensional) changes in the isolated microvessels can easily be evaluated in response to a broad array of physiological (e.g., hypoxia, intravascular pressure, or shear) or pharmacological challenges, and can provide insight into mechanistic elements comprising integrated responses in an intact, although ex vivo, tissue. The significance of this method is that it allows for facile manipulation of the influences on the integrated regulation of microvessel diameter, while also allowing for the control of many of the contributions from other sources, including intravascular pressure (myogenic), autonomic innervation, hemodynamic (e.g., shear stress), endothelial dependent or independent stimuli, hormonal, and parenchymal influences, to provide a partial list. Under appropriate experimental conditions and with appropriate goals, this can serve as an advantage over in vivo or in situ tissue/organ preparations, which do not readily allow for the facile control of broader systemic variables. The major limitation of this preparation is essentially the consequence of its strengths. By definition, the behavior of these vessels is being studied under conditions where many of the most significant contributors to the regulation of vascular resistance have been removed, including neural, humoral, metabolic, etc. As such, the investigator is cautioned to avoid over-interpretation and extrapolation of the data that are collected utilizing this preparation. The other significant area of concern with regard to this preparation is that it can be very easy to damage cellular components such as the endothelial lining or the vascular smooth muscle, such that variable source of error can be introduced. It is strongly recommended that the individual investigator utilize appropriate measurements to ensure the quality of the preparation, both at the initiation of the experiment and periodically throughout the course of a protocol.
Collapse
Affiliation(s)
- Joshua T Butcher
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, USA
| | | | | |
Collapse
|
25
|
Ryan MJ, Gilbert EL, Glover PH, George EM, Masterson CW, McLemore GR, LaMarca B, Granger JP, Drummond HA. Placental ischemia impairs middle cerebral artery myogenic responses in the pregnant rat. Hypertension 2011; 58:1126-31. [PMID: 22068864 DOI: 10.1161/hypertensionaha.111.181453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One potential mechanism contributing to the increased risk for encephalopathies in women with preeclampsia is altered cerebral vascular autoregulation resulting from impaired myogenic tone. Whether placental ischemia, a commonly proposed initiator of preeclampsia, alters cerebral vascular function is unknown. This study tested the hypothesis that placental ischemia in pregnant rats (caused by reduced uterine perfusion pressure [RUPP]) leads to impaired myogenic responses in middle cerebral arteries. Mean arterial pressure was increased by RUPP (135±3 mm Hg) compared with normal pregnant rats (103±2 mm Hg) and nonpregnant controls (116±1 mm Hg). Middle cerebral arteries from rats euthanized on gestation day 19 were assessed in a pressure arteriograph under active (+Ca(2+)) and passive (0 Ca(2+)) conditions, whereas luminal pressure was varied between 25 and 150 mm Hg. The slope of the relationship between tone and pressure in the middle cerebral artery was 0.08±0.01 in control rats and was similar in normal pregnant rats (0.05±0.01). In the RUPP model of placental ischemia, this relationship was markedly reduced (slope=0.01±0.00; P<0.05). Endothelial dependent and independent dilation was not different between groups, nor was there evidence of vascular remodeling assessed by the wall:lumen ratio and calculated wall stress. The impaired myogenic response was associated with brain edema measured by percentage of water content (RUPP P<0.05 versus control and normal pregnant rats). This study demonstrates that placental ischemia in pregnant rats leads to impaired myogenic tone in the middle cerebral arteries and that the RUPP model is a potentially important tool to examine mechanisms leading to encephalopathy during preeclamptic pregnancies.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39047, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Blaustein MP, Leenen FHH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huysse JW, Zhang J, Wier WG. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H1031-49. [PMID: 22058154 DOI: 10.1152/ajpheart.00899.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baldo MP, Zaniqueli D, Forechi L, Machado RC, Rodrigues SL, Mill JG. Effects of spironolactone in spontaneously hypertensive adult rats subjected to high salt intake. Clinics (Sao Paulo) 2011; 66:477-82. [PMID: 21552676 PMCID: PMC3072011 DOI: 10.1590/s1807-59322011000300020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/17/2010] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To evaluate the effect of spironolactone on ventricular stiffness in spontaneously hypertensive adult rats subjected to high salt intake. INTRODUCTION High salt intake leads to cardiac hypertrophy, collagen accumulation and diastolic dysfunction. These effects are partially mediated by cardiac activation of the renin-angiotensin-aldosterone system. METHODS Male spontaneously hypertensive rats (SHRs, 32 weeks) received drinking water (SHR), a 1% NaCl solution (SHR-Salt), or a 1% NaCl solution with a daily subcutaneous injection of spironolactone (80 mg.kg⁻¹) (SHRSalt- S). Age-matched normotensive Wistar rats were used as a control. Eight weeks later, the animals were anesthetized and catheterized to evaluate left ventricular and arterial blood pressure. After cardiac arrest, a double-lumen catheter was inserted into the left ventricle through the aorta to obtain in situ left ventricular pressure-volume curves. RESULTS The blood pressures of all the SHR groups were similar to each other but were different from the normotensive controls (Wistar = 109 ± 2; SHR = 118 ± 2; SHR-Salt = 117 ± 2; SHR-Salt-S = 116 ± 2 mmHg; P < 0.05). The cardiac hypertrophy observed in the SHR was enhanced by salt overload and abated by spironolactone (Wistar = 2.90 ± 0.06; SHR = 3.44 ± 0.07; SHR-Salt = 3.68 ± 0.07; SHR-Salt-S = 3.46 ± 0.05 mg/g; P < 0.05). Myocardial relaxation, as evaluated by left ventricular dP/dt, was impaired by salt overload and improved by spironolactone (Wistar = -3698 ± 92; SHR = -3729 ± 125; SHR-Salt = -3342 ± 80; SHR-Salt-S = -3647 ± 104 mmHg/s; P < 0.05). Ventricular stiffness was not altered by salt overload, but spironolactone treatment reduced the ventricular stiffness to levels observed in the normotensive controls (Wistar = 1.40 ± 0.04; SHR = 1.60 ± 0.05; SHR-Salt = 1.67 ± 0.12; SHR-Salt- S = 1.45 ± 0.03 mmHg/ml; P < 0.05). CONCLUSION Spironolactone reduces left ventricular hypertrophy secondary to high salt intake and ventricular stiffness in adult SHRs.
Collapse
Affiliation(s)
- Marcelo Perim Baldo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | | | | | | | | | | |
Collapse
|
28
|
Amiloride lowers arterial pressure in cyp1a1ren-2 transgenic rats without affecting renal vascular function. J Hypertens 2010; 28:2267-77. [DOI: 10.1097/hjh.0b013e32833d77b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Venegas-Pont M, Manigrasso MB, Grifoni SC, LaMarca BB, Maric C, Racusen LC, Glover PH, Jones AV, Drummond HA, Ryan MJ. Tumor necrosis factor-alpha antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension 2010; 56:643-9. [PMID: 20696988 DOI: 10.1161/hypertensionaha.110.157685] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic inflammation has been implicated in the pathology of hypertension; however, the role for specific cytokines remains unclear. We tested whether tumor necrosis factor-α blockade with etanercept (Etan) reduces mean arterial pressure in a female mouse model of systemic lupus erythematosus (SLE). SLE is a chronic inflammatory disorder with prevalent hypertension. Thirty-week-old SLE (NZBWF1) and control mice (NZW/LacJ) received Etan (0.8 mg/kg SC weekly) for 4 weeks or vehicle. Mean arterial pressure (in millimeters of mercury) was increased in SLE mice (150±5 versus 113±5 in controls; P<0.05) and was lower in Etan-treated SLE mice (132±3) but not controls (117±5). Albuminuria (in micrograms per milligram of creatinine) was elevated in SLE mice (28 742±9032 versus 1075±883; P<0.05) and was lower in Etan-treated SLE mice (8154±3899) but not control animals (783±226). Glomerulosclerosis (in percentage of glomeruli) was evident in SLE mice (2.5±1.6 versus 0.0±0.0 in controls; P<0.05) and was ameliorated in Etan-treated SLE mice (0.1±0.1). Renal cortex CD68(+) cell staining (in percentage of area) was elevated in SLE mice (4.75±0.80 versus 0.79±0.12 in controls; P<0.05) and was lower in Etan-treated SLE mice (2.28±0.32) but not controls (1.43±0.25). Renal cortex NADPH oxidase activity (relative light units per milligram of protein) was higher in SLE mice compared with controls (10 718±1276 versus 7584±229; P<0.05) and lowered in Etan-treated SLE mice (6645±490). Renal cortex nuclear factor κB (phosphorylated and nonphosphorylated) was increased in SLE mice compared with controls and lower in Etan-treated SLE mice. These data suggest that TNF-α mechanistically contributes to the development of hypertension in a chronic inflammatory disease through increased renal nuclear factor κB, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Marcia Venegas-Pont
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular Renal Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216-4505, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Heineke J, Auger-Messier M, Correll RN, Xu J, Benard MJ, Yuan W, Drexler H, Parise LV, Molkentin JD. CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med 2010; 16:872-9. [PMID: 20639889 PMCID: PMC2917617 DOI: 10.1038/nm.2181] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/15/2010] [Indexed: 11/30/2022]
Abstract
Hypertrophic heart disease is a leading health problem facing the Western world. Here we identified the small EF-hand domain-containing protein CIB1 (Ca2+ and integrin binding protein 1) in a screen for novel regulators of cardiomyocyte hypertrophy. Yeast two-hybrid screening for CIB1 interacting partners identified a related EF-hand domain-containing protein calcineurin B, the regulatory subunit of the pro-hypertrophic protein phosphatase calcineurin. CIB1 largely localizes to the sarcolemma in mouse and human myocardium, where it anchors calcineurin to control its activation in coordination with the L-type Ca2+ channel. CIB1 protein levels and membrane association were enhanced in cardiac pathological hypertrophy, but not in physiological hypertrophy. Consistent with these observations, mice lacking Cib1 show a dramatic reduction in myocardial hypertrophy, fibrosis, cardiac dysfunction, and calcineurin-NFAT activity following pressure overload, while the degree of physiologic hypertrophy after swimming was not altered. Transgenic mice with inducible and cardiac-specific overexpression of CIB1 showed enhanced cardiac hypertrophy in response to pressure overload or calcineurin signaling. Moreover, mice lacking the Ppp3cb gene showed no enhancement in cardiac hypertrophy associated with CIB1 overexpression. Thus, CIB1 functions as a novel regulator of cardiac hypertrophy through its ability to regulate calcineurin sarcolemmal association and activation.
Collapse
Affiliation(s)
- Joerg Heineke
- Howard Hughes Medical Institute, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Amin MS, Reza E, Wang H, Leenen FH. Sodium Transport in the Choroid Plexus and Salt-Sensitive Hypertension. Hypertension 2009; 54:860-7. [DOI: 10.1161/hypertensionaha.108.125807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To elucidate the role of epithelial sodium channels (ENaCs) and Na
+
-K
+
-ATPase in Na
+
transport by the choroid plexus, we studied ENaC expression and Na
+
transport in the choroid plexus. Lateral ventricle choroid plexuses were obtained from young male Wistar, Dahl salt–resistant (SS.BN13), and Dahl salt–sensitive (SS/MCW) rats on a regular (0.3%) or high- (8.0%) salt diet. The effects of ENaC blocker benzamil and Na
+
-K
+
-ATPase blocker ouabain on sodium transport were evaluated by measuring the amounts of retained
22
Na
+
and by evaluating intracellular [Na
+
] with Sodium Green fluorescence. In Wistar rats, ENaC distribution was as follows: microvilli, 10% to 30%; cytoplasm, 60% to 80%; and basolateral membrane, 5% to 10%. Benzamil (10
−8
m
) decreased
22
Na
+
retention by 20% and ouabain (10
−3
m
) increased retention by 40%, whereas ouabain and benzamil combined caused no change. Similar changes were noted in intracellular [Na
+
]. In Dahl rats on a regular salt diet, intracellular [Na
+
] was similar, but the amount of retained
22
Na
+
was less in sensitive versus resistant rats. High salt did not affect ENaC mRNA or protein, nor the benzamil induced decreases in retained
22
Na
+
or intracellular [Na
+
] in either strain. However, high salt increased intracellular [Na
+
] and attenuated the increase in uptake of
22
Na
+
by ouabain in resistant but not sensitive rats, suggesting a decrease in Na
+
-K
+
-ATPase activity only in resistant rats. These findings suggest that both ENaC and Na
+
-K
+
-ATPase regulate Na
+
transport in the choroid plexus. Aberrant regulation of Na
+
transport and of Na
+
-K
+
-ATPase activity, but not of ENaCs, might contribute to the increase in cerebrospinal fluid [Na
+
] in Dahl salt-sensitive rats on a high-salt diet.
Collapse
Affiliation(s)
- Md Shahrier Amin
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| | - Erona Reza
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| | - Hongwei Wang
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| | - Frans H.H. Leenen
- From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Affiliation(s)
- Heather A. Drummond
- From the Department of Physiology, University of Mississippi Medical Center, Jackson
| |
Collapse
|
34
|
Abstract
BACKGROUND The importance of beta and gamma epithelial Na(+) channel (ENaC) proteins in vascular smooth muscle cell (VSMC)-mediated pressure-induced constriction in renal interlobar arteries has been demonstrated recently. In renal epithelial tissue, ENaC expression is regulated by angiotensin II (Ang II). However, whether Ang II regulates vascular ENaC expression has never been determined. Therefore, the goal of the current investigation was to determine whether Ang II affects vascular ENaC expression and its contribution to pressure-induced constriction. METHODS To address this goal, Sprague-Dawley rats were infused with Ang II (50 ng/kg/min) via osmotic minipump for 1 week. Mean arterial pressure (MAP) was measured using radiotelemetry. Interlobar arteries were isolated from these animals to assess VSMC ENaC protein expression, pressure-induced constriction, and agonist induced vascular reactivity. RESULTS MAP was not different in control (113 +/- 2 mm Hg) and Ang II- (114 +/- 2 mm Hg) infused mice. We found that Ang II infusion decreased renal VSMC beta and gammaENaC immunolabeling by 18%. Consistent with this finding, we also found that ENaC-dependent peak pressure-induced constriction was inhibited from 38 +/- 3% to 25 +/- 1% at 125 mm Hg. Vasoreactivity to KCl, phenylephrine (PE), and acetylcholine (ACh) was unchanged. CONCLUSIONS Ang II suppression of pressure-induced constrictor responses in renal interlobar arteries may be mediated, at least in part, by inhibition of beta and gammaENaC protein expression.
Collapse
|
35
|
Jernigan NL, Paffett ML, Walker BR, Resta TC. ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca(2+) entry. Am J Physiol Lung Cell Mol Physiol 2009; 297:L271-85. [PMID: 19482897 DOI: 10.1152/ajplung.00020.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acid-sensing ion channels (ASIC) are voltage-insensitive, cationic channels that have recently been identified in vascular smooth muscle (VSM). It is possible that ASIC contribute to vascular reactivity via Na(+) and Ca(2+) conductance; however, their function in VSM is largely unknown. In pulmonary VSM, store-operated Ca(2+) entry (SOCE) plays a significant role in vasoregulatory mechanisms such as hypoxic pulmonary vasoconstriction and receptor-mediated arterial constriction. Therefore, we hypothesized that ASIC contribute to SOCE in pulmonary VSM. We examined SOCE resulting from depletion of intracellular Ca(2+) stores with cyclopiazonic acid in isolated small pulmonary arteries and primary cultured pulmonary arterial smooth muscle cells by measuring 1) changes in VSM [Ca(2+)](i) using fura-2 indicator dye, 2) Mn(2+) quenching of fura-2 fluorescence, and 3) store-operated Ca(2+) and Na(+) currents using conventional whole cell patch-clamp configuration in voltage-clamp mode. The role of ASIC was assessed by the use of the ASIC inhibitors, amiloride, benzamil, and psalmotoxin 1, or siRNA directed towards ASIC1, ASIC2, or ASIC3 isoforms. We found that store-operated VSM [Ca(2+)](i) responses, Mn(2+) influx, and inward cationic currents were attenuated by either pharmacological ASIC inhibition or treatment with ASIC1 siRNA. These data establish a unique role for ASIC1 in mediating SOCE in pulmonary VSM and provide new insight into mechanisms of VSM Ca(2+) entry and pulmonary vasoregulation.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Dept. of Cell Biology and Physiology, Univ. of New Mexico Health Sciences Center, Albuquerque, 87131-0001, USA.
| | | | | | | |
Collapse
|
36
|
Wang X, Takeya K, Aaronson PI, Loutzenhiser K, Loutzenhiser R. Effects of amiloride, benzamil, and alterations in extracellular Na+ on the rat afferent arteriole and its myogenic response. Am J Physiol Renal Physiol 2008; 295:F272-82. [PMID: 18495800 DOI: 10.1152/ajprenal.00200.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent studies have implicated epithelial Na+ channels (ENaC) in myogenic signaling. The present study was undertaken to determine if ENaC and/or Na+ entry are involved in the myogenic response of the rat afferent arteriole. Myogenic responses were assessed in the in vitro hydronephrotic kidney model. ENaC expression and membrane potential responses were evaluated with afferent arterioles isolated from normal rat kidneys. Our findings do not support a role of ENaC, in that ENaC channel blockers did not reduce myogenic responses and ENaC expression could not be demonstrated in this vessel. Reducing extracellular Na+ concentration ([Na+]o; 100 mmol/l) did not attenuate myogenic responses, and amiloride had no effect on membrane potential. Benzamil, an inhibitor of ENaC that also blocks Na+/Ca2+ exchange (NCX), potentiated myogenic vasoconstriction. Benzamil and low [Na+]o elicited vasoconstriction; however, these responses were attenuated by diltiazem and were associated with significant membrane depolarization, suggesting a contribution of mechanisms other than a reduction in NCX. Na+ repletion induced a vasodilation in pressurized afferent arterioles preequilibrated in low [Na+]o, a hallmark of NCX, and this response was reduced by 10 micromol/l benzamil. The dilation was eliminated, however, by a combination of benzamil plus ouabain, suggesting an involvement of the electrogenic Na+-K+-ATPase. In concert, these findings refute the premise that ENaC plays a significant role in the rat afferent arteriole and instead suggest that reducing [Na+](o) and/or Na+ entry is coupled to membrane depolarization. The mechanisms underlying these unexpected and paradoxical effects of Na+ are not resolved at the present time.
Collapse
Affiliation(s)
- Xuemei Wang
- Smooth Muscle Research Group, Faculty of Medicine, Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|